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The non-Darcy model for the Bingham fluid has a wide range of applications in energy systems and magnetic
material processing. This work investigated the effect of unsteady non-Darcy flow on the velocity and temperature
distributions for non-Newtonian Bingham fluid between two infinite parallel porous plates with heat transfer
considering the Hall Effect. A constant pressure gradient is applied in the main axial direction and an external uniform
magnetic field and uniform suction and injection are applied in the direction perpendicular to the plates. The
dimensionless governing coupled momentum and energy equations taking the Joule and viscous dissipations into
consideration are derived and solved numerically using the finite difference approach. The effect of porosity of the
medium, Hartmann, and Hall current parameters on the velocity and temperature distributions with a Reynolds humber
fixed at 10 (ForR; = 10, non-Darcy model is sufficient) is investigated. It is found that the porosity and inertial effects
have a marked effect on decreasing the velocity distribution in an inverse proportionality manner. Furthermore,

increasing the non-Darcian parameter decreases the temperature values for each value of the porosity.
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INTRODUCTION

Recently, Researchers have considerable interest
in the study of flow phenomenon between two
parallel plates because of its possible applications
in many branches of science and technology, as its
occurrence in rheumatic experiments to determine
the constitutive properties of the fluid, in
lubrication engineering, and in transportation and
processing encountered in chemical engineering,
etc. [1]. On the other hand, Couette flow of an
electrically conducting viscous incompressible fluid
under the action of a transverse magnetic field has
many applications in  magneto-hydrodynamic
(MHD) power generators, aerodynamics heating,
pumps, polymer technology, petroleum industry,
and fluid droplets-sprays [2]. Bharali and Borkakati
[3], studied the effect of Hall currents on magneto
hydrodynamic (MHD) flow of an incompressible
viscous electrically conducting fluid between two
non-conducting porous plates in the presence of a
strong uniform magnetic field. The steady flow of
an electrically conducting, viscous, incompressible
fluid bounded by two parallel infinite insulated
horizontal plates and the heat transfer was studied
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by Attia and Kotb [4]. Joaquin et al. [5], studied
numerically the variations with velocity of suction,
hall effect, Reynolds and Hartmann number,
particle concentration and Eckert number on the
unsteady MHD Couette Flow and heat transfer of a
dusty and electrically conducting fluid between
parallel plates in the presence of an external
uniform magnetic field and uniform suction and
injection. The transient hydromagnetic flow
through a porous medium between two infinite
parallel porous plates with heat transfer considering
the Hall effect and the temperature dependent
physical properties under constant pressure gradient
was studied by Attia et al. [6]. Also, other research
work concerning the flow between two parallel
plates has been obtained under different physical
effects [7-12].

A non-Newtonian fluid is a fluid that does not
obey Newton’s law of viscosity (viscosity is
variable based on applied stress or force). The non-
Newtonian fluid is a classical problem that has
many industrial applications such as cement,
drilling mud, sludge, grease, granular suspensions,
aqueous foams, slurries, paints, food products,
plastics and paper pulp exhibit a yield stress 1, to
allow for the motion of the fluid. Many non-
Newtonian fluids, encountered in chemical
engineering processes, are known to follow the so-
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called “Bingham model” which have a linear shear
stress/shear strain relationship and require a finite
yield stress before they begin to flow (the plot of
shear stress against shear strain does not pass
through the origin). Several examples are clay
suspensions, drilling mud, toothpaste, mayonnaise,
chocolate and mustard. Many authors have studied
the flow of a Bingham fluid under different
physical effects and geometries, Walton and
Bittleston [13], described analytical and numerical
solutions for the flow of a Bingham plastic in an
eccentric annulus. The magneto-hydrodynamic
unsteady flow of an electrically conducting viscous
incompressible  non-Newtonian Bingham fluid
bounded by two parallel non-conducting porous
plates was studied with heat transfer considering
the Hall effect by Yang and Zuh [14]. Rees and
Bassom [15], presented an unsteady free convection
flow of a Bingham fluid when it saturates a porous
medium and the flows was induced by suddenly
raising the constant temperature of a vertical
bounding surface.

