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Accounting for secondary extinction (SE) in a crystallographic direction, a straightforward approach 
is devised for XRD characterizations of textures by nullifying the extinction effect. To this end, a proper 
reconsideration of the nature of the extinction coefficients is carried out. It is shown that whereas the SE 
coefficient g is proportional to the product of pole density P and incident-beam intensity I0, the empirical extinction 
coefficient k is independent of the ratio g/PI0. Based on the invariability of the k-coefficient with respect to g/PI0, 
the extinction effect is nullified by equating two its expressions defined by intensities of a reflection measured at a 
series a levels interaction whose variation is controlled by P and I0. Techniques representing extended versions of this 
approach are developed for (i) reliability-evaluation of the controlled variation of the levels of interaction by using 
instrumental variable (generator current) and, hence, to test the capability of the XRD apparatus to collect accurate and 
precise data, and (ii) determination of extinction-free data of the pole density that is a fundamental physical parameter. 
The experimental results are discussed in terms of the influence of extinction coefficient g on the accuracy in the 
determination of the pole density in ideal <100> direction of nickel texture. 
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1. INTRODUCTION

Extinction was introduced to account for the re-
flecting power of a real crystal with respect to the 
power described by kinematical diffraction [1]. 
Extinction in a mosaic structure is power loss caused 
by the production of the diffracted beam. Depending 
on the block size, one has to distinguish between 
primary extinction, which is extinction within a sin-
gle crystal block, and secondary extinction, which 
occurs when a ray reflected by one mosaic block 
is subsequently reflected by another block with the 
same orientation. 

To overcome the deficiencies in the theoretical 
estimates of extinction correction factors, based on 
simplified parameterization of the extinction effect 
across the scan of reflection, devoted experimental 
procedures were applied to decrease as well as can-
cel the extinction effect. In this respect, Schneider 
(1976) designed γ-ray diffractometry experiments 
where extinction is only in the order of 10% or less 
[2]. Analyzing the process of the X-ray scattering 

and the level of interaction between radiation and 
crystal medium, Mathieson substantiated an ap-
proach for derivation experimental structure-factor 
values, which are free from extinction effects [3]. 
The approach involves “(i) determination of inte-
grated reflectivity at a series of levels of interaction 
(attained by controlled variation of a suitable physi-
cal parameter) and (ii) extrapolation of an appropri-
ate function of the measurements to zero level of 
interaction as identified by zero diffracted power”. 
The procedures to experimental realizations of the 
null-intensity (extinction-free) limit were illustrated 
in the paper of Mathieson & Mackenzie [4] as well. 
Тo attain a true zero-extinction kinematic limit val-o attain a true zero-extinction kinematic limit val-
ue, the question of extrapolation to zero extinction 
in case of wavelength in the γ-ray region has been 
discussed from different point of views in the litera-
ture [5–7]. In this connection, the γ-ray data used 
in each of these investigations have been fitted by 
using polynomials of different types corresponding 
to the particular conceptions of the authors for at-
tainment of the true zero-extinction kinematic limit 
value.

The present study outlines an alternative ap-
proach for nullifying the extinction effect. In this 
respect, careful considerations are carried out of 
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the process of the scattering of X-rays and the level 
of interaction between the radiation and the crystal 
medium. Our concern here is essentially with mu-
tual connection between extinction coefficients and 
their exact relationship with diffraction at a series 
of levels of interaction attained by controlled varia-
tions of suitable physical parameters. 

2. BASIC DEFINITIONS OF EXTINCTION 
THEORY AND TEXTURE ANALYSIS

The formalism considered here is valid for the 
symmetrical Bragg geometry with a plane-parallel 
plate sample appearing infinitely thick to the X-rays. 
According to theory [1, 8–14] and experiment 
related with it [2, 5–7], the extinction decreases the 
measured intensity Im of a reflection with a factor y, 
the extinction factor, defined by

 Im = yIkin (1)

Here, Ikin is the intensity that a Bragg reflection 
would have if kinematic theory would apply 
exactly to the system being examined. Therefore, 
the intensity Ikin delimits an imaginary (physically 
non-attainable) level of interaction of the diffraction 
process. In the symmetrical Bragg geometry, Ikin has 
to be expressed as

