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The edge version of MEC index of one-pentagonal carbon nanocones
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Let G be a molecular graph, the edge modified eccentric connectivity index of G is defined as

A(G) =2 ¢St ecc(f)

, Where S; is the sum of the degrees of neighborhoods of an edge f and ecc(f) is its

eccentricity. In this paper an exact formula for the edge modified eccentric connectivity index of one-pentagonal

carbon nanocones was computed.
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INTRODUCTION

Molecular descriptors are playing significant
role in chemistry, pharmacology, etc. Among them,
topological indices have a prominent place [15].
There are numerous topological descriptors that
have found some applications in theoretical
chemistry, especially in QSPR/QSAR research.

More recently, a new topological index,
eccentric connectivity index, has been investigated.
This topological model has been shown to give a
high degree of predictability of pharmaceutical
properties, and may provide leads for the
development of safe and potent anti-HIV
compounds. We encourage the reader to consult
papers [1-9] for some applications and papers [10—
14] for the mathematical properties of this
topological index.

One-pentagonal carbon nanocones, Fig. 1, were
originally discovered by Ge and Sattler in 1994
[17]. These are constructed from a graphene sheet
by removing a 60° wedge and joining the edges
thus producing a cone with a single pentagonal
defect at the apex. One-pentagonal carbon
nanocones consist of one pentagone, its core
surrounded by layers of hexagons. If there are n
layers, then the graph of this molecule is denoted
by G=CNC,[n].

Now, we introduce some notation and
terminology. Let G be a graph with vertex set V(G)
and edge set E(G). Let deg(v) denote the degree of
the vertex v in G. If deg(v) = 1, then v is said to be a
pendent vertex. An edge incident to a pendent
vertex is said to be a pendent edge. For two
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vertices u and v in V(G), we denote by d(u,v) the
distance between u and v, i.e., the length of the
shortest path connecting u and v. The eccentricity
of a vertex v in V(G), denoted by ecc(v), is defined
as

ecc(v)=max{d(u,v)|ueV(G)}
The diameter of a graph G is then defined to be
max {ecc(v)|veV(G)}. The eccentric
connectivity index, £°(G), of a graph G is defined
as
£(G)=3,, deglv)-ecc(v)
The modified eccentric connectivity index of G
is defined as A(G)=) S, -ecc(v), where S,
is the sum of the degrees of neighborhoods of an

edge f and ecc(f) is its eccentricity.
Let f=uv be an edge in E(G). Then the degree

of the edge f is defined as deg(u)+deg(v)—2. For
two edges f, =u,v;, f, =u,v, in E(G), the distance
between f,and f,, denoted by d(f,f,), is
defined to be

d(f,, f,)=min {d(u,,u,) d(u, v,). d(v;,u,). d (v, v, )}

The eccentricity of an edge f, denoted by ecc(f), is
defined as

ecc(f)=max{d(f,e)|ec E(G)}
The edge eccentric connectivity index of G [16],
denoted by &,°(G), is defined as

é:ec G)= ZfEE(G)deg(f ) ECC(f )
Also the edge modified eccentric connectivity
index of G is defined as

Ae(G)=Zf6E(G)Sf -ecc(f), where S is the sum
of the degrees of neighborhoods of an edge f and
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ecc(f) is its eccentricity.

In this paper an exact formula for the edge
modified eccentric connectivity index of one-
pentagonal carbon nanocones was computed.

RESULTS AND DISCUSSION

Let C[n] = CNC,[n]. In the following

lemma, the maximum and minimum edge eccentric
connectivity of C[n] is computed.

Fig. 1 A maximum and minimum path for computing
eccentricity in CNC5[3]

Fig. 2 The edges set with same eccentric connectivity
for one section in CNC5[3]
Lemma 1. For any edge f inE(C[n]), we have
Max(ece(f ))=4n+1,
Min(ecc(f))=2n+1.
Proof. Suppose f is an edge of the central
pentagon of C[n]. Then from Fig. 1, one can see

that there exists an edge g of degree 2 such that
d(f,g):Zn and there exists another edge h of

degree 2 such that d(f,h)=2n+1. Therefore, the
shortest path with maximum length is connecting
two edges of degree 2 in C[n] and thus the proof
is completed.

