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In this paper we study the D7 probe brane scalar fluctuations in global Pilch-Warner background geometry. We chose to work
with simple constant solutions that solve the classical embedding equations. This allows one to fix the position of the brane in space
and considerably simplify the analysis of its fluctuations. The corresponding meson spectra, obtained by the fluctuations along the
transverse directions, admit equidistant structure for the higher modes and a ground state given by the conformal dimension of the

operator dual to the fluctuations.
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INTRODUCTION

The AdS/CFT correspondence is a magnificent
duality relating 10 dimensional IIB string theory in
the weak coupling regime to a 4 dimensional SU (N
gauge field theory with strong coupling constant, and
vice-versa. In this case the gauge field theory lives
on the boundary of the spacetime where the strings
move. This correspondence gives us the opportunity
to study non-perturbative phenomena in Yang-Mills
theory with tools available in the classical superstring
theory and supergravity.

On the gauge theory side of the original Malda-
cena setup [1] there is a theory with huge amount of
symmetry (.4 = 4 supersymmetric Yang-Mills the-
ory), and on the string side of the correspondence we
have a stack of N D3-branes, so that both endpoints
of the strings are attached to the same stack of D3-
branes, therefore the corresponding states transforms
in the adjoint representation of the gauge group.
Adding flavours in the setup is achieved by intro-
ducing a separate stack of Ny D7 probe branes [2].
Here, the SU(Ny) is a global flavor symmetry. If we
consider the case of Ny < N, where N, is the number
of the D3-branes, and further take N, large, then we
have a strongly coupled dual gauge theory, and a stack
of D3-branes, which is the source of the background
geometry, but in the limit of large N, it can effec-
tively be replaced by AdSs x S°. In this setup we can
study the Ny D7-branes in the probe limit. The strings
stretched between the two stacks of branes have finite
length and thus finite energy, so that the quark mass
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is given by the separation distance and the string ten-
sion: my = L/2mor’.

Although variety of meson spectra were found
[3,4] (for a review see [5]), there is still too much su-
persymmetry we have to deal with in order to achieve
string theory description of QCD and the Standard
model. To produce more realistic QCD like string
theories, deformations of the initial AdSs x S° geom-
etry [6,7], or introducing external magnetic or elec-
tric fields [8—11], have to be considered. Such config-
urations will break the supersymmetry and theories
with less supersymmetry will emerge. In this con-
text Pilch-Warner geometry [12, 13] is a fine example
of such deformed geometry. It is a solution of five-
dimensional .4 = 8 gauged supergravity lifted to ten
dimensions, which, in its infrared critical point, pre-
serves 1/4 of the original supersymmetry.

GENERAL SETUP
Pilch-Warner geometry

Pilch-Warner geometry is a solution of five-
dimensional .4~ = 8 gauged supergravity lifted to ten
dimensions. This geometry interpolates between the
maximally supersymmetric AdSs x S° in the ultravi-
olet critical point and warped AdSs times squashed
five-sphere in the infrared point (IR). In this study
we will restrict ourself to the IR critical point. An
interesting feature on the gravity side is that it pre-
serves 1/8 supersymmetry everywhere while at IR
fixed point it is enhanced to 1/4. On the SYM side the
IR fixed point corresponds to large N limit of the su-
perconformal .#” = 1 theory of Leigh-Strassler [15].
The ten-dimensional Pilch-Warner metric is given by
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ds® = ds7 , +ds3, (1)
where we have the warped AdSs metric
dsi 4 = Q* (™ ds*(M*) +dr?), (2a)

and the squashed five-sphere metric

x1/2gech =6 2p
ds3 :L%):fc X [d@2 + PP (624 62)
=12 .2 —6 2 6 2
26 2— h
n P s1n2 (63 n 7;6) d¢) pcos . X
4X 2p 16X

4c0s26 :
% (3 — c0s20)> (dq) - m@) } . (2b)

This is an example of warped geometry where the
warp factor Q is given by: Q2 = X'/2coshy/p, and
the function X (r,8) = cos?0 + p®sin®6. Our left-
invariant one-forms satisfy do; = &0 A O, so that

dﬁ% = 0;0; is the metric on the unit 3-sphere. In
global coordinates they take the following form:

1
01 = - (sinfda — cos Bsinady),
1
Oy = _E(COSﬁ do+ SinﬁSinad’}/% (3)

o3 = %(dﬁ +cosady).

