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Holographic mesons in Pilch-Warner geometry
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In this paper we study the D7 probe brane scalar fluctuations in global Pilch-Warner background geometry. We chose to work
with simple constant solutions that solve the classical embedding equations. This allows one to fix the position of the brane in space
and considerably simplify the analysis of its fluctuations. The corresponding meson spectra, obtained by the fluctuations along the
transverse directions, admit equidistant structure for the higher modes and a ground state given by the conformal dimension of the
operator dual to the fluctuations.
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INTRODUCTION

The AdS/CFT correspondence is a magnificent
duality relating 10 dimensional IIB string theory in
the weak coupling regime to a 4 dimensional SU(N)
gauge field theory with strong coupling constant, and
vice-versa. In this case the gauge field theory lives
on the boundary of the spacetime where the strings
move. This correspondence gives us the opportunity
to study non-perturbative phenomena in Yang-Mills
theory with tools available in the classical superstring
theory and supergravity.

On the gauge theory side of the original Malda-
cena setup [1] there is a theory with huge amount of
symmetry (N = 4 supersymmetric Yang-Mills the-
ory), and on the string side of the correspondence we
have a stack of N D3-branes, so that both endpoints
of the strings are attached to the same stack of D3-
branes, therefore the corresponding states transforms
in the adjoint representation of the gauge group.
Adding flavours in the setup is achieved by intro-
ducing a separate stack of N f D7 probe branes [2].
Here, the SU(N f ) is a global flavor symmetry. If we
consider the case of N f �Nc, where Nc is the number
of the D3-branes, and further take Nc large, then we
have a strongly coupled dual gauge theory, and a stack
of D3-branes, which is the source of the background
geometry, but in the limit of large Nc it can effec-
tively be replaced by AdS5×S5. In this setup we can
study the N f D7-branes in the probe limit. The strings
stretched between the two stacks of branes have finite
length and thus finite energy, so that the quark mass
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is given by the separation distance and the string ten-
sion: mq = L/2πα ′.

Although variety of meson spectra were found
[3, 4] (for a review see [5]), there is still too much su-
persymmetry we have to deal with in order to achieve
string theory description of QCD and the Standard
model. To produce more realistic QCD like string
theories, deformations of the initial AdS5×S5 geom-
etry [6, 7], or introducing external magnetic or elec-
tric fields [8–11], have to be considered. Such config-
urations will break the supersymmetry and theories
with less supersymmetry will emerge. In this con-
text Pilch-Warner geometry [12,13] is a fine example
of such deformed geometry. It is a solution of five-
dimensional N = 8 gauged supergravity lifted to ten
dimensions, which, in its infrared critical point, pre-
serves 1/4 of the original supersymmetry.

GENERAL SETUP

Pilch-Warner geometry

Pilch-Warner geometry is a solution of five-
dimensional N = 8 gauged supergravity lifted to ten
dimensions. This geometry interpolates between the
maximally supersymmetric AdS5× S5 in the ultravi-
olet critical point and warped AdS5 times squashed
five-sphere in the infrared point (IR). In this study
we will restrict ourself to the IR critical point. An
interesting feature on the gravity side is that it pre-
serves 1/8 supersymmetry everywhere while at IR
fixed point it is enhanced to 1/4. On the SYM side the
IR fixed point corresponds to large N limit of the su-
perconformal N = 1 theory of Leigh-Strassler [15].
The ten-dimensional Pilch-Warner metric is given by
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ds2 = ds2
1,4 +ds2

5 , (1)

where we have the warped AdS5 metric

ds2
1,4 = Ω2(e2A ds2(M4)+dr2) , (2a)

and the squashed five-sphere metric

ds2
5 =L2

0
X1/2sechχ

ρ
3

[
dθ

2 +
ρ

6 cos2 θ

X
(σ2

1 +σ
2
2 )