In the following theorem we compute the edge
eccentric connectivity index of C[n].

Theorem 1. The edge modified eccentric
connectivity index of C[n] is computed as

A, (C[n])=400n® +520n* +180n + 20.

Proof. Considering Figs. 1 and 2, it can be seen
that we have 10n+5 numbers of edges with
maximum eccentric connectivity, such as 5
numbers of edges type 1, 10 numbers of edges type
2 and 10n-10 numbers of edges type 3. Also 5n
numbers of edges type 4 with eccentric connectivity
of 4n, 10n-5 numbers of edges type 5 with eccentric
connectivity of 4n-1, and so it continues until we
have five edges of type 2n+2 with eccentric
connectivity of 2n+2 and five edges of type 2n+3
with minimum eccentric connectivity of 2n+1. It is
easy to check that the sum of the degrees of
neighborhoods of five edges of maximum eccentric
connectivity is 6. The sum of the degrees of
neighborhoods of 10 edges of maximum eccentric
connectivity is 9 and the sum of the degrees of
neighborhoods of 10n-10 edges of maximum
eccentric connectivity is 10. Also the sum of the
degrees of neighborhoods of 5n edges of type 4 is
14. On the other hand, the sum of the degrees of
neighborhoods of other types of edges is 16. (See
Table 1).

Table 1. Types of edges for C[n]

Types of Num Ecc S
edges f
1 5 4n+1 6
2 10 4n+1 9
3 10n-10 4n+1 10
4 5n 4n 14
5 10n-5 4n-1 16
6 5n-5 4n-2 16
7 10n-15 4n-3 16
8 5n-10 4n-4 16
9 10n-25 4n-5 16
2n 10 2n+4 16
2n+1 15 2n+3 16
2n+2 5 2n+2 16
2n+3 5 2n+1 16

This implies that
Ae(C[n]):ZfeE(c[n])Sf -ecc(f)
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=5x6x(4n+1)+10x9x(4n +1)
+(10n—10)x10x(4n +1)+5nx14x 4n
+16Zn:(10n—10k +5)4n—2k +1)

k=1
n-1
+16 " (5n—5k (4n—2k).
k=1
Therefore,

A, (C[n])=400n° +520n* +180n + 20.
Thus, this proof is completed.
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PEGPEHO MON®UIIMPAH MHJAEKC HA EKCHEHTPUYHA CBBP3AHOCT HA EJIHO-
I[TEHTATOHAJIEH HAHOKOHYC

A. Hemxaru, M. Anaesau*

Jlenapmamenm no mamemamura, Konexc no ocnosnu nayxu, xnon Kapaoowe, Hcnsameku ynugepcumem ,, A3a0 “, Anbops,
HUpan

[ocrenuna va 27 roru 2013 r.; kopurupana Ha 8 stHyapu 2014 T.
(Pesrome)

Heka G e mounekyispen rpad. PeOpeHo MoanbuuMpaHHAT MHAEKC Ha EKCLEHTpUYHa cBbp3aHocT Ha G ce
nedunmpa ¢ A, (G)=X(c)Sy ~ecc(f ), KBIETO Sf € cymara OT CTENeHHUTe Ha cheelcTBo Ha pebpoto f u ecc(f) e

HEroBara €KCICHTPUYHOCT. B Ta3m cratus € HamepeHa TouHa (opmyrna 3a pedpeHo MoauduIUpaH HHIEKC Ha
eKCIICHTPUYHA CBBP3aHOCT Ha E€HO-TIEHTAarOHAJICH BBIVIEPOJACH HAHOKOHYC.
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