Fluid flow in porous media is important in many
areas of reservoir engineering, such as petroleum,
environmental and ground water hydrology[16].
According to previous work, Darcy’s law depicts
fluid flow behavior in porous media. The Darcy law
is sufficient in studying small rate flows where the
Reynolds number is very small (R, < 10) [17]. For
larger Reynolds numbers the Darcy law is
insufficient and several models have been adopted
to correct the Darcy law. Based on a review of
previous work, the Darcy-Forchheimer model is
probably the most popular modification to Darcy
flows. In 1901, Philippe Forchheimer assumed that
Darcy’s law is still valid, but an additional term
must be added to account for the increased pressure
drop and represent the microscopic inertial effect
[18]. Recent contributions are the interesting
studies considered in the references [19-24].

In the present paper, an extension has been made
to the study in [25], to assess the influence of Non-
Darcy porous media on unsteady non-Newtonian
Bingham fluid between two infinite horizontal
porous plates, by heat transfer and the Hall Effect.
The fluid is acted upon by a constant pressure
gradient, a uniform suction from above and a
uniform injection from below while it is subjected
to a uniform magnetic field perpendicular to the
plates. The inclusion of the porosity effect and
inertial effects as well as the velocity of suction or
injection leads to some interesting effects, on both
the velocity and temperature distributions to be
investigated.
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MATHEMATICAL MODEL

In the present model, two infinite horizontal
plates located at the y = £h planes and extended
from x = 0 to o and from z = 0 to « have been
considered and filled with incompressible, non-
Newtonian fluid obeying the Bingham model and
electrically conducting fluid through a porous
medium. The characteristics of the porous medium
in this study obey the Darcy-Forchheimer model.
The fluid flows between the two plates under the
influence of a pressure gradient dp/dx in the x-
direction which is constant with time. The two
plates are porous, insulated and kept at two constant
but different temperatures T; for the lower plate and
T, for the upper plate (T: = T.). The upper plate
moves with a uniform velocity U7, whereas the
lower plate is kept stationary. A uniform suction
from above and injection from below, with velocity
1,, are applied impulsively at ¢ = 0. A uniform
magnetic field 8 = (0.B,.0) is applied parallel to
the y-axis which is normal to the planes of the
plates in the positive direction.The effect of the
Hall current is considered which results in a new
component for the velocity in the z-direction.

Uniform Suction
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T Upper Plate u=U0

v4 0 O O Q
i ﬁ () o Non-Darcian
: porous medlum Flow Direction
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T=T, ! u=0
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Uniform Injection

Fig. 1. Schematic diagram of the problem

From the geometry of the problem and due to
the infinite dimensions in the x and z directions, it
is evident that the physical quantities do not change
in these directions (8/8x = &8/dz=10 for all
quantities). The flow in the porous medium deals
with the analysis in which the differential equation
governing the fluid motion is based on the Darcy-
Forchheimer law which considers the drag exerted
by the porous medium. The fluid motion starts from
rest at £ = 0, and the no-slip condition at the plates
implies that the fluid velocity has neither a z nor an
X-component aty = £h. The initial temperature of
the fluid is assumed to be equal to T; as the
temperature of the lower plate. Figure 1 represents
a schematic diagram of the proposed problem.

The governing equations of this study are based
on the conservation laws of mass, linear momentum
and energy for both phases.
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The generalized Ohm’s law including the Hall
current is given in the form [26]:

f:a[F+Ex§—i[J_x§}], (1)

Where J is the electric current density vector, o is
the electric conductivity of the fluid, ¥ is the
velocity vector, £ is the intensity vector of the
electric field, 5 is the induced magnetic vector, e is
the charge of an electron and ne is the number
density of electrons.

The fluid velocity vector is given by:

vy, ) =uly. )i+ v +wl. Ok, (2

By neglecting the polarization effect, we get the
electric field vector equal to zero (£=0). The
generalized Ohm’s law equation (1) gives J, = 0

everywhere in the flow. The current density
components J, and J; are given as:

Jx =T (mu —w) | (3a)
Jo =2 (u mw) (3b)

where, m is the Hall parameter, m = 2=,

£y

The vector equation of motion for the fluid is
governed by the momentum equation together with
the generalized Ohm’s law and non—Darcy’s
resistance and can be written as:

o ; A B B K. I
_ﬂDr——Fp+F.{uFﬂ+fxE - Rlblb, (@)

where, p is the density of the fluid, D/Dt is a
differential operator, t is the time, K is the Darcy
permeability, A is the inertial coefficient, and uis
the apparent viscosity.

