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Allergenicity prediction by partial least squares-based discriminant analysis
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Allergenicity of food proteins is a crucial problem associated with the widespread usage of new foods, supplements
and herbs, many of them having known or unknown genetically modified origin. Allergenicity is a subtle, non-linearly
coded property. Most of the existing methods for allergenicity prediction are based on structural similarity of novel
proteins to known allergens. Thus, the identification of a novel, structurally diverse allergen could not be predicted by
these methods. In the present study, we propose an alignment-free method for allergenicity prediction, based on the
amino acid principal properties as hydrophobicity, size and electronic structure. Proteins are transformed into uniform
vectors and analyzed by PLS-based discriminant analysis. The preliminary model derived on the basis of a small set of
120 allergens and 120 non-allergens identified correctly 73% of the proteins included in the external test set of 1,164
allergens and non-allergens. The extended model based on a set of 1,404 proteins (702 allergens and 702 non-allergens)

showed 70% accuracy in the cross-validations.
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INTRODUCTION

Allergy is a growing health problem of modern
life. Food allergies affect 10 — 15% of infants and
young children [1]. They are caused by different
sources: milk, eggs, peanuts, soy, shellfish, fruits,
etc. [2-4]. Allergy involves complex reactions to
external factors that contribute to the development
of diseases characterized by symptoms such as
rhinitis,  asthma, atopic  dermatitis,  skin
sensitization. In some cases, severe reactions such
as acute and fatal anaphylactic shock may occur.

The term "allergy” was introduced in 1906 by
the Austrian pediatrician Clemens von Pirquet to
denote the modified reaction to smallpox vaccine
[5]. Allergy is an altered capacity of the body to
react to a foreign substance called allergen. When
potential allergens enter the body for the first time,
allergen-specific IgE antibodies are produced,
which stay around long after the initial allergen is
cleared from the body. Most of the antibodies are
caught by Fce receptors, which are IgE-specific
receptors that are exposed on the surface of mast
cells, basophils and activated eosinophils. These
cells are then primed to react the next time the body
encounters the allergen. They release stored
mediators, which give rise to inflammation and
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tissue damage causing a variety of symptoms [6-9].

Although there is no consensus on the structure
of the allergen, the United Nations Food and
Agriculture Organization (FAO) and World Health
Organization (WHO) have developed Codex
alimentarius guidelines for assessing the potential
allergenicity of novel proteins [10-11]. According
to these guidelines, protein is a potential allergen, if
it has an identity of 6 to 8 contiguous amino acids
or greater than 35% similarity within a window of
80 amino acids when compared to known allergens.

Currently, two bioinformatic approaches exist
for allergen prediction. The first approach follows
the guidelines of FAO and WHO and searches for
sequence similarity. There are databases that
contain extensive information on known allergens,
which are used for sequence similarity search. Such
databases are Structural Database of Allergenic
Proteins (SDAP) [12], Allermatch [13] and
AllerTool [14]. This approach has a good allergen
prediction, but generates a large number of false
allergens. Moreover, the discovery of new
structurally different allergens is limited by the lack
of similarity to already known allergens.

The second approach is based on identification
of linear motifs for allergenicity. The motif is a
sequence of amino acids responsible for a particular
activity of the protein. Stadler and Stadler (2003)
defined 52 allergenic motifs by comparing
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allergens to non-allergens [15]. Li and colleagues
(2004) identified motifs for allergenicity using
clustering of known allergens by hidden Markov
model (HMM) [16]. Bjorklund and colleagues
(2005) developed a method for identifying
allergens by detecting allergenic peptides (allergen-
representative peptides, ARP) [17]. AlgPred is a
server for predicting allergenic protein that
combines four motif search methods: support
vector machines (SVM), MEME/MAST program,
IgE epitopes and ARP [18].

