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In this article we have investigated the heat transfer of an electrically conducting viscous fluid over a porous stretching 

sheet in a thermally stratified medium. The governing non-linear partial differential equations are reduced to ordinary 

differential equations using appropriate similarity transformations. The resulting ordinary differential equations are then 

solved in the form of a confluent hyper-geometric function for an exact solution. The developed exact solutions of the 

velocity and temperature fields are graphically sketched and examined for various values of pertinent parameters 

including the Prandtl number, stratification parameter, suction/injection parameter and the magnetic parameter. The skin 

friction coefficient and the local Nusselt number are tabulated and thoroughly discussed. 
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INTRODUCTION 

The study of the boundary layer flow on a 

stretching sheet has been done by a large number of 

researchers during the last few decades with the 

aidof significant applications of industrial and 

technological processes. To name a few; these 

applications include manufacturing of glass fiber, 

drawing plastic films and wires, the condensation 

process, crystal growing polymer extrusion and 

others. These processes are highly dependent on the 

subject of heat transfer of stretching surfaces. In his 

ground breaking work, Sakiadis [1] presented the 

studies on the boundary flow layer over 

continuously moving surfaces and obtained the 

numerical solution. Natarjaet al. [2]obtained the 

closed form solution for the boundary layer flow of 

walters’ B-type fluid, over a stretching sheet for the 

heat transfer and obtained the coefficients of skin 

friction. Meanwhile, Crane [3] provided the closed 

form solution for the boundary layer flow of a 

stretching sheet. The heat transfer in hydrodynamic 

flow of viscoelastic fluid over a stretching sheet was 

analyzed by Char [4]. Liao [5]studied the analytic 

solution of unsteady boundary layer flows caused by 

an impulsively stretching plate. Khan and 

Sanjayanand [6]presented the analytic solution for 

the heat transfer of visco-elastic boundary layer flow 

with viscous dissipation. Devi and Ganga [7]bring 

into account the non-linear MHD flow in a porous 

medium over a stretching porous surface including 

the effects of viscous dissipation. Abel et al. [8]have 

investigated the heat transfer over a stretching 

surface for second grade fluid through porous 

medium with viscous dissipation and a non-uniform 

heat source/sink. Cortell [9] investigated the flow 

and heat transfer through a porous medium over a 

stretching surface with heat generation/absorption 

and suction/blowing. Hayat et al. [10]provided the 

analytic solution for the axi-symmetric flow and 

heat transfer of second grade fluid past over a 

stretching sheet. Xu and Liao[11]considered the 

unsteady MHD flows of non-Newtonian fluids over 

impulsively a stretching plate. In another related 

article Cortell[12]studied MHD flow heat transfer of 

visco-elastic fluid by considering the effects of 

viscous dissipation. 

Thermally stratified flows are of significant 

interest because of their importance in 

thermo-hydraulics, volcanic flows, geothermal 

systems and also in industrial thermal processes. 

Stratification of a medium arises due to temperature 

variation which resultsin density variationof the 

medium. Stratification may also arise due to the 

presence of different fluids so that a stable situation 

arises when the lighter fluid lies over the denser one. 

Keeping in view these applications of stratified 

mediums several studies have been carried out. 

Hayat et al. [13]studied the thermally stratified flow 

of third grade fluid over a stretching sheet including 

radiation. Kandasamy and Khamis [14]discussed the 

effect of thermal stratification on heat transfer across 

a porous vertical stretching sheet. Ishak et 

al.[15]studied the mixed convection flow to a 

vertical plate in a thermally stratified medium. 

Mukhopadhyay and Ishak [16]examined mixed 

convection flow along a stretching cylinder in a 
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thermally stratified medium. MHD boundary layer 

flow and heat transfer over an exponentially 

stretching sheet in a thermally stratified medium 

have also been investigated by the same author 

Mukhopadhyay [17]. 

It is clear that the suction/injection of fluid can 

play a significant role in changing the flow field. 

Roughly speaking, suction tends to enhance the skin 

friction, whereas injection acts in the opposite 

manner. These processes have great importance in 

many engineering activities like the design of thrust 

bearing and radial diffusers, thermal oil recovery 

and many more. 

In manufacturing processes the properties of the 

final product highly depend on the rate of cooling. In 

this scenario, an electrically conducting fluid proves 

to be beneficial for industrial application. The 

applied magnetic field may play a key role in heat 

transfer and momentum of the boundary layer flow. 