+
ρ

12 sin2 2θ

4X2

(
σ3 +

2−ρ
6

2ρ
6 dφ

)2

+
ρ

6cosh2
χ

16X2

× (3− cos2θ)2
(

dφ − 4cos2θ

3− cos2θ
σ3

)2]
. (2b)

This is an example of warped geometry where the
warp factor Ω is given by: Ω2 = X1/2 cosh χ/ρ , and
the function X(r,θ) = cos2θ + ρ

6sin2
θ . Our left-

invariant one-forms satisfy dσi = εi jkσ j ∧σk, so that
dΩ̃2

3 = σiσi is the metric on the unit 3-sphere. In
global coordinates they take the following form:

σ1 =
1
2
(sinβdα− cosβ sinα dγ),

σ2 =−
1
2
(cosβ dα + sinβ sinα dγ),

σ3 =
1
2
(dβ + cosα dγ) .

(3)

At the IR point r→−∞, χ = arccosh
(

2√
3

)
, ρ = 21/6,

and A(r) = r/L. The AdS radius L is given in terms
of the AdS radius L0 of the UV spacetime by L =
(3/25/3)L0. One finds that at the IR point the met-
ric takes the form

ds2
1,4 = Ω2(e

2r
L ds2(M4)+dr2) , (4a)

and the squashed five-sphere metric

ds2
5 =

2
3

L2Ω2
[
dθ

2 +
4cos2θ

3− cos2θ
(σ2

1 +σ
2
2 )

+
4sin22θ

(3− cos2θ)2 σ
2
3 +

2
3

(
dφ − 4cos2θ

3− cos2θ
σ3

)2]
.

(4b)

As shown in [14] there is a natural global U(1)
β

action β → β + const which rotates σ1 into σ2 and
leaves σ3 invariant. We adopt the set up where the

S3 Euler angle β → β + 2φ is shifted to give a so-
lution with a global U(1)R = U(1)φ symmetry. Per-
forming this coordinate transformation on the solu-
tion (4a) and (4b) we arrive at the final result for the
Pilch-Warner metric in global coordinates

ds2
1,4(IR) = L2Ω2(−cosh2

ρdτ
2+dρ

2+sinh2
ρdΩ2

3),
(5a)

ds2
5(IR) =

2
3

L2Ω2
[
dθ

2 +
4cos2θ

3− cos2θ
(σ2

1 +σ
2
2 )

+
4sin22θ

(3− cos2θ)2 (σ3+dφ)2 +
2
3

(1−3cos2θ

cos2θ −3

)2

×
(

dφ − 4cos2θ

1−3cos2θ
σ3

)2]
, (5b)

where dΩ2
3 = dφ 2

1 + sin2
φ1(dφ 2

2 + sin2
φ2dφ 2

3 ) is the
metric on the 3-sphere, and

Ω2 =
21/3
√

3

√
3− cos(2θ) (6)

is the warp factor at the IR point.

R-R and NS-NS potentials

The Pilch-Warner background includes non-trivial
Ramond-Ramond (R-R) and Neveu-Schwarz (NS-
NS) form fields entering the D7 probe brane action.
The full action is given by two terms – a Dirac-Born-
Infeld (DBI) term and a Wess-Zumino (WZ) term
[16, 17]

SD7 = SDBI +SWZ (7)

=−T7

∫
d8

ξ e−Φ
√
−det(P[G]+F )

−T7

∫ (
P[C8]−P[C6]∧F+ 1

2 P[C4]∧F∧F+· · ·
)
,

where F = P[B2] + 2πα ′F , T7 is the D7-brane ten-
sion, Φ is the dilaton, F is the worldvolume gauge
field, B2 is the Kalb-Ramond 2-form, and P denotes
the pullback of the bulk spacetime tensor to the world-
volume of the brane:

P[G]ab = GAB
∂XA

∂ξ a
∂XB

∂ξ b . (8)

The indices a, b = 0, . . . ,7 span the world volume of
the D7-brane, while A, B = 0, . . . ,9 span the whole
spacetime. We will consider D7-brane embeddings in
static gauge where θ and φ directions are transverse
to the brane