At the IR point r — —oo, y = arccosh (%), p =2/,

and A(r) = r/L. The AdS radius L is given in terms
of the AdS radius Ly of the UV spacetime by L =
(3/2%/3)Ly. One finds that at the IR point the met-
ric takes the form

dst 4 = Q% (e ds*(M*) +dr?), (4a)
and the squashed five-sphere metric

4cos?0 (

3 —cos260
4sin’20  , 2 4cos0

P 6242 (dg— — H

(3—00529)263+3( 3 cos20”

(4b)

2
ds? = 1202 [de2 +

2 2
o] +0O
: i +03)

As shown in [14] there is a natural global U(1)g
action B — B + const which rotates o} into 6, and
leaves 03 invariant. We adopt the set up where the
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S3 Euler angle B — B +2¢ is shifted to give a so-
lution with a global U(1)g = U(1)y symmetry. Per-
forming this coordinate transformation on the solu-
tion (4a) and (4b) we arrive at the final result for the
Pilch-Warner metric in global coordinates

ds 4(IR) = L*Q*(— cosh® pdt® +dp? + sinh® pdQ3),

(5a)
_4cos’6
3 —co0s20
2(1 —3cos29>2

do)Y+2(——277
(05+dg) +3 cos26 —3

2
ds3(IR) = 177 [de2 + (62 +03)
4sin’26
(3 —co0s20)*
4c0s26 2
% <d¢ " 1—3cos26 63) } ’

where dQ} = d¢? + sin’¢; (g7 + sin’@,d¢?) is the

metric on the 3-sphere, and
21/3

V3

is the warp factor at the IR point.

(5b)

Q2 3 —cos(20) (6)

R-R and NS-NS potentials

The Pilch-Warner background includes non-trivial
Ramond-Ramond (R-R) and Neveu-Schwarz (NS-
NS) form fields entering the D7 probe brane action.
The full action is given by two terms — a Dirac-Born-
Infeld (DBI) term and a Wess-Zumino (WZ) term
[16,17]

Sp, = Spar +Swz N
=T / e ®\/—det(P[G] +.7)

_T7/(P[cg]—P[Cﬁ]Aﬁ+%P[c4]/\y/\y+...)7

where .# = P|By] +2na'F, Ty is the D7-brane ten-
sion, ® is the dilaton, F is the worldvolume gauge
field, B, is the Kalb-Ramond 2-form, and P denotes
the pullback of the bulk spacetime tensor to the world-
volume of the brane:

x4 9xB
P\Glyp = Gap=— =+ - 8
The indices a, b =0, ...,7 span the world volume of

the D7-brane, while A, B =0,...,9 span the whole
spacetime. We will consider D7-brane embeddings in
static gauge where 6 and ¢ directions are transverse
to the brane

ga = (Tap7¢17¢27¢37a)ﬁ7Y)7 (9)
a=0,...,7, 9=0(p), 6="0(p).
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In static gauge the pullback is given by
axX™ ax"

0&a g&b’
where g, is the induced metric on D7, and Gy,
(m,n=0,¢) are the metric components in front of the
transverse coordinates governing the D7-brane fluc-
tuations. D-branes carry an R-R charge which due
to charge conservation turns them into stable objects.
In the IIB string theory the R-R potentials are Cy, C3,
C4, Cg, Cg and corresponding field strengths, which

satisfy certain Bianchi identities and equations of mo-
tion [16]

P[G]ab :gab+Gmn (10)

®=Cy=0, F=dCy=0 (11a)
C, =Re(Az), Br=S3m(Ay), (11b)
Hy=dB,, Fy=dC,—CyAH;=dC,, (llc)
dF; =dH3 =0, dFs=H3AFj, (11d)
d(xF3)=—H3 A Fs, d(xH3)=F;\Fs5, Fs=xFs,
(11e)

dCy+dCy = Fs+C, ANHs, (11f)

Fy = xF3 = dCs — C4 AHj, (11g)
Fy=F=0=dCs —C4 NHy=C¢ ANH3, 3 =Cs =0.

