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Extinction in textures: Nullifying the extinction effect
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Accounting for secondary extinction (SE) in a crystallographic direction, a straightforward approach
is devised for XRD characterizations of textures by nullifying the extinction effect. To this end, a proper
reconsideration of the nature of the extinction coefficients is carried out. It is shown that whereas the SE
coefficient g is proportional to the product of pole density P and incident-beam intensity 7, the empirical extinction
coefficient k is independent of the ratio g/PI,. Based on the invariability of the k-coefficient with respect to g/PI,,
the extinction effect is nullified by equating two its expressions defined by intensities of a reflection measured at a
series a levels interaction whose variation is controlled by P and /. Techniques representing extended versions of this
approach are developed for (i) reliability-evaluation of the controlled variation of the levels of interaction by using
instrumental variable (generator current) and, hence, to test the capability of the XRD apparatus to collect accurate and
precise data, and (ii) determination of extinction-free data of the pole density that is a fundamental physical parameter.
The experimental results are discussed in terms of the influence of extinction coefficient g on the accuracy in the

determination of the pole density in ideal <100> direction of nickel texture.
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1. INTRODUCTION

Extinction was introduced to account for the re-
flecting power of a real crystal with respect to the
power described by kinematical diffraction [1].
Extinction in a mosaic structure is power loss caused
by the production of the diffracted beam. Depending
on the block size, one has to distinguish between
primary extinction, which is extinction within a sin-
gle crystal block, and secondary extinction, which
occurs when a ray reflected by one mosaic block
is subsequently reflected by another block with the
same orientation.

To overcome the deficiencies in the theoretical
estimates of extinction correction factors, based on
simplified parameterization of the extinction effect
across the scan of reflection, devoted experimental
procedures were applied to decrease as well as can-
cel the extinction effect. In this respect, Schneider
(1976) designed y-ray diffractometry experiments
where extinction is only in the order of 10% or less
[2]. Analyzing the process of the X-ray scattering
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and the level of interaction between radiation and
crystal medium, Mathieson substantiated an ap-
proach for derivation experimental structure-factor
values, which are free from extinction effects [3].
The approach involves “(i) determination of inte-
grated reflectivity at a series of levels of interaction
(attained by controlled variation of a suitable physi-
cal parameter) and (ii) extrapolation of an appropri-
ate function of the measurements to zero level of
interaction as identified by zero diffracted power”.
The procedures to experimental realizations of the
null-intensity (extinction-free) limit were illustrated
in the paper of Mathieson & Mackenzie [4] as well.
To attain a true zero-extinction kinematic limit val-
ue, the question of extrapolation to zero extinction
in case of wavelength in the y-ray region has been
discussed from different point of views in the litera-
ture [5—7]. In this connection, the y-ray data used
in each of these investigations have been fitted by
using polynomials of different types corresponding
to the particular conceptions of the authors for at-
tainment of the true zero-extinction kinematic limit
value.

The present study outlines an alternative ap-
proach for nullifying the extinction effect. In this
respect, careful considerations are carried out of
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the process of the scattering of X-rays and the level
of interaction between the radiation and the crystal
medium. Our concern here is essentially with mu-
tual connection between extinction coefficients and
their exact relationship with diffraction at a series
of levels of interaction attained by controlled varia-
tions of suitable physical parameters.

2. BASIC DEFINITIONS OF EXTINCTION
THEORY AND TEXTURE ANALYSIS

The formalism considered here is valid for the
symmetrical Bragg geometry with a plane-parallel
plate sample appearing infinitely thick to the X-rays.
According to theory [1, 8-14] and experiment
related with it [2, 5-7], the extinction decreases the
measured intensity /, of a reflection with a factor y,
the extinction factor, defined by

Im:ylkin (1)

Here, I, is the intensity that a Bragg reflection
would have if kinematic theory would apply
exactly to the system being examined. Therefore,
the intensity /,,, delimits an imaginary (physically
non-attainable) level of interaction of the diffraction
process. In the symmetrical Bragg geometry, /,, has
to be expressed as

Ly :PIOQS/ZIU 2

where /; is the intensity of the incident beam, S is
the cross section of the beam, Q is the reflectiv-
ity per unit crystal volume, u is the ordinary linear
absorption coefficient, and P is the pole density. It
is defined by the volume fraction dV/V of crystal-
lites whose <hkl>-poles fall into a (infinitely small)
space-angle element dQ2 (Bunge [15, 16]):