Both approaches are based on the assumption
that allergenicity is a linearly encoded property. To
act as an allergen, a protein must contain epitopes
for both Th2 cells and B lymphocytes [7]. Epitope
is part of the protein that interacts with another
protein. The epitopes for Th2 are linear, but the B-
cell epitopes are non-linear, conformational patches
on the protein surface. Obviously, allergenicity, like
immunogenicity and antigenicity, is a property
coded linearly as well as nonlinearly. Therefore, the
alignment-based approaches are not able to identify
such property in an unambiguous manner.

In the present study, we develop and validate an
alignment-free method for allergenicity prediction,
based on the principal amino acid properties as
hydrophobicity, size and electronic properties.
Partial least squares-based discriminant analysis is
used to develop models for food allergenicity
prediction. The models were validated by internal
and external test sets of allergens and non-
allergens.

DATASETS AND METHODS

Allergens and non-allergens

A dataset of 702 food allergens and 702 non-
allergens was collected from the databases CSL
(Central Science Laboratory) [19], FARRP (Food
Allergen Research and Resource Program) [20] and
SDAP (Structural Database of Allergenic Proteins)
[21]. The non-allergens were selected from the
same species using a BLAST search with 0%
identity to allergens at E-value 0.001.

Descriptors of the protein structures

The z-descriptors describe principal properties
of amino acids. They are derived by applying
principal component analysis on a set of 29
molecular properties of amino acids [22]. The first
principal component (1PC), named z1, is dominated
by the hydrophobicity of amino acids. The second
principal component (2PC), named z», relates best
to amino acid size. The third principal component
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(3PC), named zs, explains the electronic properties
of amino acids. The scores of these components
define the set of z-descriptors for each amino acid.
In the present study, the three z-descriptors were
used to describe the amino acid sequences of
allergens and non-allergens.

The proteins used in the study were of different
length. In order to convert them into uniform
vectors, the method of auto- and cross-covariance
(auto- and cross-covariance, ACC) transformation
was used [23]. Auto-covariance (A;) and cross-
covariance (Cj) were calculated by the following
formulas:

n-L
Zii %2

An'('-)=z'nT

CNZ %2,
Cjk(L)=27Ln_ Lk'+L

The index j refers to the z-descriptors (j = 1, 2,
3); the index i indicates the position of amino acid
(i=1,2,3..n);nis the number of amino acids in
protein; l'isthe lag (L =1, 2, ..., I). Lag is the length
of the frame of contiguous amino acids, for which
Aji and Cj are calculated. In the present study, a
short lag (L = 5) was chosen, as the influence of
neighboring amino acids was investigated. Each
protein was transformed into a string of 45
elements (32 x 5).

Partial least squares-based discriminant analysis
(PLS-DA)

The discriminant analysis (DA) is a method for
data classification based on a linear combination of
explanatory variables [24]. Partial least squares
(PLS)-based DA was used in the present study.
PLS forms new X variables named principal
components (PC) as linear combinations of old
variables, and then uses them to predict class
membership. The optimum number of PCs was
selected by adding components until the predictive
ability of the model increases. In the present study,
PLS-DA was performed by SIMCA P-8.0 [24].

The projection of the i-th protein on the plane
formed by two PSs is called score. Proteins with
similar descriptors are projected close to each other
and form a cluster. The loading of the i-th
descriptor on a PC equals cos o, where o is the
angle between the axis of descriptor X; and the
plane formed by two PCs. As more distant is a
descriptor from the origin, as higher loading has
this descriptor on the corresponding PC.



L. H. Naneva et al.: Allergenicity prediction by partial least squares — based discriminant analysis

Receiver Operating Characteristics (ROC)
statistics

The predictive ability of the derived final model
was assessed by Receiver Operating Characteristic
(ROC) statistics [25]. Four outcomes are possible in
ROC-statistics: true positives (TP, true binders
predicted as binders); true negatives (TN, true non-
binders predicted as non-binders); false positives
(FP, true non-binders predicted as binders); and
false negatives (FN, true binders predicted as non-
binders). Three classification functions were used
in the present study: sensitivity (true positives/total
positives),  specificity  (true  negatives/total
negatives) and accuracy (true positives and
negatives/total).  Sensitivity,  specificity  and
accuracy were calculated at different thresholds
and the area under the ROC curve (sensitivity/1-
spesificity) (Aroc) was calculated. Aroc is a
guantitative measure of predictive ability and varies
from 0.5 for random prediction to 1.0 for perfect
prediction.