The two components of the momentum equation
(4) in the x and z-direction become:

du du  -dp a{ Eu) TB;

- tp—=—+—lu—]— —lu + mwl) —
p Er+'ﬂ DEJ‘ dx dy v 2y 1.+r'r.*{ t :]
I3 Ap -
=u——u
K 'y

: ©)

dw dw a ( .31-.-) - i

— ty—=—lu— ) ———w—mu) —=w—
p dt +P e 3y dy v 3y L+m*{ ?J::] E
da 2
K

: (6)

where, u and v are velocity components in the x-
and z-directions.

The energy equation describing the temperature
distribution for the fluid and Joule dissipations is
given by Attia et al.[25]:

ar ar air E a2
PCso; +_.-Jcp1:,_\a—l =k_—+u [(H) + {E) ] +
(4 w?)
1+m=

(7)

where, ¢, and k are the specific heat capacity and
the thermal conductivity of the fluid, respectively
and T denotes the temperature. The second and
third terms on the right side represent, respectively,
the viscous and Joule dissipations. We notice that
each of these terms has two components. This is
because the Hall effect leads to an additional
velocity component w in the z-direction.
The shear stress = of the Bingham fluid model

can be written as follows[25]:

Forled =,
forltl = 1,

T =1, + Kz¥
7=0

where, 7 = ﬂ'(z—;) + (-:;}) is the shear rate, 7, is

the yield stress, Kg is the plastic viscosity of the
Bingham fluid. Thus, the apparent viscosity is
given by:

u=Kz+ ﬁ , (8)

Owing to provides no information about the
stress field wheneverr < 7, and is discontinuous.In
order to avoid this discontinuity, Papanastasiou [27]
proposed a modified model with a growth rate
parameter m which controls the exponential growth
of stress. Thus the Bingham model can be re-
written by using Papanastasiou modification as
follows:

t=1[1—e |+ K7 forally, 9)

The parameter m controls the stress growth,
such that the yield stress =, a finite stress is allowed
to vanish, therefore this model is valid for all
regions [28]. For sufficiently the parameter
& = 100 in the above equation mimics the Bingham
plastic model [28]. Thus, the scalar viscosity is
given by:

r[L—g—ElF
.u=K3-|—'D[L e 7]

- , (10)
I#1

The initial and boundary conditions of both the
flow and heat problems are, respectively, given by:

Att =liu=w=0T=T, (11a)
Att=0u=w=06T=T;

at y = —h , (11b)
At t=Du=U0,w=0T=T,

aty=h. (11c)

The following non-dimensional variables will be
introduced into equations (5)-(7) and (10)-(11):

i _ X W _ ¥ «_=% thp
XT=o gy =nE =t =
n R n n
o _ B . W . @
U =—, W = — = —
L'u’ ' P T
T=T 23
. T=T4 w
"= y W=
T;-Ty Hg

The non-dimensional conservation equations
will be in the following forms:
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Momentum conservation in the x-direction:
au dw _—dp 1@ f .awy _ Ha? .
ar SF_ ax° Rg 8" ('u 3_1") Eeil+m:){ +
mw®) — Futu® —pu””

(12)
Momentum conservation in the z-direction:
dw’ E_ii{ -5‘1_) __ Ha?
ar 56_1" _nﬁgﬂ_r' H ay Agli+m?)
Bu w™ —yw™"

w* —mu®) —

(13)
Energy conservation:
art ATt _ 1 @ Ew[rawnyt, fawy’
¥+f;_ FoPy E_].": * fg I:{'E'J-'-j * {IE'J-"j ]+
EHat 2 o2
Rgil+m:){u tw }
(14)
The apparent viscosity:
gu? _réw
Tn 1—9_1’;‘* Fy) T\Ey ]
=1+ — —, (15)
32y (2
Byt gyt

The dimensionless initial and boundary
conditions of both the flow and heat problems are,
respectively, given by:

At " =hu"=w"=0T" =10, (16a)
At ' =0:u* =w"=0;T" =10
aty=-1, (16b)
At '"=0u"=Lw =0T =1
aty=1, (16c)
where, R. = ﬂ:—"” is the Reynolds number
g
representing the ratio of inertial forces to viscous
forces, He®=ZE2% s the Hartmann number
g
squared  which  represents the ratio of

- . uly
electromagnetic force to the viscous force, 7. = —

is the Prandtl number which dimensionless numbgr
defines the ratio of the momentum diffusivity
(kinematic  viscosity) to thermal diffusivity,

7

7, = 2 is the dimensionless yield stress, 5=
R}

is the suction parameter representing the mass o:‘
the fluid passing through the lower plate and
exiting through the upper plate (when § = 0 the

suction at the upper plate and injection at the lower
plate), E, = ——is the Eckert number which

p(T2=T1)
defines the ratio of the kinetic energy of the flow to
the enthalpy difference, #=—— is the porosity