(11h)

Here the field strengths are defined in terms of the
corresponding potentials as

H; =dB;, FpEde_l—Cp_3 N Hj. (12)

In this setup the axion/dilaton system of scalars (11a)
and (11h) is trivial along the flow. We also have an
ansatz for the self-dual five form

25/3
Fs = —TL“coshp
x sinh’p(1+%)dtAdp Ag(S}), (13)

where 8(53,) =sin? ¢, sin @, dg; Ad¢y Adg; is the vol-
ume element of the unit 3-sphere Si, and « is the
Hodge star operator. The ansatz for the 2-form po-
tential A, at the IR point is also known

A(IR) = Cy +iBs — %e’Zid’L% cos 6 (de
2isin20 (
3 —cos20

Two additional constraints are necessary for (11a)
to be consistent, namely

o5 +d¢)> Ao1+ics). (14)

F3sANxH3; =0, FisANxF3=H3;A\xHj3. (15)

Equipped with this setup we are ready to begin
our study of the classical D7-brane embeddings and
its scalar fluctuations in global Pilch-Warner geome-
try.

D7-BRANE EMBEDDINGS

In order to proceed with the classical D7 embed-
dings we will set the worldvolume gauge field F' = 0.
There are three relevant cases of classical D7-brane
embeddings we will consider here. The first two cor-
respond to fixed values of 6, and the third one cor-
responds to fixed value of ¢. The firs case we are
going to consider is 6 =0, ¢ = ¢(p). The classical
profile of the D7-brane is governed by the following
non-linear equation:

¢"(p) + (3cothp +tanhp)

< (9'6)+5(0'(0)) =0. 116)

The simplest solution to this equation is the con-
stant solution ¢(p) = const. In the second case we
take the ansatz 6 = 7/2, ¢ = ¢(p). The classical
equation of motion is similar to the previous one

¢"(p)+ (3cothp +tanhp)

(9'0)+ 500 =0, ()
solved again by any constant ¢ (p) = const. Note that
if we set u(p) = ¢’(p) for both cases we get first or-
der Bernoulli type equations. The third case we are
going to consider is the ansatz ¢ = 0,0 = 6(p). The
classical equation of motion takes complicated form

a(p)6'(p)+b(p)(6'(p))*+c(p)(6'(p))’
+d(p)s(p)+e(p)=0, (18)

0" (p)+

where the corresponding coefficients are

a(p) =3cothp +tanhp,

1
QR 2tan(8(p))

X (_Q(P)\/@(23—13Z1)—9012+9Z4+117)},
c(p) = %(tanhp +cothp +csch2p),

2v25sin(0(p))v/3 —z2(z2—7)
7(z2—3)*

d(p) =~

9
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_ 18sin(26(p)) —3tan(6(p))
e(p) = - (22-3) )

c(p) =1/14(6'(p))* +9,

zm=cos(nB(p)), n=1,2.734.

This equation has simple solutions, which satisfy
the trigonometric equation sin® =0, i.e. 6(p) =k,
k € Np.

SCALAR FLUCTUATIONS OF
THE D7-BRANE AND THE MESON SPECTRA

Fluctuations along ¢, 8 =0

Now we proceed with the study of the scalar fluc-
tuations of the D7 probe brane along ¢ and 6, around
the classical solution ¢.; = 0. We consider the follow-
ing ansatz for the fluctuations:

0=0+27ma’ @, 0=0+2nwc P, (19)
where 6¢ =27 o’ @, and 66 =27 o’ ©. The full La-
grangian is the sum of the DBI and WZ Lagrangians

L =Lppr+ Lz - (20)

Let us investigate only the @ fluctuations. There
are no contributions from Zjyz, but it gives non-zero
contributions for ®, as we will see in the next sec-

tion. The DBI Lagrangian, up to quadratic order in
the fluctuations, is given by

1
Zpp1 = —N7\/—7g(1 + Eg”bGegaaG)ab@

1
T 5g“l’GMaaclaabcI:) @

where g = det(ggp) is the determinant of the induced

metric. The equation of motion for the fluctuation
field @ is given by the Laplace-Beltrami equation

Ay 1 — o oAb _
v,V cp_—\/_igaa(«/ 28 ab<1>)_0. (22)