 0 2kinI PI QS= µ   (2)

where I0 is the intensity of the incident beam, S is 
the cross section of the beam, Q is the reflectiv-
ity per unit crystal volume, μ is the ordinary linear 
absorption coefficient, and P is the pole density. It 
is defined by the volume fraction dV/V of crystal-
lites whose <hkl>-poles fall into a (infinitely small) 
space-angle element dΩ (Bunge [15, 16]):

 ( )/dV V d P=Ω . (3)

The factor P connects (2) with the well known 
formula 

 0 / 2r
kinI I QS= µ , (4)

which is derived under assumption for random 
distribution of crystallites, i.e. P=1. In the case of pure 
SE, Chandrasekhar gave an expression for the extinction 
factor y [17]: 

 y = εµ µ , (5)

where με is an effective absorption coefficient. In 
the symmetrical Bragg geometry with a plane parallel 
plate sample one should use the effective absorption 
coefficient as a first order approximation for the SE 
correction ε  [9]:
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 ( )22 1/gQ p pεµ µ= + . (6)

Here g is the SE coefficient, which is a dimen-
sionless quantity [1]. The symbol pn denotes the po-
larization factor for incident X-ray beam [9]:

 ( ) ( ) ( )2 2 2
0 01 cos 2 cos 2 1 cos 2n

n Bp θ θ θ   = + +        
(7)

where n = 1, 2, ..., θB is the Bragg angle of reflection. 
From (6) a formula follows for the SE correction ε, 
which has been derived by Darwin [1], and later the 
polarization p2 / p1

2 of the incident X-ray beam has 
been incorporated in ε by Chandrasekhar [17] and 
Zachariasen [9]:
 ( )22 1gQ p pε= . (8)

3. ANISOTROPY AND BEHAVIOUR  
OF THE EXTINCTION COEFFICIENTS

Bragg et al. [18] deduced the SE correction 
empirically, whereas Darwin [1] deduced it theo-
retically. To this end, the authors have supposed 
respectively that both the empirical extinction coef-
ficient k and the SE coefficient g are constants for 
the crystal, that is, parameters independent of crys-
tallographic direction. Moreover, Darwin [1] had 
assessed that the definition, deduced by Bragg et al. 
[18], was correct to the first order approximation for 
the SE correction alone. Consequently, in the discussed 
frames, the two definitions for the SE correction have to 
be equivalent. In order to account for the crystal and 
textural anisotropy, the nature of k and g is recon-
sidered here. Replacing Q by its corresponding ex-
pression from (2) transforms (8) into 

 ( )22 1kinkI p pε= , (9)

where the expression

 02k g PI Sµ=  (10)

shows that k and g are mutually connected. 
Reforming (10) yields the expression for

 0 2g kPI S µ= . (11)

Evidently, (2) and (11) reveals that whereas Ikin 
defines the upper limiting value of the diffraction 
process, g defines the extinction-induced weaken-
ing of the level of interaction of the same process. 
Depending on P, g and k are anisotropic coefficients. 
The anisotropy of P comprises the crystallographic, 
microstructural and textural anisotropies. Acting to-
gether for all crystallites contributing to reflection, 
anisotropy parameters such as size, shape, disloca-
tion substructure, crystallographic orientation and 
crystallite arrangement (Bunge [19]) synthesize 
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the resulting anisotropy of g and k. The coefficients 
show different behaviour with respect to the level 
of interaction of the diffraction process that is con-
trolled simultaneously by P and I0 under otherwise 
equal conditions. At lower limiting values of either 
both PI0→0 or one of them makes it evidently that 
in the only case of no diffraction (Ikin→0) (2), there 
is no extinction (g→0) (11). This is in accord with 
Mathieson’s statement that ‘extinction is only zero, 
in absolute sense, when diffracted power is identi-
cally zero [3]. Moreover, whereas g is proportional 
to the product PI0, the coefficient k е is proportional 
to the ratio g/PI0. Therefore, by virtue of the inter-
dependence between g and PI0, any change of either 
both, P and I0, or one of them does not cause change 
of the ratio g/PI0 and, hence, k is independent of the 
product of both P>0 and I0>0.