(aviv)de=p. )

The factor P connects (2) with the well known
formula

I, =1,08/2u, “4)

which is derived under assumption for random
distribution of crystallites, i.e. P=1. Inthe case of pure
SE, Chandrasekhar gave an expression for the extinction
factor y [17]:

y=ulu, )

where u is an effective absorption coefficient. In
the symmetrical Bragg geometry with a plane parallel
plate sample one should use the effective absorption
coefficient as a first order approximation for the SE
correction € [9]:
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u=u+g0(p,/ p}). (6)

Here g is the SE coefficient, which is a dimen-
sionless quantity [1]. The symbol p, denotes the po-
larization factor for incident X-ray beam [9]:

P, = [1 +cos” (26, )cos™ (26, )]/[l +cos” (26, )] (7

wheren=1, 2, ..., 8, is the Bragg angle of reflection.
From (6) a formula follows for the SE correction &,
which has been derived by Darwin [1], and later the
polarization p,/ p? of the incident X-ray beam has
been incorporated in ¢ by Chandrasekhar [17] and
Zachariasen [9]:

e=g0(p./pl ) ®)

3. ANISOTROPY AND BEHAVIOUR
OF THE EXTINCTION COEFFICIENTS

Bragg et al. [18] deduced the SE correction
empirically, whereas Darwin [1] deduced it theo-
retically. To this end, the authors have supposed
respectively that both the empirical extinction coef-
ficient k& and the SE coefficient g are constants for
the crystal, that is, parameters independent of crys-
tallographic direction. Moreover, Darwin [1] had
assessed that the definition, deduced by Bragg et al.
[18], was correct to the first order approximation for
the SE correction alone. Consequently, in the discussed
frames, the two definitions for the SE correction have to
be equivalent. In order to account for the crystal and
textural anisotropy, the nature of £ and g is recon-
sidered here. Replacing Q by its corresponding ex-
pression from (2) transforms (8) into

e=kly, (pz/plz)’ ©

where the expression

k=2gu/PI,S (10)

shows that & and g are mutually connected.
Reforming (10) yields the expression for

g=kPI,S/2u. (11)

Evidently, (2) and (11) reveals that whereas /,,,
defines the upper limiting value of the diffraction
process, g defines the extinction-induced weaken-
ing of the level of interaction of the same process.
Depending on P, g and k are anisotropic coefficients.
The anisotropy of P comprises the crystallographic,
microstructural and textural anisotropies. Acting to-
gether for all crystallites contributing to reflection,
anisotropy parameters such as size, shape, disloca-
tion substructure, crystallographic orientation and
crystallite arrangement (Bunge [19]) synthesize
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the resulting anisotropy of g and k. The coefficients
show different behaviour with respect to the level
of interaction of the diffraction process that is con-
trolled simultaneously by P and /, under otherwise
equal conditions. At lower limiting values of either
both P/;—0 or one of them makes it evidently that
in the only case of no diffraction (/,,—0) (2), there
is no extinction (g—0) (11). This is in accord with
Mathieson’s statement that ‘extinction is only zero,
in absolute sense, when diffracted power is identi-
cally zero [3]. Moreover, whereas g is proportional
to the product P/, the coefficient k e is proportional
to the ratio g/PI,. Therefore, by virtue of the inter-
dependence between g and P/, any change of either
both, P and /,, or one of them does not cause change
of the ratio g/P/, and, hence, k is independent of the
product of both P>0 and />0.

3.1. Definitions for k independence
of the levels of interaction

Suppose the incident beam changes its intensity
from [ to /. under P=const. Here i and i* denote
the values of the generator current. Then, by analogy
of (10), we shell have

k;=2ug;/PI,;S, (12)

ki* = 2/’Lgi*/P10,i*S N (128.)

where it is accounted that g, and g,. are proportional
to /,; and /, ., respectively, i.e.