ξ
a = (τ,ρ,φ1,φ2,φ3,α,β ,γ), (9)

a = 0, . . . ,7, φ = φ(ρ), θ = θ(ρ) .
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In static gauge the pullback is given by

P[G]ab = gab +Gmn
∂Xm

∂ξ a
∂Xn

∂ξ b , (10)

where gab is the induced metric on D7, and Gmn
(m,n= θ ,φ) are the metric components in front of the
transverse coordinates governing the D7-brane fluc-
tuations. D–branes carry an R-R charge which due
to charge conservation turns them into stable objects.
In the IIB string theory the R-R potentials are C0, C2,
C4, C6, C8 and corresponding field strengths, which
satisfy certain Bianchi identities and equations of mo-
tion [16]

Φ =C0 = 0, F1 = dC0 = 0 , (11a)
C2 = ℜe(A2), B2 = ℑm(A2) , (11b)

H3 = dB2, F3 = dC2−C0∧H3 = dC2 , (11c)
dF3 = dH3 = 0, dF5 = H3∧F3 , (11d)

d(?F3)=−H3∧F5, d(?H3)=F3∧F5, F5=?F5,
(11e)

dC4 +dC̃4 = F5 +C2∧H3 , (11f)
F7 = ?F3 = dC6−C4∧H3 , (11g)

F9= ?F1=0=dC8−C6∧H3=C6∧H3, χ =C8 = 0 .
(11h)

Here the field strengths are defined in terms of the
corresponding potentials as

H3 ≡ dB2, Fp ≡ dCp−1−Cp−3∧H3. (12)

In this setup the axion/dilaton system of scalars (11a)
and (11h) is trivial along the flow. We also have an
ansatz for the self-dual five form

F5 =−
25/3

3
L4 coshρ

× sinh3
ρ(1+?)dτ ∧dρ ∧ ε(S3

φ ), (13)

where ε(S3
φ
)= sin2

φ1 sinφ2 dφ1∧dφ2∧dφ3 is the vol-
ume element of the unit 3-sphere S3

φ
, and ? is the

Hodge star operator. The ansatz for the 2-form po-
tential A2 at the IR point is also known

A2(IR) =C2 + iB2−
i
2

e−2iφ L2
0 cosθ

(
dθ

− 2isin2θ

3− cos2θ
(σ3 +dφ)

)
∧ (σ1 + iσ2) . (14)

Two additional constraints are necessary for (11a)
to be consistent, namely

F3∧?H3 = 0, F3∧?F3 = H3∧?H3 . (15)

Equipped with this setup we are ready to begin
our study of the classical D7-brane embeddings and
its scalar fluctuations in global Pilch-Warner geome-
try.

D7-BRANE EMBEDDINGS

In order to proceed with the classical D7 embed-
dings we will set the worldvolume gauge field F = 0.
There are three relevant cases of classical D7-brane
embeddings we will consider here. The first two cor-
respond to fixed values of θ , and the third one cor-
responds to fixed value of φ . The firs case we are
going to consider is θ = 0, φ = φ(ρ). The classical
profile of the D7-brane is governed by the following
non-linear equation:

φ
′′(ρ)+(3cothρ + tanhρ)

×
(

φ
′(ρ)+

4
9
(φ ′(ρ))3

)
= 0 . (16)

The simplest solution to this equation is the con-
stant solution φ(ρ) = const. In the second case we
take the ansatz θ = π/2, φ = φ(ρ). The classical
equation of motion is similar to the previous one

φ
′′(ρ)+(3cothρ + tanhρ)

(
φ
′(ρ)+

8
9
(φ ′(ρ))3

)
= 0 , (17)

solved again by any constant φ(ρ) = const. Note that
if we set u(ρ) = φ ′(ρ) for both cases we get first or-
der Bernoulli type equations. The third case we are
going to consider is the ansatz φ = 0,θ = θ(ρ). The
classical equation of motion takes complicated form