3.1. Definitions for k independence  
of the levels of interaction 

Suppose the incident beam changes its intensity 
from I0,i to I0,i* under P=const. Here i and i* denote 
the values of the generator current. Then, by analogy 
of (10), we shell have

 0,2i i ik g P I Sµ= , (12)

 * * 0, *2i i ik g P I Sµ= , (12a)

where it is accounted that gi and gi* are proportional 
to I0,i  and I0,i*, respectively, i.e.

 ( ) ( )0, * 0, * 1i i i ig I g I = . (13)

Dividing (12) and (12a) with accounting for (13) 
yields 
 *i ik k= , (14)

that k is independent of the level of interaction. 
Second, suppose the pole density changes from P 
to Pr=1 under I0=const. Following (12), ki is then 
transformed into ki

r, i.e.: 

 02r r
i ik g I Sµ= . (15)

Here it is accounted that  gi
r is proportional to Pr 

corresponding to random distribution of crystalline 
orientations. Dividing (12) and (15) with taking into 
account for P=gi/gi

r yields

 r
i ik k= . (16)

Thus, (14) and (16) constitute conditions for the 
invariability of k from the level of interaction of 
the diffraction process. Then, one can utilize k for 
nullifying the extinction effects by equating two its 
expressions that are defined by two different couples 

of intensities of a reflection measured at a series of 
levels of interaction. 

To analyze what a constant is k, let us throw look 
at Fig. 1, which designs the diffraction condition in 
terms of the reciprocal (scattering) space (Ewald 
[20]). The coefficient k has dimension of reciprocal 
volume (see (10)). It corresponds to the scattering 
space. Actually, this is the scanned volume in-
side the node Phkl. Due to the relationship be-
tween real and scattering space, the reciprocal 
quantity of k [1/k=(S/2μ)(PI0/g)] corresponds to 
the real space. Then, one may consider 1/k as con-
sisting of two terms of different range. For an infi-
nitely thick sample, the term, S/2μ, represents the ir-
radiated crystalline volume that is a constant for all 
reflections of the XRD pattern, whereas PI0/g is a 
constant inherent for any particular reflection. The 
last is due to the interdependence of these three pa-
rameters since I0 scales g by means of P (see (11)). 
The quantity 1/k defines a volume in the real space 
where the X-radiation, interacting with crystal me-
dium, produces the measured intensity Im.

3.2. Expressing the SE coefficient g and SE 
correction ε in case of polycrystalline materials

Due to fine-crystalline structure and high den-
sity of imperfections [21], reflection broadening 
in textures is about two orders of magnitude larger 
than that one in single crystals, which amounts to a 
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Fig. 1. Diffraction conditions design by means of the re-
ciprocal (scattering) space. The radius 1/λ of the Ewald’s 
sphere is defined by the wavelength λ of X-rays. O is the 
origin of the real space and Phkl is a node of the recipro-
cal space where fall the <hkl> poles of the crystallites in 
Bragg condition. The coefficient k defines the scanned 
volume inside the node. The distance OPhkl is defined by 

* 1/hkl hkld d= , where dhkl is the space between atomic net-
works (hkl).
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few ten of seconds of arc [5, 7]: for the same rea-
son, the textures exhibit pure SE as well [22, 23]. 
This reflects in the observed reflection broadening 
recorded by conventional diffractometry. Actually, 
it is a superposition of physical (microstructural) 
and instrumental broadening. Since the determina-
tion of the SE coefficient 1/ 2g η π=  is based on 
the crystal-mosaic distribution alone [8]), it is not 
justified to expect that this definition would ad-
equately account for the microstructural properties 
of polycrystalline materials. (Here η is the standard 
deviation of the Gaussian function). The only way 
to account adequately for the anisotropic effects of 
the pole density P on the SE coefficient is to de-
termine g using quantities corresponding to reflec-
tion whose profile synthesizes all microstructural 
effects. Thus, if k and Ikin are known, from (8) and 
(9) one obtains: 

 king kI Q= . (17)

Replacing Ikin with its corresponding expression 
obtained by reforming (1) in succession with (5), 
(6) and (9), transforms (17) into 

 ( )22 1m mg k I Q kI p pµ µ = −    (17a)