R K

parameter,fy:‘%‘ is the dimensionless non-Darcy
E-I.-'u

parameter, and n =
parameter.

is the dimensionless growth

R
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NUMERICAL SOLUTION

There are many numerous methods available for
the solution of the differential equation system. In
the present work the finite difference method is
used to solve the coupled non-linear partial
differential equation systems (12)—(15) under
conditions (16a), (16-b), and (16-c). The
computational domain is discretized with a uniform
grid of dimension At and Ay in time and space
respectively as shown in Figure 2. A finite
difference scheme for coupled partial differential
equation systems (12)-(15) is created using the
Crank-Nicolson implicit method which can be
achieved by doing an average of the central
difference schemes at time levels n and n+1.

To solve for the n+1™ time step, where we know
already the n™ time step, we consider our scheme as
if we were standing at the n +0.5 time step and then
take the average of the forward half time step and
backward half time step. So the discretized
equations would be of the form:
x-direction momentum equation:

sHtl .m S T T, 5 o T sl
L Wopsg W -3 FU j2g—U i—1]
At 40y

i)

sm+i sm+i - =M T+l sl -1 =T
Moy —B gt TR i—i) ('1 ixg —Wiog +U eyl [—1) +

( 440y
u-‘_:_i_'_u-t CaREL | Gmdl omEl
EN Rl Ll (-.L T s

Ay

+

m+ B + n + n 2
I r +0 wi o, WP,
a i Loy ——

y-direction momentum equation:

(17

m¥l .m am¥l _ .mEl .m T
wp W +s Wy —W g +W 3y —W [_1] _
At ahy
am+1 s+l ' -4 =M T+l «T+1 =M =1
N e i R i—1] ("- et =W oy AW ey - i—i] +
g 40y 4y

2432

m# B ¥ " +
[ N 7} T T
i( i | I:)(L jeq —IWTp T4wW—y +
T
L
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unknown values n+1
n+0.5 | - ( oo Im
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>y*
Fig. 2. Mesh layout for the Crank-Nicolson implicit
method.

Similarly, the Crank-Nicolson approximation to
the Energy equation is:

T+l "~ M+l M+l -~ =T
Ty T +5(T feg T [y +T [2y-T i-iJ
At

mEL L _mEl L mHl - I
1 (:r e R Ty —T [ +T M:I .

mH#l m#l .m I
Viieq —W i g +W f2q—W ;_1] ]

40y +

E.Ha® wi” Lout : wpTt we :
g=:-1+ m2] ( 7 ) + ( ; ] )
! (19

Finally, the resulting block tri-diagonal system
is solved using the generalized Thomas-algorithm.
All calculations are carried out for the non-
dimensional variables and parameters given by,
% =C =-5. Grid-independence studies show that
the computational domain 0 <t <o and1 <y =<1
is divided into intervals with step sizes
At = 0.0001 and Ay = 0.005 for time and space
respectively.

T

]

RESULTS AND DISCUSSION

Figures 3-5 show the evolution of dimensionless
velocities u* and w* and temperature distribution T*
with time t* for various Darcy and non-Darcy
parameters (# and y) at Ha=3, m=3, S=1, R.=10,
P=1, Ec=0.2 and 7, = 0.1. Figures 3 and 4 show
the effect of Darcy and non-Darcy parameters (5
and y) on the time development of w*and w*. It is
obvious that increasing the Darcy parameter S
decreases u"and w*and its steady state time as a
result of increasing the resistive damping porosity
force on u"and w*. On the other hand, increasing
the non- Darcy parameter y for each value of £
decreases the velocity «"and w* and its steady state

time which reflects the expected resistance because
of the inertial effects.

Also, it is observed that the charts of the
velocity u"are asymmetric about the y = 0 plane
because of the suction. Figure 5 shows the effect of
Darcy and non- Darcy parameters on the time
progression of the temperature T*. It is observed
that the increase of the Darcy parameter $ and non-
Darcy parameter y decreases T"and its steady state
time. The increasing 8 and y decreases =" which in
turn decreases the viscous dissipation andT*. Also,
increasing the non- Darcy parameter y for each
value of g further decreases the temperature and its
steady time because of the additional resistive
inertial effects. Figures 3-a, 4-a, and 5-a, indicate
the unsteady non-Newtonian Bingham fluid case
where the plates and medium are non-porous (=0
and y=0) obtaining the highest velocity and
temperature distributions, which were considered
earlier by Attia [25].In addition, we mean a flow
without additional inertial effects and the Darcy
case where =1 and y=0 as shown in figures 3-b, 4-
b and 5-b, obtained to provide an easier quick path
for the fluid flow and temperature values.