(gi/IO,i)/(gi*/](),i*):l. (13)

Dividing (12) and (12a) with accounting for (13)
yields

ki =k, (14)

that k£ is independent of the level of interaction.
Second, suppose the pole density changes from P
to P=1 under /=const. Following (12), £, is then
transformed into £/, i.e.:

K =2ug] [1,S . (15)

Here it is accounted that g/ is proportional to P
corresponding to random distribution of crystalline
orientations. Dividing (12) and (15) with taking into
account for P=g/g/ yields

k, =k . (16)

Thus, (14) and (16) constitute conditions for the
invariability of £ from the level of interaction of
the diffraction process. Then, one can utilize k for
nullifying the extinction effects by equating two its
expressions that are defined by two different couples

Diffracted beam

Py
<—— k[em]

Incident beam

; 3
) 17k [em’]
4= wavelength

Fig. 1. Diffraction conditions design by means of the re-
ciprocal (scattering) space. The radius 1/4 of the Ewald’s
sphere is defined by the wavelength A of X-rays. O is the
origin of the real space and Phkl is a node of the recipro-
cal space where fall the <Ak/> poles of the crystallites in
Bragg condition. The coefficient k defines the scanned
volume inside the node. The distance OP,,, is defined by
d;k, =1/d,,;,, where d,, is the space between atomic net-
works (hkl).

of intensities of a reflection measured at a series of
levels of interaction.

To analyze what a constant is &, let us throw look
at Fig. 1, which designs the diffraction condition in
terms of the reciprocal (scattering) space (Ewald
[20]). The coefficient k£ has dimension of reciprocal
volume (see (10)). It corresponds to the scattering
space. Actually, this is the scanned volume in-
side the node P,,,. Due to the relationship be-
tween real and scattering space, the reciprocal
quantity of k [1/k=(S/2u)(PI,/g)] corresponds to
the real space. Then, one may consider 1/k as con-
sisting of two terms of different range. For an infi-
nitely thick sample, the term, S/2x, represents the ir-
radiated crystalline volume that is a constant for all
reflections of the XRD pattern, whereas P/ /g is a
constant inherent for any particular reflection. The
last is due to the interdependence of these three pa-
rameters since /, scales g by means of P (see (11)).
The quantity 1/k defines a volume in the real space
where the X-radiation, interacting with crystal me-
dium, produces the measured intensity / .

3.2. Expressing the SE coefficient g and SE
correction ¢ in case of polycrystalline materials

Due to fine-crystalline structure and high den-
sity of imperfections [21], reflection broadening
in textures is about two orders of magnitude larger
than that one in single crystals, which amounts to a
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few ten of seconds of arc [5, 7]: for the same rea-
son, the textures exhibit pure SE as well [22, 23].
This reflects in the observed reflection broadening
recorded by conventional diffractometry. Actually,
it is a superposition of physical (microstructural)
and instrumental broadening. Since the determina-
tion of the SE coefficient g =1/ 277\/; is based on
the crystal-mosaic distribution alone [8]), it is not
justified to expect that this definition would ad-
equately account for the microstructural properties
of polycrystalline materials. (Here # is the standard
deviation of the Gaussian function). The only way
to account adequately for the anisotropic effects of
the pole density P on the SE coefficient is to de-
termine g using quantities corresponding to reflec-
tion whose profile synthesizes all microstructural
effects. Thus, if k and /,,, are known, from (8) and
(9) one obtains:

g =kl /0. (17)
Replacing /,,, with its corresponding expression
obtained by reforming (1) in succession with (5),
(6) and (9), transforms (17) into

g:k,u[m/Q[lu_klm (pZ/plz)}

By analogy, for the SE correction ¢ defined by (9),
one writes

e=ukd,, (p./pi )|~ 1, (p:/ 1) (170)

(17a)

These definitions account implicitly for parame-
ters describing as a whole the crystallographic, tex-
tural and microstructural anisotropy in the probing
direction of the sample as well as the measurement
conditions. Moreover, in the Appendix A is shown
that the basic source of the g-coefficient anisotropy

I: IL,.:8:k
k; =k

II: I, ;805K
kis = ks

II: I, s Gpuxs K

[V 3 1,\.',-”_!-***; gf*** 3 f{t;<

is the loading density (the number of atoms per unit
area of {hkl} system of net-planes [24]). This con-
stitutes that g is grater for a denser atomic net-plane
system. In general, reducing the loading density of
net-planes, the lattice imperfections diminish thus
the coefficient g.

4. PARAMETERIZATION OF THE
RELATIONSHIP BETWEEN LEVELS
OF INTERACTION CONTROLLED
BY I-INTENSITY

The levels of interaction of the diffraction proc-
ess at a series of measurements of a reflection are
defined by respective change of the incident X-ray
beam intensity /. The controlled variation of the /-
intensity can be caused by ether transmission fac-
tor of a thin foil crossed by the incident beam or
stepwise reduction of the generator current of the
XRD apparatus [26]. Meanwhile, the last type of
the procedures may supply information that is rep-
resentative for the internal consistency of the XRD
apparatus, i.e. for its capability to collect precise
and accurate data. Below this idea is depicted.