By analogy, for the SE correction ε defined by (9), 
one writes 

 ( ) ( )2 2
2 1 2 1m mkI p p kI p pε µ µ = −    (17b)

These definitions account implicitly for parame-
ters describing as a whole the crystallographic, tex-
tural and microstructural anisotropy in the probing 
direction of the sample as well as the measurement 
conditions. Moreover, in the Appendix A is shown 
that the basic source of the g-coefficient anisotropy 

is the loading density (the number of atoms per unit 
area of {hkl} system of net-planes [24]). This con-
stitutes that g is grater for a denser atomic net-plane 
system. In general, reducing the loading density of 
net-planes, the lattice imperfections diminish thus 
the coefficient g.

4. PARAMETERIZATION OF THE 
RELATIONSHIP BETWEEN LEVELS  
OF INTERACTION CONTROLLED  

BY I0-INTENSITY 

The levels of interaction of the diffraction proc-
ess at a series of measurements of a reflection are 
defined by respective change of the incident X-ray 
beam intensity I0. The controlled variation of the I0-
intensity can be caused by ether transmission fac-
tor of a thin foil crossed by the incident beam or 
stepwise reduction of the generator current of the 
XRD apparatus [26]. Meanwhile, the last type of 
the procedures may supply information that is rep-
resentative for the internal consistency of the XRD 
apparatus, i.e. for its capability to collect precise 
and accurate data. Below this idea is depicted. 

4.1. Expressing the relationship R between  
a couple of levels of interaction controlled  

by generator current 

Suppose a reflection is measured in succession 
at intensities, I0,i, I0,i*, I0,i**, and I0,i***, of the incident 
beam, where the generator tension V is constant, 
and the reduction of the values of the generator 
current i is dependent on geometric progression 
(i=2i*=4i**=8i***). In the equations listed inside 
of Fig. 2, A is a constant, VK is the critical excitation 
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Fig. 2. Parameterization of the relationship between couples of levels of interaction of the diffraction process. Since 
diffraction and extinction are indissolubly linked (see (2) and (11)), Ikin and g define in the same way any level of 
interaction and, hence, the relationship R between couples of neighbor levels of interaction (18), (22) and (23).
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potential of the Kα radiation, and n = � 1.5 [27]. 
The intensity I0 quantifies any level of interaction of 
the diffraction process simultaneously by quantities 
both the kinematical intensity Ikin (2) and the SE 
coefficient g (11). Then, in the frames of the straight 
proportionality between I0 and i (I0=Ai(V–VK)n), the 
parameter Ri,i* defines the relationship between the 
first couple of levels of interaction: 

  0, 0, * , , * * , **i i kin i kin i i i i iI I I I g g i i R= = = =  (18)

The intensities, Ikin,i↔Ikin,i*, defining the first and 
second levels of interaction (Fig. 2) can be expressed 
respectively by reforming (1) in succession with (5), 
(6) and (9), i.e.: 

 
 
, (19)

  (20)

Solving (19) and (20) for ki,i* = ki = ki*, with taking 
into account for Ri,i* from (18), yields 

 
( )

( )
, * , , *

, * 2
, 2 1 , * 1

i i m i m i
i i

m i i i

R I I
k

I p p R

µ  −  =
 −  

. (21)

Hereafter any coefficient of the type ki,i* will 
be denoted with indices i and i* corresponding to 
the values of the generator current applied to the 
measurement of the respective couple of intensities, 
Im,i↔Im,i*, used for its expressing. With a view to ex-
pressing the parameters ki,i* and Ri,i* by using meas-
ured intensities alone, one needs additional data. 
Then, by analogy of (18), the parameters Ri*,i** and 
Ri**,i***, corresponding to the first-neighbour levels 
of interaction, are defined respectively with

 

0, * , * *
*, **

0, ** , ** **

*
**

i kin i i
i i

i kin i i

I I g i R
I I g i

= = = = , (22)

 0, ** , ** **
**, ***

0, *** , *** ***

**
***

i kin i i
i i

i kin i i

I I g i R
I I g i

= = = = , (23)

where the value of any of the parameters 

 , * *, ** **, ***i i i i i iR R R= =  (24)

has to be equal to any of the respective ratios defined 
by the values of the generator current 

 * * ** ** *** 2i i i i i i= = = . (25)

By virtue of (14), k is constant for any level of 
interaction under otherwise equal condition, i.e. 