θ
′′(ρ)+a(ρ)θ ′(ρ)+b(ρ)(θ ′(ρ))2+c(ρ)(θ ′(ρ))3

+d(ρ)ς(ρ)+ e(ρ) = 0 , (18)

where the corresponding coefficients are

a(ρ) = 3cothρ + tanhρ,

b(ρ) =
1

9(z2−3)2

[
2tan(θ(ρ))

×
(
− ς(ρ)

√
6−2z2(z3−13z1)−90z2+9z4+117

)]
,

c(ρ) =
28
9
(tanhρ + cothρ + csch2ρ),

d(ρ) =−2
√

2 sin(θ(ρ))
√

3− z2(z2−7)

7(z2−3)2 ,
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e(ρ) =
18
7

sin(2θ(ρ))−3tan(θ(ρ))
(z2−3)

,

ς(ρ) =

√
14(θ ′(ρ))2 +9,

zn = cos(nθ(ρ)), n = 1,2,3,4 .

This equation has simple solutions, which satisfy
the trigonometric equation sinθ = 0, i.e. θ(ρ) = k π ,
k ∈ N0.

SCALAR FLUCTUATIONS OF
THE D7-BRANE AND THE MESON SPECTRA

Fluctuations along φ , θ = 0

Now we proceed with the study of the scalar fluc-
tuations of the D7 probe brane along φ and θ , around
the classical solution φcl = 0. We consider the follow-
ing ansatz for the fluctuations:

θ = 0+2π α
′Θ, φ = 0+2π α

′Φ , (19)

where δφ = 2π α ′Φ, and δθ = 2π α ′Θ. The full La-
grangian is the sum of the DBI and WZ Lagrangians

L = LDBI +LWZ . (20)

Let us investigate only the Φ fluctuations. There
are no contributions from LWZ , but it gives non-zero
contributions for Θ, as we will see in the next sec-
tion. The DBI Lagrangian, up to quadratic order in
the fluctuations, is given by

LDBI =−µ7
√−g

(
1+

1
2

gabGθθ ∂aΘ∂bΘ

+
1
2

gabGφφ ∂aΦ∂bΦ
)
, (21)

where g = det(gab) is the determinant of the induced
metric. The equation of motion for the fluctuation
field Φ is given by the Laplace-Beltrami equation

∇a∇aΦ =
1√−g

∂a

(√−ggab
∂b Φ

)
= 0 . (22)

Expanding equation (22) one finds

−∂
2
τ Φ+ cosh2

ρ

(
∂

2
ρ Φ+(3cothρ + tanhρ)∂ρΦ

+
1

sinh2
ρ

∆φiΦ+3∆̃αiΦ
)
= 0, (23)

where φi = (φ1, φ2, φ3), αi = (α, β , γ), and

∆φiΦ =
1

sin2
φ1

∂φ1(sin2
φ1∂φ1Φ)

+
1

sin2
φ1 sinφ2

∂φ2(sinφ2∂φ2Φ)

+
1

sin2
φ1sin2

φ2
∂

2
φ3

Φ, (24a)

∆̃αiΦ =
1

sinα
∂α(sinα∂αΦ)

+
1

sin2
α

((cos(2α)+7)
8

∂
2
β

Φ

+∂
2
γ Φ−2cosα∂β ∂γΦ

)
. (24b)

Separation of variables leads to the following
spectral equations:

..
T (τ)+ω

2 T (τ) = 0 , (25a)

∆̃αiZ(αi) =−ν Z(αi) , (25b)

∆φiY
l(φi) =−l (l +2)Y l(φi) , (25c)

R′′(ρ)+(3cothρ + tanhρ)R′(ρ)