Keeping all these factsin view, recently Chen [18] 

examined the analytic solution of MHD flow and 

heat transfer for two types of visco-elastic fluid over 

a stretching sheet, also bring under consideration the 

energy dissipation, internal heat source and thermal 

radiation. Liu [19] presented an analytic solution for 

heat transfer of second grade MHD flow subject to 

the transverse magnetic field across a stretching 

sheet with power law surface heat flux. Shahzad and 

Ali [20, 21]  contributed a couple of articles on an 

approximate solution for MHD flow of a 

non-Newtonian Power law fluid over a vertical 

stretching sheet with convective boundary 

conditions and radiation effects, respectively. Kar et 

al. [22]studied the heat and mass transfer effects on 

dissipative and radiative visco-elastic MHD flow 

over a stretching porous sheet. 

The exact solution for the flow problem with heat 

transfer is highly demanding in many research areas. 

The exact solutions are handy to compare with the 

numerical counter parts in the study of several flow 

problems. The purpose of the present study is, to 

give the exact solution of fluid flow and heat transfer 

of an electrically conducting viscous fluid over a 

stretching sheet in a thermally stratified medium 

with suction/injection. We derived a closed form 

analytic solution in the form of a confluent 

hyper-geometric function for non-dimensional 

velocity and temperature profiles. The skin friction 

coefficient and heat flux at the wall with a constant 

wall temperature are brought into account. The 

influence of different non-dimensional parameters 

like the Prandtl number, magnetic number, 

stratification parameter and the surface 

suction/injection are graphically discussed with 

respect to velocity and temperature profiles. 

MATHEMATICAL FORMULATION 

We consider the steady two-dimensional 

boundary layer flow of an incompressible 

electrically conducting viscous fluid, which is 

passed over a stretching sheet in the presence of a 

magnetic field coinciding with the plane .0y The 

flow is generated due to linearly stretching of sheet 

by applying two equal and opposite forces along the

x axis keeping the origin fixed as observed in 

figure )1( . A variable magnetic field 
oB is applied 

normal to the sheet. It is assumed that the surface 

temperature of the sheet is 
2

0 )()(
l
x

w aTxT  and 

is embedded in a thermally stratified medium of a 

variableambient fluid temperatures T
2

0 )(
l
xbT  where

TTw
,

0T  is the reference 

temperature, ,0a 0b are  constants.
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Fig. 1.Sketch of the physical problem. 

Under these assumptions the steady state 

boundary layer equations governing the flow and 

heat transfer of viscous fluid are 
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where x and y are the directions along and 

perpendicular to the sheet respectively, withu  and

v  the velocity components along the x  and y  

directions, respectively, T  the temperature of the 

fluid ,   the kinematic viscosity,  the density of 

the fluid,  the electrical conductivity, B  the 

applied magnetic field and pc is the specific heat at 

constant pressure. The corresponding boundary 

conditions for the momentum equation are 
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where 0E  is called stretching rate, 0v is the 

velocity of suction and 0v is the velocity of 

injection. To facilitate the analysis we introduce the 

following transformations: 

,),(,)( y
E

fEvfUu


  (5) 

clearly u and v satisfy Eq. ),1(  here )(f is the 

dimensionless stream function,  is the similarity 

variable and denote the differentiation with respect 

to  . Making use of Eq. )5( in Eq. )2( the 

following third order non-linear differential 

equation is obtained: 

,02   fMffff n  , 
(6) 

where
E

B

nM


 2
 , is the Magnetic parameter. 

Similarly the boundary conditions in Eq. )4( can 

be written as: 
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where (0
E

v
S  or )0 is the suction (or 

injection) parameter.  

Lawrence and Rao ]23[ presented a general 

method and obtained an all non-unique solution of 

the modified Eq. )6( . Recently Taha et al. ]24[ have 

discussed a unified compatibility method for the 

exact solutions of non-linear flow models of 

Newtonian and non-Newtonian fluids, we consider 

the following solution: 
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where
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The physical quantities of interest are the skin 

friction coefficient fC and the local Nusselt number 

uN defined as: 
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where  
0


yy

u
w   is the wall shear stress and 

 
0


yy

T
w kq the wall heat flux. In terms of 

dimensionless variables defined in Eq.  ,5 we can 

write: 
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uf NfC (10) 

where

xURe is the local Reynolds number. 

SOLUTION OF THE HEAT TRANSFER 

EQUATION 

In order to solve the governing heat transport Eq.