 * ** ***i i i ik k k k= = = . (26)

Then, the intensities, Ikin,i**↔Ikin,i***, are expressed 
by analogy of (19) and (20), respectively: 

 , (27)

 . (28)

Solving (27) and (28) for ki**,i*** = ki** = ki*** with 
accounting for Ri**,i***  from (23) yields

 
( )

( )
**, *** , ** , ***

**, *** 2
, ** 2 1 **, *** 1

i i m i m i
i i

m i i i

R I I
k

I p p R

µ  −  =
 −  

. (29)

Now, solving (21) and (29) for Ri,i* = Ri**,i*** , 
under nullifying the extinction effect by equating  
ki,i* = ki**,i*** yields

 
( )
( )

, , ** , * , ***
, *

, * , *** , , **

m i m i m i m i
i i

m i m i m i m i

I I I I
R

I I I I

−
=

−
. (30)

By analogy, one can derive the relationship 
between the second-neighbor levels of interaction 
assuming that Ri,i**=Ri,i*Ri*,i** and Ri*,i***=Ri*,i**Ri**,i*** 
(see Figure 2) as well. The coefficients ki,i** and ki*,i*** 
are then expressed with the couple of intensities 
Ikin,i↔Ikin,i** and Ikin,i*↔Ikin,i***, (see (19)↔(27) and 
(20)↔(28)), respectively:

 
( )

( )
, ** , , **

, ** 2
, 2 1 , ** 1

i i m i m i
i i

m i i i

R I I
k

I p p R

µ  −  =
 −  

, (31)

 
( )

( )
*, *** , * , ***

*, *** 2
, * 2 1 *, *** 1

i i m i m i
i i

m i i i

R I I
k

I p p R

µ  −  =
 −  

. (32)

At the end, solving (31) and (32) for Ri,i**=Ri*,i***, 
under nullifying the extinction effect by equating 
ki,i**=ki*,i*** yields

 
( )
( )

, , * , ** , ***
, **

, ** , *** , , *

m i m i m i m i
i i

m i m i m i m i

I I I I
R

I I I I

−
=

−
. (33)

Variation of the levels of interaction, and 
hence of Ikin and g, with control has an additional 
advantage in that it allows for the capability for 
internal experimental checks that are based on using 
of instrumental variables. Actually, the generator 
current i is incorporated implicitly in this technique 
as referent parameter. For instance, the capability of 
the measurement tool to collect accurate and precise 
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data is controlled by the degree of approximation of 
R to the ratio i/i*. 

5. EXPRESSING THE EXTINCTION-FREE 
POLE DENSITY P

By definition, the extinction-induced systematic 
error of the pole density is expressed with the 
difference ΔPm between P and Pm, i.e.

 m mP P P∆ = − , (34)

 r
kin kinP I I= , (35)

 r
mmm IIP = . (36)

Here P and Pm are defined by using the kinemati- using the kinemati-using the kinemati-
cal intensities from (2) and (4) and the measured 
intensities of the textured sample, Im, and powder 
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standard, Im
r, respectively. To express P by meas-

ured intensities, a proper procedure is designed to 
data collection (Fig. 3). In this respect, the same re-
flection of textured sample and powder standard is 
measured at a series of the incident beam intensities 
I0,i , I0,i* , I0,i** and I0,i*** caused by stepwise reduction 
of the values of the generator current, i.e. i, i*, i** 
and i***.