Expanding equation (22) one finds

— 92® + cosh’p (agcp + (3cothp +tanhp)d, P

+ A¢id>+3ga,d>> —0, (23)

sinh?p
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where (Pi = (‘Pla ¢27 ¢3)’ o = (a7 ﬁa ’Y)’ and

L
.2¢

Ay P =
i sin” ¢

1

a‘1’1 (Sin2 (o) ad)l D)
1

sin’ @ sin ¢»

8¢2 (sin ¢28¢2 CID)
1

— 92, (24a
sin2@ysinZgy, (242)

~ 1
Ag® = ——dy(sin 0tdy P
% sin o o (sin 010 @)

1 ((COS(ZO{) +7)
sin“a 8
+02d —2cos ady aycp) . (24b)

2
+ P

Separation of variables leads to the following
spectral equations:

T(t)+w*T(t) =0, (25a)
Ao Z(04) = —vZ(0y), (25b)
Ao Y'(¢:) = ~1(1+2)Y' (), (25¢)

R"(p)+ (3cothp +tanhp)R'(p)

o*  1(1+2)
— —3vI)R(p)=0, (25d
(costh sinh?p v) () » (50

where Y!(¢;) are the hyperspherical harmonics, I €
Np. In order to determine the conformal dimension
and the spectrum, we will make the following change
of variable r = sinhp in the radial equation. After
some simple manipulations we find

" 34572
R'(r)+ mR (r)
w? 1(1+2) 3y B
((r2+1)2 CR2(r241) r2+1)R(r)_0' (26)

There are two independent solutions R(r) =
R.(r)+R_(r) given in terms of Gaussian hyperge-
ometric functions

Ri(r)=cr 27 (P +1)"% 1F (a,bic:z),
R_(r) =cor (P + 1)7%
X oFi(a—c+1,b—c+1;2—c;z), (27b)

(27a)
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where the arguments of the hypergeometric function
are as follows:

a=(-l—-w—+V3v+4)/2,
1

b= 5(—1—(1)+\/3v+4)/27
c=—I, z=—r%.

The second solution R_(r) is regular at the origin
r =0, and at the boundary r — oo, which makes it our
choice for normalizable solution, so that we always
have finite fluctuations. The hypergeometric function
is a polynomial of degree n if one of the first two
arguments is equal to a negative integer —n, n > 0.
Thus, imposing normalizability for the solution R_(r)
means to chose one of the first two arguments of the
hypergeometric function have negative integer values,
e.g. b—c+1=—n,n>0. This gives us the quanti-
zation condition from which one calculates the scalar
meson spectrum

o=vV4+3v+2+1+2n, (28)

4
w >0, [, n € Ny, —ggvgo.

By the standard AdS/CFT dictionary one can cal-
culate the conformal dimension of the operators cor-
responding to @ from the analysis of the radial equa-
tion (26) at the boundary r — oco. For large r we have

the following asymptotic equation:

5 3v

R’ “R(r)—=R(r)=0 29
() +2R() - 3R =0, (29)
which is solved by

R(I") — Clr—\/3v+4—2 +CZr\/3V+4—2 ) (30)

This solution contains normalizable and non-
normalizable parts that behaves as r*1 = FA~47, and
r*2 = y~A*P_ for some constant p. Taking the differ-
ence of the powers one finds the conformal dimension

ki —ky
= +2=2+3v+4,

A €19

AV
—02® + 93P cosh’p + Ap® (2 cosh(2p) + 1) coth p +coth®p Ag D — Scosh?p Aly) D =0,

— 920 + I2Dcosh®p + 3, (2 cosh(2p) + 1) cothp +coth’p Ay, ® — 3cosh’p Al = 0,

where we have the following differential operators:

:O,

where k; = =2 ++V3v+4, kh = -2 —/3v+4.
Equation (31) allows us to express the spectrum in
terms of the conformal dimension

0=A+1+2n. (32)

From (32) we see that the energy of the ground
state is given by the conformal dimension of the op-
erator dual to the fluctuations. For higher modes the
spectrum is equidistant. This is consistent with simi-
lar results for the fluctuations in different background
geometries [3,7]. To calculate the spectrum of con-
formal dimensions we need to quantise the parame-
ter v from equation (25b). Separation of variables of
the kind Z = A(a) €™ P ¢/™7 leads to the following
quantized values of v:

m2
V:(m+m2)2—|—m—|—m2—71, (33)
4
mom €No, ZL<my<mi, —2<v<0.