+
(

ω2

cosh2
ρ
− l(l +2)

sinh2
ρ
−3ν

)
R(ρ) = 0 , (25d)

where Y l(φi) are the hyperspherical harmonics, l ∈
N0. In order to determine the conformal dimension
and the spectrum, we will make the following change
of variable r = sinhρ in the radial equation. After
some simple manipulations we find

R′′(r)+
3+5r2

r(r2 +1)
R′(r)

+
(

ω2

(r2+1)2 −
l(l+2)

r2(r2+1)
− 3ν

r2+1

)
R(r)=0. (26)

There are two independent solutions R(r) =
R+(r) +R−(r) given in terms of Gaussian hyperge-
ometric functions

R+(r) =c1r−2−l(r2 +1)−
ω

2 2F1(a,b;c;z), (27a)

R−(r) =c2rl(r2 +1)−
ω

2

× 2F1(a− c+1,b− c+1;2− c;z), (27b)
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where the arguments of the hypergeometric function
are as follows:

a = (−l−ω−
√

3ν +4)/2,

b =
1
2
(−l−ω +

√
3ν +4)/2,

c =−l, z =−r2 .

The second solution R−(r) is regular at the origin
r = 0, and at the boundary r→∞, which makes it our
choice for normalizable solution, so that we always
have finite fluctuations. The hypergeometric function
is a polynomial of degree n if one of the first two
arguments is equal to a negative integer −n, n > 0.
Thus, imposing normalizability for the solution R−(r)
means to chose one of the first two arguments of the
hypergeometric function have negative integer values,
e.g. b− c+1 = −n, n > 0. This gives us the quanti-
zation condition from which one calculates the scalar
meson spectrum

ω =
√

4+3ν +2+ l +2n, (28)

ω > 0, l, n ∈ N0, −4
3
≤ ν ≤ 0.

By the standard AdS/CFT dictionary one can cal-
culate the conformal dimension of the operators cor-
responding to Φ from the analysis of the radial equa-
tion (26) at the boundary r→ ∞. For large r we have
the following asymptotic equation:

R′′(r)+
5
r

R′(r)− 3ν

r2 R(r) = 0 , (29)

which is solved by

R(r) = c1r−
√

3ν+4−2 + c2r
√

3ν+4−2 . (30)

This solution contains normalizable and non-
normalizable parts that behaves as rk1 = r∆−4+p, and
rk2 = r−∆+p, for some constant p. Taking the differ-
ence of the powers one finds the conformal dimension

∆ =
k1− k2

2
+2 = 2+

√
3ν +4 , (31)

where k1 = −2 +
√

3ν +4, k2 = −2 −
√

3ν +4.
Equation (31) allows us to express the spectrum in
terms of the conformal dimension

ω = ∆+ l +2n . (32)

From (32) we see that the energy of the ground
state is given by the conformal dimension of the op-
erator dual to the fluctuations. For higher modes the
spectrum is equidistant. This is consistent with simi-
lar results for the fluctuations in different background
geometries [3, 7]. To calculate the spectrum of con-
formal dimensions we need to quantise the parame-
ter ν from equation (25b). Separation of variables of
the kind Z = A(α)eim1 β eim2 γ leads to the following
quantized values of ν :

ν = (m+m2)
2 +m+m2−

m2
1

4
, (33)

m, m1 ∈ N0,
m1

3
< m2 ≤ m1, −4

3
≤ ν ≤ 0 .

Fluctuations along φ , θ = π/2

This case needs more careful treatment, because
at θ = π/2 the radius of the 3-sphere spanned by
(α, β , γ) shrinks to zero. This means that a direct
substitution of θ = π/2 into the equation of mo-
tion could cause problems. As it turns out the de-
pendence on θ can be factor out. The equation of
motion is once again the Laplace-Beltrami equation
∇a∇aΦ = 0, which written explicitly gives

A(θ)(I0(Φ)+ cos2
θ I2(Φ)+ cos4

θ I4(Φ)) = 0, (34)