Variable influence on projection (VIP)

The parameter VIP (variable influence on
projection) was introduced by Wold in 1993 [26] to
describe the importance of each independent
variable on the dependent one. It is calculated by
the following formula:

A K
VIP, = w2 (SSY, , —SSY, ) —————
ak \/[;( ak ( a-1 a )) SSYO _ SSYA J

where wq is the weight (coefficient) of the variable
k on the component a, and SSY, is the explained
variance of Y by the component a. Variables with
VIP, greater than 1, are the most relevant for
explaining Y. VIP parameters are calculated by
SIMCA-P 8.0.

Model validation

The models derived in the present study were
validated by cross-validation and by external test
set. The cross-validation (CV) is a procedure for
testing the predictive ability of models. The training
set is divided into several groups with
approximately equal numbers of members in each
group. One group is defined as a test set and the
rest form a new training set. The training set is used
to derive a model, the test set — to test its
predictivity. To reduce variability, multiple rounds
of cross-validation are performed using different
partitions, and the validation results are averaged
over the rounds.

The derived models are validated also by
external test set containing allergens and non-
allergens not included in the training set. The
predictive ability of the models was estimated by
the parameters sensitivity, specificity, accuracy and
Aroc.

RESULTS
Preliminary model for allergenicity prediction

In order to derive a preliminary model for
allergenicity prediction, a small set of 120 allergens
and 120 non-allergens was compiled randomly
from the set of 1,440 proteins used in the study.
The structure of proteins was described by the three
z-descriptors and each protein was transformed into
a string of 45 variables, applying ACC-
transformation, as described in "Materials and
Methods". The two-class matrix consisting of 240
proteins and 45 variables was subjected to PLS-DA
with varying number of principal components from
1 to 5. The models were evaluated using the
parameters sensitivity, specificity and accuracy at
threshold 0.5. The area under the curve Aroc also
was recorded. The results are shown in Figure 1.
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Fig. 1. Sensitivity, specificity and accuracy at threshold
0.5, and Aroc for the preliminary models for allergenicity
prediction with different number of PCs.

The results showed that the addition of a second
PC significantly increases all parameters of the
model. Further addition of PCs initially decreases
slightly the parameters, and then increases them
slightly. Thus, two PCs was the optimal number of
PCs for this model.

The preliminary model for allergenicity
prediction is shown in Table 1. The assignment of
ACC variables is as follows: the first digit
corresponds to the number of z-descriptor for the i-
th amino acid in the protein; the second digit
corresponds to the number of z-descriptor for the j-
th amino acid; the third digit shows the lag. For
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Table 1 .VIP values and coefficients of the preliminary model for allergenicity prediction. The constant of the model is

0.998. Variables with VIP > 1.5 and coefficients > |0.100| are given in bold.

variable VIP  coefficient | variable VIP coefficient | variable VIP coefficient
ACC334 2.003 -0.178 | ACC215 1.121 -0.078 ACC221  0.693 0.003
ACC333 1.656 -0.162 | ACC121 1.101 -0.078 ACC122  0.685 -0.036
ACC324 1.586 0.132 ACC332 1.061 -0.097 ACC211  0.575 -0.047
ACC223 1578 0.052 ACC325 1.011 0.001 ACC125  0.573 -0.055
ACC222 1.413 0.084 ACC234  0.950 -0.096 ACC212  0.526 -0.024
ACC224  1.413 0.065 ACCl114 0.928 -0.071 ACC231  0.520 0.032
ACC225 1.344 0.099 ACC322  0.924 -0.031 ACC115  0.510 0.029
ACC314 1.315 -0.142 | ACCl112  0.896 0.030 ACC133  0.503 -0.051
ACC131 1.252 0.050 ACC132  0.867 0.092 ACC124  0.447 -0.045
ACC335 1.248 -0.083 | ACC315 0.793 -0.073 ACC232  0.418 -0.020
ACC111 1.210 0.083 ACC134  0.792 -0.085 ACC214  0.393 0.043
ACC313  1.200 -0.115 | ACC323 0.779 -0.081 ACC123  0.381 0.002
ACC331 1.185 -0.125 | ACC312 0.770 -0.009 ACC213  0.284 -0.017
ACC311 1.128 0.116 ACC235 0.725 -0.014 ACC135  0.201 -0.021
ACC233 1.123 0.103 ACC113  0.699 0.064 ACC321  0.153 0.007