4.1. Expressing the relationship R between
a couple of levels of interaction controlled
by generator current

Suppose a reflection is measured in succession
at intensities, 1, ;, [, Iy jur, and I ..., of the incident
beam, where the generator tension V' is constant,
and the reduction of the values of the generator
current / is dependent on geometric progression
(i=2i*=47**=8i***), In the equations listed inside
of Fig. 2, 4 is a constant, V is the critical excitation

Ly jw = Ai**(V=Vy )

[RE = D kEkR

1[},;’*** = Aj*** (V _ VK )n

Fig. 2. Parameterization of the relationship between couples of levels of interaction of the diffraction process. Since

diffraction and extinction are indissolubly linked (see (2) and (11)), /,

and g define in the same way any level of

in

interaction and, hence, the relationship R between couples of neighbor levels of interaction (18), (22) and (23).
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potential of the Ka radiation, and n = ~ 1.5 [27].
The intensity /, quantifies any level of interaction of
the diffraction process simultaneously by quantities
both the kinematical intensity /,, (2) and the SE
coefficient g (11). Then, in the frames of the straight
proportionality between [, and i (/,;=4i(V-V,)"), the
parameter R, . defines the relationship between the
first couple of levels of interaction:

IO,i /[O,i* = [kin,i /Ikin,i*

=g;/gn=i[i*=R, . (18)

The intensities, /,,, <>1,,, . defining the first and
second levels of interaction (Fig. 2) can be expressed
respectively by reforming (1) in succession with (5),
(6) and (9), i.e.:

Lyng = {“/[# A Pa P’[ 1}1,,,,9 (19)
Liinis = {u/[ —kud,,; (pq oy )]} i (20)

Solving (19) and (20) for k,,. = k, = k,., with taking
into account for R, .. from (18), ylelds

Rype—=(Li /110 |

L

" L, (Pz /P12 IRi,i* - ]

Hereafter any coefficient of the type k. will
be denoted with indices i and i* corresponding to
the values of the generator current applied to the
measurement of the respective couple of intensities,
1,1, v used for its expressing. With a view to ex-
pressing the parameters k;» and R, . by using meas-
ured intensities alone, one needs additional data.
Then, by analogy of (18), the parameters R.. ... and
R juss, corresponding to the first-neighbour levels
of interaction, are defined respectively with

ii*

(e2))

I . I, . 7 %
0,i* kin,i* & l
= === = R, (22)
Lo dpip e G
Lo Tjnios G P**
- - - l** ok ,(23)
I I ) l***
0,1*** kln,l*** gl***

where the value of any of the parameters

R .

it Ri*,i** (24)

— Ri**,i***

has to be equal to any of the respective ratios defined

by the values of the generator current
ifi*=i%j%k=jxk[jkEr=7) (25)

By virtue of (14), k is constant for any level of
interaction under otherwise equal condition, i.e.

ki — ki* — ki** — ki*** . (26)

Then, the intensities, /,, j«.¢>1;, .., are expressed
by analogy of (19) and (20), respectively:

¢ AT — %t/ [,u .~ (;;3 P )I} [, @7
{u/ [;e —ieeed; (P2 P )]}!m_r.m.(28)
Koon =

Solving (27) and (28) for k.. .. = k;
accounting for R... ... from (23) yields

U Rivegore = (Lo 1 e )

Ly gos (P2 D7 Y Riewjome —1]

Now, solving (21) and (29) for R, .. = Rius ves
under nullifying the extinction effect by equating
ki jx = Kieu june yi€lds

ii
Im llm i+ (Im,i* - Im,i***)
Im,i*lm,i*** (Im,i - Im,i** )

By analogy, one can derive the relationship
between the second-neighbor levels of interaction
assuming that R, ..=R, .R.. v aNd R\ jois=R s iR s un
(see Figure 2) as ‘well. The coefficients ki andk, N
are then expressed with the couple of intensities
Ly, i L e a0 Ly, oLy s, (see (19)>(27) and

kin,i

(20)(28)), respectively:

U R joe = (L Do)
L (pz /P12 IRi,i** - 1] ’

kv With

(29)

ki**,i*** —

R .=

i,i

(30)

e = 31)

] R jevs = (Lo [ 1 geve )| |
1, (p2 /P12 IRi*’i*** —1]
At the end, solving (31) and (32) for R, ..=R,. vss,

under nullifying the extinction effect by equating
k; sk, vee yields

ki*,i*** - (32)

Im t[m i* (Im,i** - [m,i*** )

R; e = )T - (Im,i - Im,i*).

ii

(33)

Variation of the levels of interaction, and
hence of /,,, and g, with control has an additional
advantage in that it allows for the capability for
internal experimental checks that are based on using
of instrumental variables. Actually, the generator
current 7 is incorporated implicitly in this technique
as referent parameter. For instance, the capability of
the measurement tool to collect accurate and precise
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data is controlled by the degree of approximation of
R to the ratio i/i*.

5. EXPRESSING THE EXTINCTION-FREE
POLE DENSITY P

By definition, the extinction-induced systematic
error of the pole density is expressed with the
difference AP, between P and P, , i.e.

AP, =P-P, (34)
P=1,/1;,, (35)
p,=1,/I,. (36)

Here P and P, are defined by using the kinemati-
cal intensities from (2) and (4) and the measured
intensities of the textured sample, 7/, and powder

]kili,i ;kf P

Lin vk P

Lo sk a3
Kna=r e

P

Lo o o S
kin i ¥F® ke

k.=kT =k -
1 1

o=kl
j* Nk

k.

R

standard, I, respectively. To express P by meas-
ured intensities, a proper procedure is designed to
data collection (Fig. 3). In this respect, the same re-
flection of textured sample and powder standard is
measured at a series of the incident beam intensities
Ly, s Iy o s 1y jor and [ ..., caused by stepwise reduction
of the values of the generator current, i.e. 7, i*, i**
and 7**%*,

Any of the particular levels of interaction is
characterized byrespectivekinematic, /,, ,intensities,
the pole densities, P and P, and the coefficient .
According to the definitions (14) and (16), & is the
same for each of the levels of interaction and P" is
equal to unit. Then, P, is expressed by the kinematic
intensities corresponding to the first couple of levels

of interaction measured at the intensity / ;:

Pi = Ikin,i/II:in,i . (37)
where
1" kTP =1 1 =4i -V )"
king i’ = Xi i( k)
r JF - pF—1 — AiR(T _ n
Ikin,i*’kf*’P =1 (_10,;‘*_‘4’ 4 VK)

[i‘ A!

skl P =1 1
kin,i** [**

0,7 %%

r L - pr—1-
Lngweetimant =L <1

0,%*
k!

g .
_ki**_!‘ e

jREE

Fig. 3. Data collection procedure that is designed by the levels of interaction of the diffraction process. The same
reflection of textured sample and random standard is measured at a series of the incident beam intensities /, caused by

variation of the generator-current values i.
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(3%)

Tiing = {u/ =k 15, (po 11 )|

Solving the system of equations (19) and (38) for
k.= k] (see (16)) yields:

i — ﬂ{Pz - (Im,i/lrrn,ij
BN

Further, by analogy of (37), we write for the
second couple of levels of interaction measured at
the intensity 7 ;:

(39)

F.= ]kin,i*/II:in,i* > (40)

where

!:’:-a'u.r"" == {u/[,u - ki’-f::.f“ (pE f-}lz )]}‘(:{:‘r.r'*‘

Solving the system of equations (20) and (41) for
k.= k’ (see (16)) yields:
(Im,i* /Irrn,i*)}

ﬂ[ﬁ* -
ky = .
Im,i* (pz /p12 )[B* - 1]

At the end, solving (39) and (42) for the
unknown parameter P, . = P, = P,, under nullifying
the extinction effects k, = k,. yields an extinction-
free value for the pole density corresponding to the
first and second couples of levels of interaction:

r r
p Im,i[m,i* (Im,i - Im,i*)
o (-1
myitm,i* \tm,i = L m,i*

Therefore, starting from kinematic definitions
(37) and (40) for the pole density, an operative
formula (43)thatis in exactaccord with the kinematic
theory is derived using measured intensities.
Following the same procedure, extinction-free data
for the pole density P, .. P P, sy cOrresponding
to respective combination of the other couples of
levels of interaction are achieved as well. Once
determined, the empirical extinction coefficient &
can be employed for calculation of the kinematic
intensities, the SE coefficient g defined by (17a)
and the SE correction from (17b).