Fluctuations along ¢, 6 = 1 /2

This case needs more careful treatment, because
at 6 = /2 the radius of the 3-sphere spanned by
(o, B, 7) shrinks to zero. This means that a direct
substitution of & = /2 into the equation of mo-
tion could cause problems. As it turns out the de-
pendence on 6 can be factor out. The equation of
motion is once again the Laplace-Beltrami equation
V.V?® = 0, which written explicitly gives

A(8)(Io(®) + cos? 0L (D) +cos*O1,(P)) = 0, (34)

Here A(m/2) = 0, so that setting 8 = /2 causes the
entire equation to become trivial, which is not a case
of interest. The relevant equations for the fluctua-
tion @ comes from setting the coefficients Iy, I, and
14 equal to zero, which leads to the following set of
equations:

(35a)
(35b)

(35¢)
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1

1

Ap®=——20 09, D) + —————— g, (sin @y 9y, @) + ————— 9. P, 36
4 sin (j) 4 (sm P1.% ) sm2¢1 sin ¢, 02 (s1n¢2 ¢z ) sin2¢1 sin (]) 03 (362)
@g _ ! , 2
AP = o da (sin@au®) + (ch1>+8 ®—293,P cos a) (36b)
OF : . 1 2 _ _ 2 2
A= — <aa (sin € 9o P) — To—— (BﬁCID(cos(Zoc) 11) — 1002 42093, cosa>> ., (360)
©g _ : 1 2 &y 4192 2
Mgl = — <aa (sin @ e ®) — - — (8,3613(003(206) 5)—402® +893,P cosa)) . (36d)
After separation of variables one finds
T(1)+ 0’ T(1) =0, AgY (91,02, 03) = —~1(1+2)Y'(91, 9, 03), (37a)
Wz(a,B,y)=0, ADz=1z, AYz=uz, (37b)
o’ 1(1+2)
/! / —
R (p) + (3 cothp +tanhp) R, (p) + <cosh2p — sinhp - 57L> Ry (p) =0, (37¢)
2 1(1+2
() (P)+ (3 cothp —i—tanhp)R’(C)(p)—i—( w2 - ( +2 ) —3;1) Riy(p)=0. (37d)
cosh“p  sinh“p

If one subtracts (35b) and (35¢) a relation between
the eigenvalues u and A is found, namely 54 =3 u,
which makes equations (37¢) and (37d) equivalent to
each other. Therefore one needs to study only one of
them. The radial equation (37d) has the same form
and solutions as equation (26), but the only difference
here being the different values for . The spectrum
also has the same form as (32)

0=A+1+2n, (38)

where the conformal dimension is A = /4 +3 1 +2.
In order to study the eigenvalue u, we need to make
sure that equations A( )Z WZ and A( Z(e, B,y) =
0 are simultaneously satlsﬁed For that purpose we
express 8ﬁ2},Z cos a from (35a)

and substitute this back into A( )Z UZ to find:

dZ(a, B,y)=2pZ(a, B,y). (39

Separation of variables Z = A(o) B(B) G(y) gives
an equation for B(f3)

B"(B)

This equation has a simple solution of the form

0.

~2uB(B) (40)

B, eVZHB _}_BZe*MB '

B(B) = 41

Therefore, if we want to study A( )Z UuZ, so that

equation Afxi) Z(a,B,7) = 0 to be also satisfied, we
must have the following separation of variables Z =

A(or) eV2EB ginrY in Ag;)Z = uZ, which gives an

1 sinor 1
’ 8§YZCOSO£ Slna a (Slnaa Z)+ aBCI)+ Ea,)%q), equation forA(a)
4usin®o +2p(cos(2a) — 5) 4 4n + 8iny /2 cos o
A"(a) +cotaA’ (o) — s H(cos(201) . 2) ! b A(a) =0, (42)
4sin“ o ‘
The solution is a combination of hypergeometric  one finds the general form of the eigenvalue u:
functions. Requiring finite fluctuations everywhere )
p=-k/2, 3)
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real and positive energy requires > —4/3. which
leads to only two possible values for i, namely 0 and
-172.