Here A(π/2) = 0, so that setting θ = π/2 causes the
entire equation to become trivial, which is not a case
of interest. The relevant equations for the fluctua-
tion Φ comes from setting the coefficients I0, I2 and
I4 equal to zero, which leads to the following set of
equations:

∆(a)
αi Φ = 0 , (35a)

−∂
2
τ Φ+∂

2
ρ Φcosh2

ρ +∂ρΦ(2 cosh(2ρ)+1) cothρ + coth2
ρ ∆φiΦ−5cosh2

ρ ∆(b)
αi Φ = 0 , (35b)

−∂
2
τ Φ+∂

2
ρ Φcosh2

ρ +∂ρΦ(2 cosh(2ρ)+1) cothρ + coth2
ρ ∆φiΦ−3cosh2

ρ ∆(c)
αi Φ = 0 , (35c)

where we have the following differential operators:
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∆φiΦ =
1

sin2
φ1

∂φ1

(
sin2

φ1 ∂φ1Φ
)
+

1
sin2

φ1 sinφ2
∂φ2

(
sinφ2 ∂φ2Φ

)
+

1
sin2

φ1 sin2
φ2

∂
2
φ3

Φ , (36a)

∆(a)
αi Φ =

1
sinα

∂α (sinα ∂αΦ)+
1

sin2
α

(
∂

2
β

Φ+∂
2
γ Φ−2∂

2
βγ

Φ cosα

)
, (36b)

∆(b)
αi Φ =

1
sinα

(
∂α (sinα ∂αΦ)− 1

10 sinα

(
∂

2
β

Φ(cos(2α)−11)−10∂
2
γ Φ+20∂

2
βγ

Φ cosα

))
, (36c)

∆(c)
αi Φ =

1
sinα

(
∂α (sinα ∂αΦ)− 1

4 sinα

(
∂

2
β

Φ (cos(2α)−5)−4∂
2
γ Φ+8∂

2
βγ

Φ cosα

))
. (36d)

After separation of variables one finds
..
T (τ)+ω

2 T (τ) = 0 , ∆φiY
l(φ1, φ2, φ3) =−l (l +2)Y l(φ1, φ2, φ3) , (37a)

∆(a)
αi Z(α,β ,γ) = 0, ∆(b)

αi Z = λ Z, ∆(c)
αi Z = µ Z , (37b)

R′′(b)(ρ)+(3 cothρ + tanhρ)R′(b)(ρ)+
(

ω2

cosh2
ρ
− l (l +2)

sinh2
ρ
−5λ

)
R(b)(ρ) = 0 , (37c)

R′′(c)(ρ)+(3 cothρ + tanhρ)R′(c)(ρ)+
(

ω2

cosh2
ρ
− l (l +2)

sinh2
ρ
−3 µ

)
R(c)(ρ) = 0 . (37d)

If one subtracts (35b) and (35c) a relation between
the eigenvalues µ and λ is found, namely 5λ = 3 µ ,
which makes equations (37c) and (37d) equivalent to
each other. Therefore one needs to study only one of
them. The radial equation (37d) has the same form
and solutions as equation (26), but the only difference
here being the different values for µ . The spectrum
also has the same form as (32)

ω = ∆+ l +2n , (38)

where the conformal dimension is ∆ =
√

4+3 µ +2.
In order to study the eigenvalue µ , we need to make
sure that equations ∆(c)

αi Z = µ Z and ∆(a)
αi Z(α, β , γ) =

0 are simultaneously satisfied. For that purpose we
express ∂ 2

βγ
Z cosα from (35a)

∂
2
βγ

Z cosα =
1
2

sin2
α

sinα
∂α(sinα∂αZ)+

1
2

∂
2
β

Φ+
1
2

∂
2
γ Φ,

and substitute this back into ∆(c)
αi Z = µ Z to find:

∂
2
β

Z(α, β , γ) = 2 µ Z(α, β , γ) . (39)

Separation of variables Z = A(α)B(β )G(γ) gives
an equation for B(β )