example, ACC324 assigns the sum of ACC values
calculated as z3*z2 for each pair amino acids with
lag 4 (first and fourth, second and fifth, third and
sixth, etc.). The variables in the model are ordered
according to their VIP values. Variables with VIP >
1 are essential to the model. Nineteen variables
(42%) in the model have a VIP > 1. To differentiate
between the most important, the threshold for VIP
was increased to 1.500. Only four variables have
VIP > 1.500 and coefficient > |0.100|. These are
ACC334, ACC333 and ACC324. ACC324 has
positive coefficient, ACC334 and ACC333 have
negative ones. This means that proteins having
negative ACC334 and ACC333, and positive
ACC324 are likely to act as allergens. Figure 2A
shows the scores of the proteins from the initial set,
and Figure 2B gives the loadings of ACC variables.
The model distinguishes relatively well allergens
(top right, Figure 2A) from non-allergens (bottom
left), despite the lack of a clear boundary between
the two clusters. The variable ACC324 is situated
most distantly from the origin in the upper right
guadrant close to the allergenicity variable
(assigned as DA1L), while variables ACC334 and
ACC333 variables are situated most distantly from
the origin in the lower left quadrant close to the
non-allergenicity variable (assigned as DA2). The
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model was tested for sensitivity, specificity and
accuracy at threshold 0.5. It detects 83% of
allergens, 87% of non-allergens and 85% correctly
identified proteins from the initial set. The Aroc
value is 0.922, indicating for the excellent
predictivity of the model.

The initial model for allergenicity prediction
was cross-validated in 6 groups. The initial set of
120 allergens and 120 non-allergens was divided
into 6 subsets of 20 allergens and 20 non-allergens.
Five subsets were united in a training set; the sixth
subset was a test. The training set was used to
derive the model; the test set was used to validate it.
The procedure was repeated six times, so any
protein acts five times as a trainer and one time — as
a tester. The average values for the test subsets
from the cross-validation are: 77% sensitivity, 79%
specificity and 78% accuracy at threshold 0.5, and
Aroc = 0.856. The cross-validation showed that the
preliminary model has a good predictive ability,
independent of the training set composition.

Further, the preliminary model was used to
predict the allergenicity of external test set of 582
allergens and 582 non-allergens. It recognized 68%
of the allergens and 77% of the non-allergens with
73% total accuracy at threshold 0.5. The Aroc value
was 0.785.
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Fig. 2. Scores (A, allergens are given as stars, non-allergens — as blank circles) and loadings (B) according to the
preliminary model for allergenicity prediction.

Extended model for allergenicity prediction

Encouraged by the good predictivity of the
preliminary model, we derived an extended model
for allergenicity prediction based on 702 food
allergens and 702 non-allergens. The structure of
proteins was described by the three z-descriptors
and ACC-transformed into strings of 45 variables.
The two-class matrix consisting of 1,404 proteins
and 45 variables was subjected to PLS-DA with
varying number of principal components from 1 to
5. The models were evaluated using the parameters
sensitivity, specificity and accuracy at threshold 0.5.
The area under the curve Aroc also was recorded.
The results are shown in Figure 3. The highest
values of the parameters are obtained by three
PCs.
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Fig. 3. Sensitivity, specificity and accuracy at threshold