(41)

(42)

(43)

6. EXPERIMENTAL, RESULTS
AND DISCUSSION

As a model, an electrodeposited nickel coating
(Ni38) was used. It represents fiber texture with a
main <100> component. The 200 reflection was
measured with conventional goniometer using

CuK, radiation separated by graphite focusing
monochromator. The divergence slit was 1/2°, and
receiving one 0.05 mm. The four step measurement
procedure, shown in Figure 2, was carried out in such
a way to compensate the stepwise decrease of the
generator current from i to 7** (j=2*=47%*=8j***)
by respective increase of the data collection time per
scanned step from 7 to 7%%* i.e. (ir=i*r¥=i**r**=
i*¥*F*p**¥) The compensative condition ensures the
same statistical errors in the respective points of the
measured profiles.

Fig. 4 illustrates the proportionality between co-
efficient g and incident beam intensity /,. The ordi-
nate axis represents the values of the coefficient g
determined at different levels of interaction of the
diffraction process. The abscissa axis shows that the
I,-reduction is dependent on geometric progression,
re. [/R" (n =0, 1, 2, 3) where R is the ratio be-
tween neighbor levels of interaction. Figs. 4a and 4b

1200
1000 |
800 |

=
® soo}
400 +

200

0 0.2 0.4 0.6 0.8 1.0
-1
IR

Fig. 4. a) Plot of the SE coefficient g vs. incident beam
intensity I, whose stepwise reduction is dependent
on geometric progression /,R" (n=0,1,2,3), where R
[=2.00213] is the ratio between neighbor levels of
interaction. The measurement of the 200 reflection of
Ni38 sample representing sharp <100> texture (P=35) is
carried out by CuKoa-radiation. b) Analogical plot for the
SE coefficient g" of random standard: the conditions of
its measurements are the same.
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show the degree of extinction effects measured at
the textured sample (Fig. 4a) and random standard
(Fig. 4b), respectively. The scale between g values,
corresponding to the textured sample and random
standard is equal exactly to P=g“/g".

In Table 1, results are listed about the pole
density. The first column shows that the stepwise
reduction of the incident beam intensity is dependent
on geometric progression, /[,R™ (n=0,1,2,3), where
R is the ratio between neighbor levels of interaction
caused by the generator current. The second column
contains extinction-free data, and third column
contains data affected by extinction. While the
extinction-free data represent constant values, the
extinction-affected data suffer systematic errors AP
of different values. The systematic error is highest
at the highest level of interaction and lowest at the
lowest level of interaction. The percentage errors
vary from about 6% to less than 1%.

7. CONCLUDING REMARKS

The main advantage of this approach is to gain
accuracy and, hence, physical reality of the data.
Accuracy can only be gained by care in the design
and implementation of an experiment. Actually, this
approach offers a possibility for existing methods
both to be re-considered and improved for texture
characterizations and to develop new ideas. In
general, one can state that no problem related to
using the integral intensities can be correctly solved
if secondary extinction effects are not nullified.

Since diffraction and extinction are indissolubly
linked, the formalism developed here is valid for
single crystals, textures and crystalline powders.
The loading density (number of atoms per unit
area of a net-plane) that is the source of the crystal
anisotropy unifies the general behaviour of these
three structural forms.

APPENDIX A

Source of the coefficient g anisotropy

To find the source of the anisotropic nature of the
coefficient g, one has to resort to P. Since P com-
prises as a whole the crystallographic, textural and
microstructural anisotropy, the resulting anisotropy
of the coefficient g is synthesized by their contribu-
tions to the probing direction. Suppose the space-
angle element dQ covers the range of the probing
direction and the volume element dJ contains very
many crystallites [16]. Following (3), one can write
an extended expression for the factor P:

(@v/v)/dQ=P=9m. (44)
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Here m is all the number of crystallites per unit
volume of the sample, and ¢ is the average volume
of the crystallites. If the crystallite size D is defined
as the cube root of the average crystallite volume,
913, one can rewrite (44) as

P=DV*"m. (45)
where 19'7 is the area of the crystallographic plane
contributing to reflection. Replacing P with its

corresponding expression from (45) transforms (11)
into

g=D9¥*"mG, (46)
where G = k[,S/2u is a number. Further, one can
represent the crystallite size as:

D=Nd, (47)
where (N + 1) is the number of the (/4k/) atomic
planes having net-plane spacing, d. Kleber (1970)
showed that d is directly proportional to loading
density L (the number of atoms per unit area of a
net-plane):

d=V.L,

c (48)
where V_ is the volume of the primitive cell. By
virtue of (47) and (48), from (46) an expression
follows that connects the coefficient g with the
loading density L:
g = LNV, 9*’mG (49)
Evidently, the coefficient g depends on the
crystallographic direction by means of the loading
density. This outcome qualifies L as the source of
the extinction anisotropy and constitutes that the
coefficient g is grater for a denser atomic net-plane
system under otherwise equal conditions. In general,
reducing the loading density of net-planes, the lattice
imperfections diminish thus the coefficient g.
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EKCTHUHKIINMA B TEKCTYPU: AHYJIMPAHE HA EKCTUHKIIMOHHN EQEKTHU

. TomoB

Hucmumym no onmuuecku mamepuanu u mexrnonoeuu ,, Axkao. M. Manunoscku “,
bvneapcka axkademus na naykume

[MocTenuna Ha 3 sHyapu, 2011 r.; mpueta Ha 5 anpu, 2011 1.
(Pesrome)

Orunraiikn BropudyHaTa ekcTuHKIus (BE) B enHO kpucTanorpadcku HanpasieHne, aHATUTHYCH METOJI € OTHCaH
3a PEHTreHOBO IU(PAKIMOHHO XapaKTepH3UpaHe Ha TEKCTYPH Ype3 aHyJIMpaHe Ha eKCTUHKIMOHHU eheKTH. 3a Ta3u
IeJI € U3BBPIICHO MOAXOAAIIO Mpepasriiek1aHe Ha MpUpoJiaTa Ha eKCTHHKIIMOHHUTE KoeduiueHnTH. [TokaszaHo e, e
JokaTo koepuuueHTsT Ha BE g € mponopiinoHaieH Ha Npon3BeIeHUETO OT MOJIFOCHATA INTBTHOCT P 1 HHTeH3UTeTa /),
TO EMIIMPUYHUSAT EKCTHHKIIMOHEH KOSPHITHEHT k € He3aBUCUM OT OTHomIeHueTo g/Pl,. Ha ocHoBaTa Ha HEM3MEHHOCT-
Ta Ha KoeurenTa k 1o otHomeHue Ha g/ P, eKCTHHKIIMOHHUAT €(DEKT Ce aHyIMpPa Ype3 U3PaBHSABAHE HA J1BA HETOBH
u3pasza, JeGUHUPaHN Ype3 NHTEH3UTETUTE Ha eJIHO OTPAKEHHE, M3MEPEHO TIPH Cepusl OT HUBA Ha B3aWMOJACHCTBUS,
YHETO N3MEHEHUE ce KOHTponupa oT P u /. TeXHuKy, IpecTaBIIsABallM Pa3IIMPEHN BEPCUN ca Pa3BUTH 3a (1) OLleHKa
Ha JIOCTOBEPHOCTTA Ha KOHTPOJIMPAHOTO M3MEHEHUE Ha HHUBATa HA B3aUMOJEWCTBHE 4Ype3 U3ION3BaHE Ha MHCTPY-
MEHTaJIHA [IPOMEHIINBA (CUIaTa Ha TeHEPATOPHHS TOK) M, OTTYK CJIE/IBa Jja CE€ TECTBA MOTCHIMAIHATA BH3MOKHOCT
Ha PEHTI'€HOBUS anapart Ja CbOMpa TOYHM M NPENN3HH JaHHN, U (ii) onpenelsiHe Ha CBOOOHU OT eKCTUHKIUS JaHHH
Ha TIOJIFOCHATA IUTBTHOCT, KOSITO € OCHOBEH (PM3MUeH mapamMeTsp. ExcriepuMeHTaIHNTE pe3ynTaTi ca JUCKyTHPaHH
MOCPEJICTBOM BJIMSIHUETO Ha €KCTHHKLMOHHUS KOS(DUIIMEHT g BPXY TOYHOCTTA HA OIPE/IEISHE Ha TTOJIIOCHATA IITHT-
HOCT B naeanHoro <100> HanpaBlIeHHE HA HUKEIOBH TEKCTYPH.
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