B′′(β )−2 µ B(β ) = 0 . (40)

This equation has a simple solution of the form

B(β ) = B1 e
√

2 µ β +B2 e−
√

2 µ β . (41)

Therefore, if we want to study ∆(c)
αi Z = µZ, so that

equation ∆(a)
αi Z(α,β ,γ) = 0 to be also satisfied, we

must have the following separation of variables Z =

A(α)e
√

2 µ β einγ γ in ∆(c)
αi Z = µ Z, which gives an

equation for A(α)

A′′(α)+ cotαA′(α)−
4µsin2

α +2µ(cos(2α)−5)+4n2
γ +8inγ

√
2µ cosα

4sin2
α

A(α) = 0, (42)

The solution is a combination of hypergeometric
functions. Requiring finite fluctuations everywhere

one finds the general form of the eigenvalue µ:

µ =−k2/2 , (43)

where k ∈N0. Therefore we conclude that µ ≤ 0. But
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real and positive energy requires µ ≥ −4/3. which
leads to only two possible values for µ , namely 0 and
-1/2.

Although θ = 0 and θ = π/2 cases look simi-
lar due to their spectra, they are physically different
cases. The θ = π/2 is the massive direction from the
point of view of the brane probe. Also in this case
we have an enhancement of the supersymmetry from
N = 1 to N = 2.

Fluctuations along θ , φ = 0

Next we consider fluctuations of D7 along the θ

transverse direction. In this case there are contribu-
tions from both the DBI and WZ parts of the action.
Considering only quadratic lagrangian for the fluctu-
ations one finds the equation of motion

−∂
2
τ Θ+ cosh2

ρ

(
∂

2
ρ +(3cothρ +4tanhρ)∂ρ

+
∆φi

sinh2
ρ
+3~?∆αi−6

)
Θ = 0 , (44)

where ∆φiΘ and ∆̃αiΘ are the same as in (24a) and
(24b). Separation of variables leads to the same equa-
tions as (25a), (25b) and (25c), but slightly different
radial equation

R′′(ρ)+(3cothρ +4tanhρ)R′(ρ)

+
(

ω2

cosh2
ρ
− l(l +2)

sinh2
ρ
−3ν−6

)
R(ρ) = 0 . (45)

Making the change r = sinhρ we get the follow-
ing equation:

R′′(r)+

(
8r2 +3

)

r3 + r
R′(r)

+
(

ω2

(r2 +1)2 −
l(l +2)

r2(r2 +1)
− 3ν−6

r2 +1

)
R(r) = 0 .

(46)

One can show that a solution regular at the origin
r = 0, and at the boundary r→ ∞, is given by

R(r) = crl (r2 +1
)− 1

4

√
4ω2+9− 3

4
2F1

(
l
2
+

∆
2
− 1

4

√
4ω2 +9,

l
2
− ∆

2
− 1

4

√
4ω2 +9+2; l +2;−r2

)
. (47)

Quantizing one of the first two arguments of the
hypergeometric function gives us the meson spectrum

ω
2 = (l +2n+∆)2− 9

4
, (48)

where ∆ =
(
4+
√

25+12ν
)
/2 is the conformal di-

mension, l, n ∈ N0, −2 ≥ ν ≥ −10/3. Once again
the spectrum is equidistant in its higher modes, but
the ground state is not equal to the conformal dimen-
sion of the operators dual to the fluctuations. The
additional shift in the ground state (n, l = 0) could
be resolved by studying the symmetries of the theory
and considering some supersymmetric D-brane em-
beddings. Other origins of the shift are also not ex-
cluded.