0.5, and Aroc for the extended models for allergenicity
prediction with different number of PCs

The model with 3 PCs and the VIP-values of the
variables are shown in Table 2. Three variables
have VIP > 1.300 and coefficient > |0.100|. These
are ACC333, ACC214 and ACC334. One of them
has a positive coefficient (ACC214); the other two
are negative (ACC333 and ACC334). The
significance of variables and ACC333 ACC334,
found in the preliminary model is confirmed here.
Figure 4 shows the scores and the loading
according to the extended model projected on the
plane of the first two PCs. There is one outlier
(non-allergen with GI: 315113274) (not shown).
The model detects 73% of allergens, 80% of non-
allergens and 77% correctly identified proteins
from the whole set. The Aroc value is 0.830.

The extended model for allergenicity prediction
was cross-validated in 7 groups. The whole set of
702 allergens and 702 non-allergens was divided
into 7 subsets of 100 or 101 allergens and 100 or
101 non-allergens. Six subsets were united in a
training set; the seventh subset was a test. The
training set was used to derive the model; the test
set was used to validate it. The procedure was
repeated seven times, so any protein acts six times
as a trainer and one time — as a tester. The average
values for the test subsets from the cross-validation
are: 60% sensitivity, 79% specificity and 70%
accuracy at threshold 0.5, and Aroc = 0.746. The
cross-validation showed that the extended model
has a lower predictive ability than the preliminary
one, but still independent of the training set
composition.
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Fig. 4 . Scores (A, allergens are given as stars, non-allergens — as blank circles) and loadings (B) according to the
extended model for allergenicity prediction.

Table 2. VIP values and coefficients of the extended model for allergenicity prediction. The constant of the model is
1.000. Variables with VIP > 1.300 and coefficients > |0.100| are given in bold.

variable  VIP  coefficient | variable  VIP  coefficient | variable  VIP  coefficient
ACC333 1505 -0.158 ACC211 1.044 -0.058 ACC232 0.901 -0.013
ACC214 1.499 0.129 ACC224 1.032 0.030 ACC231 0.895 -0.058
ACC334 1.387 -0.124 ACC311 1.015 0.107 ACC323 0.895 -0.038
ACC335 1.236 -0.030 ACC235 1.008 -0.074 ACC325 0.885 0.020
ACC222 1.227 0.092 ACC233 1.000 0.059 ACC113 0.877 0.083
ACC332 1.215 -0.085 ACC324 0.983 0.048 ACC315 0.871 -0.081
ACC215 1.190 -0.093 ACC124 0.979 -0.007 ACC123 0.833 -0.002
ACC313 1.149 -0.125 ACC314 0.964 -0.103 ACC133 0.790 -0.071
ACC121 1.105 -0.077 ACC221 0.963 -0.001 ACC331 0.758 -0.051
ACC225 1.101 0.066 ACC134 0.958 -0.102 ACC115 0.697 0.049
ACC234 1.078 -0.062 ACC212 0.934 -0.020 ACC135 0.697 -0.067
ACC122 1.077 -0.028 ACC111 0.930 0.086 ACC132 0.681 0.074
ACC312 1.054 -0.104 ACC125 0.929 0.007 ACC112 0.656 -0.021
ACC213 1.050 -0.054 ACC321 0.924 0.026 ACC131 0.590 0.022
ACC223 1.049 0.042 ACC322 0.918 0.022 ACC114 0471 -0.027
DISCUSSION diverse allergen could not be predicted by these

Allergenicity of food proteins is a crucial
problem associated with the widespread usage of
new foods, supplements and herbs, many of them
having known or unknown genetically modified
origin. Allergenicity is a subtle, non-linearly coded
property. Most of the existing methods for
allergenicity prediction are based on structural
similarity of novel proteins to known allergens.
Thus, the identification of a novel, structurally
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methods.