Figure 6 presents the profiles of the velocity
component »* and w* and temperature distribution
T~ at the center of the channel (¥* = 0) with time ¢~
for various non-Darcy parameters y and for
7p = 0.01and 0.1 at Ha=3, m=3, S=1, Re=10,
P=1,E.=0.2. The figures show that, with
increasing the yield stress 7 decreases the velocity
components «“and w~ and temperature profile T~,
the time at which they reach their steady state
values also decreases as a result of increasing the
viscosity. It is obvious that increasing the non-
Darcy parameter y decreases u*, w*, T and its
steady state time as a result of increasing the
resistive damping porosity force on «“and w*. Also,
it observed that the velocity component u* reaches
the steady state faster than w* which, in turn,
reaches the steady state faster than T~. This is
expected as u” is the source of w~, while both u”
and w" act as sources for the temperature.

The influence of the non-Darcy parameter y on
the velocity componentsu®, w“and temperature
distribution T* with time t* for various Hartmann
numbers Ha are shown in figure7 at the center of
the channel (¥ = 0). It is clear that, with increasing
the value of the non-Darcy parameter y (v = 0.1.2),
there is a marked decrease in the velocity
components u* and w*, i.e. the flow is accelerated
strongly with the decrease in the non-Darcy
parameter, owing to a simultaneous increase in the
inertial force in equation (12) —yu*® and in
equation (13) —yw*".
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1

(c)
Fig. 3. Time variation of the profile of u" for various
values of y and g. (a) f=0 and y=0; (b) p=1 and y=0; (c)
p=1and y=1.

Figure 7-a shows that, with an increase of the
Hartmann number Ha, the magnitude of the
velocity component u“is reduced because the

hydromagnetic ~ drag  force in  equation
(12); ;fm:j{u%mw“]is proportional to the

square of Ha and remains with a negative sign.
Therefore, by increasing the Hartmann number Ha
creates a larger negative force. On the other hand,
figure 7-b indicates the increase in the velocity
component w~with a rise in the Hartmann number
because the  hydromagneticforce in  (13)

(—=— (w* — mu")) has two components, positive

Rol1+m?)
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1

0.1 015 . 0.25
w*

(c)
Fig. 4. Time variation of the profile of w " for various
values of y and g. (a) f=0 and y=0; (b) =1 and y=0; (c)
p=1and y=1.

"y ™u”) and negative “{:_:w“) S0
the collective effect is markedly boosted with a rise
in the Hartmann number. The temperature T" is also
increasing substantially with increasing the
Hartmann number Ha indicating that the regime is
cooled by stronger magnetic fields.

Figure 8 presents the influence of the non-Darcy
parameter y on the velocity components «*, w* and
the temperature distribution T* with time t* for the
Hall parameter m at g =1, S=1, Ha=3, Re=10, P,=1,
E.=0.2, 7=0.1. It is clear that by increasing the
non-Darcy parameter y (inertial effect), u”, w™ and
T'" decrease.Figure 8-a, indicates that the velocity
ofcomponent u”increases by increasing the Hall
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parameter m which can be attributed to the fact that
an increment in m decreases the resistive force.
Figure 8-b shows that the velocity componentw”
decreases with the increasing Hall parameter m
which can be attributed to the fact that an increment
in m increases the resistive force. Figure 8-c shows
that T* decreases with the increasing Hall parameter
m for all values of time as a result of an increase in
the Hall current parameter m, will decrease the
contribution from the Joule dissipation term.
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Fig. 5. Time variation of the profile of T* for various
values of y and g. (a) =0 and y=0, (b) p=1 and y=0; (c)
p=1and y=1.

CONCLUSIONS

The unsteady couette flow of non-Newtonian
Bingham fluid between two parallel porous plates
containing a non-Darcy porous medium has been

studied with heat transfer and the Hall effect in the
presence of uniform suction and injection.

4

2
T =0.01,0.1
sk o

s

at

0 0.5 1 15 2 15 3

0.4F  t=00101 -

oqal =000

a5 s

t

(©)

Fig. 6. u", w", and T" versust"at cannel center

(¥" = 0) for various values of y and $ andvarious values
Tp. (@) u”; (b) w™; (c) T Profile.