CONCLUSION

Quantum chromodynamics is the most successful
theory describing the strong nuclear force so far. At
low energy QCD is strongly coupled, which means
that the force between the quarks grows immensely
and they tend to form particles called hadrons – a
phenomenon known as confinement. In this low en-

ergy regime of the theory the usual perturbative tech-
niques are not applicable, which forces us to look for
alternative non-perturbative methods. Such alterna-
tive techniques arise in String theory in the context of
the AdS/CFT correspondence, where the physics of
the supersymmetric Yang-Mills systems can be un-
derstood by that of the D-brane dynamics and vice
versa. The original form of the conjecture focuses
on the N = 4 super Yang-Mills theory, which is a
gauge theory with a huge amount of symmetry. On
the other hand generically QCD is neither supersym-
metric, nor conformal. One way to make the cor-
respondence more applicable to realistic gauge the-
ories, such as QCD, is to reduce the amount of the
supersymmetry. This goal can be achieved in several
different ways, one of which is deforming the origi-
nal AdS5× S5 geometry. This was the approach we
adopted here by looking at the dynamics of the flavor
D7-brane embedded in a deformed background called
Pilch-warner geometry.

In this study we obtained the classical embedding
equations for the D7 probe brane in global Pilch-
Warner background geometry for three relevant cases.
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Although highly non-linear the embedding equations
have simple constant solutions, which allowed us to
fix the probe brane position in space and considerably
simplify the study of its fluctuations. In the case when
the number of the flavour branes is much smaller than
the number of the color branes, the analysis of the
scalar fluctuations of the D7 probe brane lead us to
analytical results for the meson spectra. All obtained
spectra are equidistant in the higher modes, but not
all of them have ground states equal to the conformal
dimension of the operators dual to the fluctuations.

The fluctuations of the D5-brane as well as the
fluctuations of the world volume gauge field can also
be studied. Some more complicated cases include
turning on external electric or magnetic fields, which
further break the supersymmetry. The asymptotic be-
haviour of the brane embedding equations can be used
to extract information about the dual gauge theory,
namely the quark condensate, which mixes the left
and right degrees of the fundamental matter and leads
to a breaking of their chiral symmetry.
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(Резюме)

AdS/CFT съответствието е удивителна дуалност, свързваща десет-мерна IIB суперструнна теория с малка константа на връз-
ката с четири-мерна суперсиметрична калибровъчна SU(N) теория с голяма константа на връзката, и обратно. В случая калиб-
ровъчната теория живее на границата на пространството, в което се движат струните. Това съответствие ни дава възможност да
изучаваме непертурбативни проблеми в калибровъчни теории на Янг-Милс чрез методи на класическата Суперструнна теория
или Супергравитация.

В оригиналната версия на съответствието от струнна гледна точка имаме стек от Nc на брой паралелни D3-брани, които
генерират ефективната AdS5×S5 геометрия на пространството, а от другата страна имаме N = 4 суперсиметрична калибро-
въчна теория на Янг-Милс. При тази конфигурация краищата на струните се закрепят върху брани от един и същ стек, което
прави състоянията да се трансформират в присъединеното представяне на калибровъчната група, а това означава, че липсва
фундаментална материя като кварки. Ако към конфигурацията от D3-брани добавимN f на брой D7 пробни брани (N f �Nc)ще
получим състояния трансформиращи се пофундаменталното представяне на калибровъчната група и следователнощеполучим
фундаментална материя.

Въвеждането на допълнително външно магнитно или електрично поле деформира първоначалната AdS5×S5 геометрия,
което води до нарушаване на суперсиметрията и постигане на теории с по-малко суперсиметрия. Също така се нарушава и
киралната симетрия, което води до образуването на кварков кондензат и конфайнмънт, така че струнното описание да се доб-
лижава все повече до описание на Квантовата хромодинамика.

В настоящият труд сме изследвали спектъра на скаларните флуктуации на D7 пробна брана в геометрия на Пилч-Уорнър в
глобални координати. Тази геометрия представлява деформирано по определен начин AdS5×S5 пространство, което е решение
на 5-мернаN = 8 супергравитация вдигната до 10-мерие, като запазва 1/4 от първоначалната суперсиметрия в инфрачервената
критична точка, и 1/8 навсякъде другаде.
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