Any of the particular levels of interaction is 
characterized by respective kinematic, Ikin, intensities, 
the pole densities, P and Pr, and the coefficient k. 
According to the definitions (14) and (16), k is the 
same for each of the levels of interaction and Pr is 
equal to unit. Then, Pi is expressed by the kinematic 
intensities corresponding to the first couple of levels 
of interaction measured at the intensity I0,i:

 , ,
r

i kin i kin iP I I= . (37)

where

Fig. 3. Data collection procedure that is designed by the levels of interaction of the diffraction process. The same 
reflection of textured sample and random standard is measured at a series of the incident beam intensities I0 caused by 
variation of the generator-current values i.
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 . (38)

Solving the system of equations (19) and (38) for  
ki = ki

r (see (16)) yields:

 
( )

( )[ ]
, ,

2
, 2 1 1

r
i m i m i

i
m i i

P I I
k

I p p P

µ  −  =
−

. (39)

Further, by analogy of (37), we write for the 
second couple of levels of interaction measured at 
the intensity I0,i:

 * , * , *
r

i kin i kin iP I I= , (40)
where 

 . (41)

Solving the system of equations (20) and (41) for  
ki* = ki*

r  (see (16)) yields:

 
( )

( )[ ]
* , * , *

* 2
, * 2 1 * 1

r
i m i m i

i
m i i

P I I
k

I p p P

µ  −  =
−

. (42)

At the end, solving (39) and (42) for the 
unknown parameter Pi,i* = Pi = Pi* under nullifying 
the extinction effects ki = ki* yields an extinction-
free value for the pole density corresponding to the 
first and second couples of levels of interaction:

 
( )
( )

, , * , , *
, *

, , * , , *

r r
m i m i m i m i

i i r r
m i m i m i m i

I I I I
P

I I I I

−
=

−
. (43)

Therefore, starting from kinematic definitions 
(37) and (40) for the pole density, an operative 
formula (43) that is in exact accord with the kinematic 
theory is derived using measured intensities. 
Following the same procedure, extinction-free data 
for the pole density Pi,i** Pi*,i**, Pi,i***, corresponding 
to respective combination of the other couples of 
levels of interaction are achieved as well. Once 
determined, the empirical extinction coefficient k 
can be employed for calculation of the kinematic 
intensities, the SE coefficient g defined by (17a) 
and the SE correction from (17b).

 6. EXPERIMENTAL, RESULTS  
AND DISCUSSION

As a model, an electrodeposited nickel coating 
(Ni38) was used. It represents fiber texture with a 
main <100> component. The 200 reflection was 
measured with conventional goniometer using 
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CuKα radiation separated by graphite focusing 
monochromator. The divergence slit was 1/2°, and 
receiving one 0.05 mm. The four step measurement 
procedure, shown in Figure 2, was carried out in such 
a way to compensate the stepwise decrease of the 
generator current from i to i*** (i=2i*=4i**=8i***) 
by respective increase of the data collection time per 
scanned step from τ to τ***, i.e. (iτ=i*τ*=i**τ**= 
i***τ***). The compensative condition ensures the 
same statistical errors in the respective points of the 
measured profiles.

Fig. 4 illustrates the proportionality between co-
efficient g and incident beam intensity I0. The ordi-
nate axis represents the values of the coefficient g 
determined at different levels of interaction of the 
diffraction process. The abscissa axis shows that the 
I0-reduction is dependent on geometric progression, 
i.e. I0/Rn (n = 0, 1, 2, 3) where R is the ratio be-
tween neighbor levels of interaction. Figs. 4a and 4b 

Fig. 4. a) Plot of the SE coefficient gtx vs. incident beam 
intensity I0 whose stepwise reduction is dependent 
on geometric progression I0R–n (n=0,1,2,3), where R 
[=2.00213] is the ratio between neighbor levels of 
interaction. The measurement of the 200 reflection of 
Ni38 sample representing sharp <100> texture (P=35) is 
carried out by CuKα-radiation. b) Analogical plot for the 
SE coefficient gr of random standard: the conditions of 
its measurements are the same.
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show the degree of extinction effects measured at 
the textured sample (Fig. 4a) and random standard 
(Fig. 4b), respectively. The scale between g values, 
corresponding to the textured sample and random 
standard is equal exactly to P=gtx/gr. 

In Table 1, results are listed about the pole 
density. The first column shows that the stepwise 
reduction of the incident beam intensity is dependent 
on geometric progression, I0R–n (n=0,1,2,3), where 
R is the ratio between neighbor levels of interaction 
caused by the generator current. The second column 
contains extinction-free data, and third column 
contains data affected by extinction. While the 
extinction-free data represent constant values, the 
extinction-affected data suffer systematic errors ΔP 
of different values. The systematic error is highest 
at the highest level of interaction and lowest at the 
lowest level of interaction. The percentage errors 
vary from about 6% to less than 1%.