Although 6 = 0 and 6 = 7/2 cases look simi-
lar due to their spectra, they are physically different
cases. The 6 = 7 /2 is the massive direction from the
point of view of the brane probe. Also in this case
we have an enhancement of the supersymmetry from

N =1toN =2,
Fluctuations along 0, ¢ =0

Next we consider fluctuations of D7 along the 6
transverse direction. In this case there are contribu-
tions from both the DBI and WZ parts of the action.
Considering only quadratic lagrangian for the fluctu-
ations one finds the equation of motion

— 920+ cosh’p (83 + (3cothp +4tanhp)d,

Ao =
+%+3?A%—6)®:0, (44)
sinh“p

R(r)=cr! (r2 +1

Quantizing one of the first two arguments of the
hypergeometric function gives us the meson spectrum

* = (I+2n+A) (48)

2 —_—

4 ’
where A = (4+ V25+12 v) /2 is the conformal di-
mension, /,n € Ny, =2 > v > —10/3. Once again
the spectrum is equidistant in its higher modes, but
the ground state is not equal to the conformal dimen-
sion of the operators dual to the fluctuations. The
additional shift in the ground state (n,/ = 0) could
be resolved by studying the symmetries of the theory
and considering some supersymmetric D-brane em-
beddings. Other origins of the shift are also not ex-
cluded.

CONCLUSION

Quantum chromodynamics is the most successful
theory describing the strong nuclear force so far. At
low energy QCD is strongly coupled, which means
that the force between the quarks grows immensely
and they tend to form particles called hadrons — a
phenomenon known as confinement. In this low en-

where Ay ® and Za,@ are the same as in (24a) and
(24b). Separation of variables leads to the same equa-
tions as (25a), (25b) and (25c), but slightly different
radial equation

R"(p)+ (3cothp +4tanhp)R'(p)

o’ [(1+2)
— —3v—-6)R(p)=0. (45
(costh sinh?p Y ) () *5)

Making the change r = sinhp we get the follow-
ing equation:

(8r2+3)

P4r
o? 1(1+2)

+((r2+1)2 R

R'(r)+ R'(r)

3v—6
r2+1

)R(r) = 0.
(46)

One can show that a solution regular at the origin
r =0, and at the boundary r — oo, is given by

1 /A0?+9_3 I A 1 I A 1
) VAT R <2+2—4\/4w2+9, ————— \/4w2+9+2;l+2;—r2>. @7)

|

ergy regime of the theory the usual perturbative tech-
niques are not applicable, which forces us to look for
alternative non-perturbative methods. Such alterna-
tive techniques arise in String theory in the context of
the AdS/CFT correspondence, where the physics of
the supersymmetric Yang-Mills systems can be un-
derstood by that of the D-brane dynamics and vice
versa. The original form of the conjecture focuses
on the .4 = 4 super Yang-Mills theory, which is a
gauge theory with a huge amount of symmetry. On
the other hand generically QCD is neither supersym-
metric, nor conformal. One way to make the cor-
respondence more applicable to realistic gauge the-
ories, such as QCD, is to reduce the amount of the
supersymmetry. This goal can be achieved in several
different ways, one of which is deforming the origi-
nal AdSs x S geometry. This was the approach we
adopted here by looking at the dynamics of the flavor
D7-brane embedded in a deformed background called
Pilch-warner geometry.

In this study we obtained the classical embedding
equations for the D7 probe brane in global Pilch-
Warner background geometry for three relevant cases.
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Although highly non-linear the embedding equations
have simple constant solutions, which allowed us to
fix the probe brane position in space and considerably
simplify the study of its fluctuations. In the case when
the number of the flavour branes is much smaller than
the number of the color branes, the analysis of the
scalar fluctuations of the D7 probe brane lead us to
analytical results for the meson spectra. All obtained
spectra are equidistant in the higher modes, but not
all of them have ground states equal to the conformal
dimension of the operators dual to the fluctuations.