In the present study, we propose an alignment-
free method for allergenicity prediction, based on
the amino acid principal  properties as
hydrophobicity, size and electronic structure.
Proteins are transformed into uniform vectors and
analyzed by PLS-DA. Initially, a preliminary model
was derived based on a small set of 120 allergens
and 120 non-allergens. The model was tested by
cross-validation and external test set and
recognized correctly 73% of the proteins from the
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external test set. Then, the dataset was extended to
1,404 proteins (702 allergens and 702 non-
allergens) and a new model was derived. The cross-
validation study showed that the extended model is
able to identify correctly 70% of the tested proteins.

The food allergens involved in the present study
have diverse structure, composition and origin,
which imply great variance in the set. By increasing
the number of proteins in the training set increases
the number of PCs needed to explain this variance.
In the small initial set used to derive the
preliminary model, two PCs were sufficient to
obtain a model with good predictive ability. In the
extended set of proteins used in the extended
model, it was necessary to include a third PC. The
model with 3 PCs had the highest predictive ability.

Both models point the importance of the
variables ACC333 and ACC334. These variables
account for the electronic structure of amino acids
located in close proximity but not next to each
other. This once again shows that the allergenicity
is a hidden, complex property, depending on many
factors, some of which are encoded in the primary
structure of proteins.
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(Pestome)

AJIepreHHOCTTa Ha XPaHUTEITHHUTE MPOTCHHU € Ba)KEH IpoOieM, CBBP3aH C IIUPOKOTO H3MOI3BAaHE Ha HOBU
XpaHW, XpaHUTeTHH H00aBKM W OWJIKH, MHOTO OT KOHTO CBHIBPXKAT H3BECTHH WIH HEHU3BECTHH TECHETHIHO
MOIUGHUIMPAHA TIPOTCHHU. AJIEPTeHHOCTTA € CKPUTO, HETMHEWHO KOOUPAHO CBOMCTBO. [IoBEUETO OT CHIECTBYBAIIUTE
METOJIH 32 OICHKA Ha aJepreHHOCT ce OCHOBABAT Ha HAcCJIarBaHe Ha CCKBEHIIMH M THPCCHE HA CTPYKTYPHU IMPIUTUKH C
n3BecTHH anepreHu. CienoBaTelHoO, HASHTA(DUIMPAHETO HA HOBH, CTPYKTYPHO pa3IMIHU aJepPreHH He MOXKe 1a Oble
OCBIIECTBCHO Ype3 Te3W METOAW. B HacTOAIMIOTO M3cienBaHe HHE MpeajaraMe HOB METOJ 3a OIeHKa Ha aJlepreHHOCT,
KOWTO He ce 0a3upa Ha HacjarBaHe Ha CEKBEHIIMH, a Ha CPaBHSIBAaHE HA OCHOBHH CBOMCTBA Ha aMHHOKHCEIIMHUTE KaTo
xuapodoOHOCT, pa3Mep U eIeKTpOHHATa CTpYyKTypa. [IpoTenHute ce TpanchopMHUpaT BbB BEKTOPHU C €HAKBA AbIDKHHA
" C€ aHaAIM3UpaAT YpE€3 NUCKPUMHUHAHTCH aHAJIM3 110 METOAAa Ha MapuuaJIHUTE HaM-MaJIKu KBaJpaTu. Hpe}lBapI/ITeJ'IHI/IHT
MOJIeJ, MOJyYCeH Bb3 OCHOBA Ha oOyuaBaina rpyma ot 120 aneprena u 120 Heaneprena, uaeHTuduUIEpa npaBuwiHo 73%
OT IpPOTEHHHUTE, BKJIIOUYEHH BBB BBHIIHA TecToBa rpyma oT 1164 amepreHu u HeanepreHd. PasmupeHusT monern,
MOJIYYEH Bb3 OCHOBA Ha oOyuaBama rpymna ot 1404 mporeuna (702 aneprena u 702 Heaneprena) nokasa 70% TO4YHOCT
P KPBCTOCAHOTO BaTMIUPAHE B 7 TPYIIH.
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