7. CONCLUDING REMARKS

The main advantage of this approach is to gain 
accuracy and, hence, physical reality of the data. 
Accuracy can only be gained by care in the design 
and implementation of an experiment. Actually, this 
approach offers a possibility for existing methods 
both to be re-considered and improved for texture 
characterizations and to develop new ideas. In 
general, one can state that no problem related to 
using the integral intensities can be correctly solved 
if secondary extinction effects are not nullified. 

Since diffraction and extinction are indissolubly 
linked, the formalism developed here is valid for 
single crystals, textures and crystalline powders. 
The loading density (number of atoms per unit 
area of a net-plane) that is the source of the crystal 
anisotropy unifies the general behaviour of these 
three structural forms. 

APPENDIX A

Source of the coefficient g anisotropy 

To find the source of the anisotropic nature of the 
coefficient g, one has to resort to P. Since P com-
prises as a whole the crystallographic, textural and 
microstructural anisotropy, the resulting anisotropy 
of the coefficient g is synthesized by their contribu-
tions to the probing direction. Suppose the space-
angle element dΩ covers the range of the probing 
direction and the volume element dV contains very 
many crystallites [16]. Following (3), one can write 
an extended expression for the factor P:

 ( )dV V d P mϑΩ= = . (44) 

Here m is all the number of crystallites per unit 
volume of the sample, and ϑ is the average volume 
of the crystallites. If the crystallite size D is defined 
as the cube root of the average crystallite volume,  
ϑ1/3, one can rewrite (44) as

  2 / 3P D mϑ= . (45)

where ϑ1/3 is the area of the crystallographic plane 
contributing to reflection. Replacing P with its 
corresponding expression from (45) transforms (11) 
into
 2 / 3g D mGϑ= , (46)

where G = kI0S/2μ is a number. Further, one can 
represent the crystallite size as: 

 D Nd= , (47) 

where (N + 1) is the number of the (hkl) atomic 
planes having net-plane spacing, d. Kleber (1970) 
showed that d is directly proportional to loading 
density L (the number of atoms per unit area of a 
net-plane):

 cd V L= , (48)

where Vc is the volume of the primitive cell. By 
virtue of (47) and (48), from (46) an expression 
follows that connects the coefficient g with the 
loading density L:

 2 / 3
cg LNV mGϑ=  (49)

Evidently, the coefficient g depends on the 
crystallographic direction by means of the loading 
density. This outcome qualifies L as the source of 
the extinction anisotropy and constitutes that the 
coefficient g is grater for a denser atomic net-plane 
system under otherwise equal conditions. In general, 
reducing the loading density of net-planes, the lattice 
imperfections diminish thus the coefficient g.
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(Резюме)

Отчитайки вторичната екстинкция (ВЕ) в едно кристалографски направление, аналитичен метод е описан 
за рентгеново дифракционно характеризиране на текстури чрез анулиране на екстинкционни ефекти. За тази 
цел е извършено подходящо преразглеждане на природата на екстинкционните коефициенти. Показано е, че 
докато коефициентът на ВЕ g е пропорционален на произведението от полюсната плътност Р и интензитета I0, 
то емпиричният екстинкционен коефициент k е независим от отношението g/PI0. На основата на неизменност-
та на коефициента k по отношение на g/PI0, екстинкционният ефект се анулира чрез изравняване на два негови 
израза, дефинирани чрез интензитетите на едно отражение, измерено при серия от нива на взаимодействия, 
чието изменение се контролира от P и I0. Техники, представляващи разширени версии са развити за (i) оценка 
на достоверността на контролираното изменение на нивата на взаимодействие чрез използване на инстру-
ментална променлива (силата на генераторния ток) и, оттук следва да се тества потенциалната възможност 
на рентгеновия апарат да събира точни и прецизни данни, и (ii) определяне на свободни от екстинкция данни 
на полюсната плътност, която е основен физичен параметър. Експерименталните резултати са дискутирани 
посредством влиянието на екстинкционния коефициент g върху точността на определяне на полюсната плът-
ност в идеалното <100> направление на никелови текстури.