The governing momentum and energy equations
are solved numerically using the finite difference
approximations. Through the numerical results the
following can be concluded:

e The effects of the resistive porosity force and
the inertial force (Darcy and non-Darcy
parameters B and y) on the velocity
components and temperature distribution
have been investigated. The increase in f and
y will decrease the velocity and temperature.

e The yield stress z; has a remarkable effect on
the wvelocity components and temperature
distribution. An increase occurred in g
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accompanied by a decrease in the velocity ]

and temperature as well as their steady state NI

time. B O —
o The effects of the Hartmann number Ha on il /'

the velocity components and temperature =

distribution have been studied. By increasing IR SN —

Ha the x-component of the velocity will 157 \

decrease, while the z-component of the 1

velocity and temperature will increase. 0.5 et s
e The effect of the Hall parameter m on the o

velocity components and temperature f

distributions has been assessed. The Hall (a)

parameter m is directly proportional to the x-

component of the velocity while it is Y
inversely proportional to the z-component of 03 T
the velocity and temperature distribution. 03 /
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OTKJIOHEHUMA OT 3AKOHA HA JAPCH ITPM HEHIOTOHOBUW BMHI'AMOBU ®JIVHU/IA C
TOIUIOITPEHACAHE MEX/Y JIBE YCIIOPE/IHU ITJIOCKOCTHU
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HayKa, mexnonozuu u mopcku mpancnopm, Kaiipo, Ecunem
2 [lenapmamenm no unsicenepcmeo, mamemamuxa u usuxa, Hnocenepen paxynmem, Yuueepcumem En-Datom, En-
Darom - 63514, Ecunem
3/lenapmamenm no unocenepcmeo, mamemamuxa u usuxa, Unocenepen gpaxyrmem, Ynusepcumem ¢ Kaiipo,
Tuza-12211, Ecunem

Tlocrprmna Ha 13 aBrycr 2015 r.; npuera Ha 15 centemspu 2015 T.
(Pe3rome)

MonensT Ha He-Jlapcu‘eB MoTok 3a buHramosu (Gynan uMa mMUPOK KPBTr OT MPUIOKEHUS B €HEPrUHHUTE CHCTEMHU
n oOpaboTkaTa Ha MarHUTHM MaTepuainu. Tasu pabora wu3cienBa edexta Ha He-/lapcu‘eBo TedeHHE BBPXY
pasmpeeNIeHHeTO0 Ha CKOPOCHIOTHTE M TeMIlepaTypaTra 3a He-HIOTOHOB buHramoB ¢uiyna Mexnay ABe Oe3kpaifHu
yCIIOpeAHN MOPHO3HHU INIOCKOCTH € TOIUIONPEHAcsHEe OTYHTaiku edekra Ha Xoi. 1o TIaBHOTO HAITHKHO HAIPaBICHUE
ce mpuiiara MOCTOSHEH T'palieHT Ha HaNATaHeTO, MEePIeHIUKYIIIPHO Ha IUIOCKOCTUTE Ce NMpHjara MOCTOSIHHO BBHIITHO
MarHuTHO I0JIe, KAKTO M PAaBHOMEPHO BCMYKBaHE M BIPBCKBAHE.B CHIIOTO HaIlpaBieHHE. VI3BeeHNEe ca U YHCIIEHO ca
penieHn 0e3U3MEpPHNTE ypaBHEHHS Ha JIBM)KEHHETO M €HEPTUATA, OTUYMTAIIN MEXaHUYHATA M BUCKO3HATA JMCHUITAINS Ha
eHeprusarta. VcnmenBann ca eQpeKkTHTe Ha IOPHO3HOCTTA HA CpejaTa, Ha XapTMaH M XoOJI, Ha CKOpPOCTTa H
pasmpeneNeHHeT0 Ha TeMIieparypaTra 3a guciio Ha PeiiHonmc paBHo Ha 10 (3a Ree > 10 He-Ilapcue‘BUSAT Momen e
JocTarbyeH). HamepeHo e, uye NOPHO3HOCTTA M HHEPIMOHHUTE e(EeKTH HMarT 3a0eNe)KUMO BIHSHHE BBPXY
pasmpeneneHueTo Ha ckopocture. OCBeH TOBa, HapaCTBaHETO Ha He-Jlapcu‘eBus napaMeThp MOHMKaBa TeMIlEpaTypara
IIPU BCSIKA TOPBO3HOCT.
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