The fluctuations of the D5-brane as well as the
fluctuations of the world volume gauge field can also
be studied. Some more complicated cases include
turning on external electric or magnetic fields, which
further break the supersymmetry. The asymptotic be-
haviour of the brane embedding equations can be used
to extract information about the dual gauge theory,
namely the quark condensate, which mixes the left
and right degrees of the fundamental matter and leads
to a breaking of their chiral symmetry.
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(Pesome)

AdS/CFT cbOTBETCTBMETO € YAMBUTETHA IyaTHOCT, CBbp3Balia feceT-MepHa [IB cymepcTpyHHa Teopusi ¢ Masika KOHCTAHTa Ha BPb3-
KaTa ¢ YeTMpu-MepHa cyrepcumMerpudHa Kamm6posbuna SU (N) Teopust ¢ TonsiMa KOHCTaHTa Ha BPb3KaTa, 1 06paTHo. B cryyast kamm6-
POBBYHATA TEOPWS JKMBee Ha IPAaHNUIIATa Ha IIPOCTPAHCTBOTO, B KOETO Ce ABVIKAT CTpyHMUTe. TOBA CHOTBETCTBME HY 1aBa BH3MOKHOCT [ja
u3yvyaBame HerepTypbaTMBHYM MPOGIEeMY B KaIMOGPOBBYHY TeOpuy Ha STHr-MuJic ype3 MeTonu Ha Kinacudeckara CyriepcTpyHHa Teopust
nnu CyreprpaBuUTalus.

B opurmHanHaTa Bepcus Ha CbOTBETCTBMETO OT CTPYHHA IVIeJHA TOYKa MMaMe CcTeK oT N, Ha 6poit napanenuu D3-6paHu, KOUTO
reHepupar eekTBHata AdSs xS reoMeTpus Ha MPOCTPAHCTBOTO, & OT APyraTa crpaHa uMame N = 4 cyrepcuMeTpyuHa Kammopo-
BBbYHA Teopus Ha SIHr-Mwiic. IIpu Ta3y KoHOUrypalys KpauilaTa Ha CTPYHUTE Ce 3aKPersT BbpXy 6paHy OT eOVH U ChlI CTEK, KOETO
IIpaBM CbCTOSIHMSATA Jia ce TpaHCHOPMUPAT B IPUCHEIVHEHOTO NIpeCTaBsiHe Ha KaluOpOBbYHATA TPYIIa, 4 TOBAa 03HAUaBa, ye JIUIICBA
dbyHnameHTaIHa MaTepyst KaTO KBapKu. AKO KbM KOHUryparmsaTa ot D3-6panu fo6asum Ny Ha 6poii D7 mpo6um 6parn (N < N.) me
MOTyYMM CbCTOSTHMS TpaHchopMupalny ce o GyHIAMeHTaTHOTO MPeACTaBsiHe Ha KaIMGPOBbYUHATA IPYIIa Y CJIEOBATETHO 1€ IIOTyYUM
dyHpamMeHTanMHa MaTepus.

BbBEXIAHETO HA JOITBIHUTENHO BHHIIHO MAaTHUTHO WM €eKTPUYHO Tose aedopMupa mbpBoHavanHara AdSs xS> reomerpust,
KOeTO BOAM 10 HapyllaBaHe Ha CYNepCUMETPUATA U MOCTUTaHe Ha TeOPUM C IO-MaJKo cynepcuMerpust. ChIo Taka ce Hapylasa U
KMpaiHaTa CUMeTpHsl, KOeTO BOIM 0 06pa3yBaHeTo Ha KBAPKOB KOHIEH3aT U KOH(DalHMBHT, Taka ye CTPYHHOTO OIVICaHye /ia ce 106-
JIVMKaBa BCe IoBeye 10 omnycaHue Ha KBaHTOBaTa XpOMOAMHAMMKA.

B HacTOSIUSAT TPYA CMe U3CIeIBAIM CIIEKThPa Ha cKaaapHuTe GaykTyanuyu Ha D7 npo6Ha 6paHa B reoMeTpusi Ha ITvma-YopHBD B
r7106aH KoopayHaTy. Ta3y reoMeTpusi pecTaBisiBa gehopMypaHo Mo onpenesneH HaunH AdSs X s° MPOCTPAHCTBO, KOETO € pelieHye
Ha 5-mepHa N = 8 cyneprpasuranus BourHara 1o 10-mepue, kato 3anassa 1/4 oT mbpBOHaYaIHATa CyliepcuMeTpusi B MHdpauepBeHaTa
KpPUTHUYHA TOYKA, 1 1/8 HaBCsIKbAE Apyraje.
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