),3( we consider the boundary with a prescribed 

surface temperature (PST). In this case we employ 

the following surface boundary conditions on 

temperature: 
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where
wT and T are the temperatures at the wall 

and far away from the wall, respectively and T is 

the reference temperature. In order to obtain the 

similarity solution we define the non-dimensional 

temperature variables as: 

  .
TT

TT

w 


  (12) 

Making use of the transformations (5) and ),12(

we obtain the following non-dimensional form of 

temperature Eq. )3(  as: 
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where inthe non-dimensional parameters 
k

Cp
Pr    

the Prandtl number and 
a
bSt  is the stratification 

parameter. We note that 0St for a stably 

stratified environment and 0St corresponds to an 

unstratified environment. 

Thenon-dimensional form of the boundary 

conditions in Eq. )11( is: 
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Following the introduction of a new variable
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 , Eq. )13(  becomes: 
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and the boundary conditions presented in Eq. )14(

reduce to: 
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where 2

PrPr



is the modified Prandtl number. 

Equations )15( and )16( constitute a 

non-homogenous boundary value problem. Let us 

decompose the temperature )( into two parts: 

),()()(  pc 
         

(17) 
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where )(c
stands for the complemenrty solution 

and )( p is a particular solution. The closed form 

particular solution is given by: 

              
.)( Stp 
                   

(18) 

The complementary factor )(c
can be written 

in the form of a confluent hyper-geometric function

]25[  as: 

],Pr1,Pr2[],Pr1,2[)( Pr   


MBAMc
 

 (19) 

where M is the Kummer's function defined as: 
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The solution of Eq. )15( , subject to the boundary 

conditions of Eq. )16( is determined to be: 
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The temperature profile in term of  is given by 
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The derivative of the Kummer's function 

),,( zbaM  with respect to z is given by: 
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The dimensionless wall temperature gradient is 

obtained from Eq. )22(  
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GRAPHICAL RESULTS AND DISCUSSION 

Momentum and heat transfer in a boundary layer 

flow of a viscous fluid over a stretching sheet in a 

thermally stratified medium have been discussed in 

this article. The governing non-linear partial 

differential equations have been reduced to a set of 

non-linear ordinary differential equations. The exact 

solutions are developed for the reduced problem in 

terms of the Kummer's function. In order to have a 

clear insight of a physical problem, the influence of 

various pertinent parameters on velocity and 

temperature profiles are shown graphically through 

figures ).92(  Figures )2,2( ba  depict the 

influence of the magnetic parameter M on the 

velocity profile )(f  for both suction/injection S  

cases. It is observed that the velocity profile )(f   

decreases with an increase in the values of the 

magnetic parameter M for both suction/injection 

parameters S . The boundary layer thickness also 

decreases here. The variation of suction/injection 

parameter S on the velocity profile )(f  is shown 

in figures ).3,3( ba The velocity profile )(f 

decreases in the case of the suction parameter

)0( S , while the opposite behavior is noticed in 

case of injection ).0( S  Figures ( )4,4 ba are 

plotted to see the effects of the Prandtl number Pr

on the temperature profile )(  in the presence of 

suction/injection parameter .S  It is obvious from 

these figures that an increase in the Prandtl number 

Pr  results in a decrease in the temperature profile 

)(  for bothcases suction )0( S and injection 

)0( S , however this decrease in the temperature 

profile )(  is more prominent in the case of 

suction ).0( S  The influence of the suction 

/injection parameter S on the temperature profile 

)(  is displayed in figures ).5,5( ba These 

figures show that by increasing the suction 

parameter  0S the temperature profile )(

increases while an adverse behavior is observed in 

the case of injection  0S . 

In order to see the effects of the stratified medium 

St on the temperature profile )(  in the 

presence of the suctions/injection parameter S  

figures )6,6( ba are plotted. These figures illustrate 

that the temperature profile )( decreases as the 

stratification parameter St increases for both 

suction/injection parameters S . As the increase in 

the stratification medium St  implies an increase in 

ambient fluid temperature or a decrease in the 

surface temperature, which results in a decrease of 

the thermal boundary layer thickness. 
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2a 2b  
Fig.2. Variation of velocity profile )(f with   for several values of magnetic parameter M  in the presence of 

the suction/injection parameter .S  

3a 3b  

Fig. 3. Variation of the velocity profile )(f with for several values of the suction/injection parameter .S  

4a 4b  

Fig. 4.Variation of the temperature profile   with for several values of the Prandtl number .Pr  

5a 5b  

Fig. 5.Variation of the temperature profile   with for several values of the suction parameter .S  
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6a 6b  

Fig. 6.Variation of the temperature profile    with   for several values of the thermal stratification parameter St

inthe presence of suction/injection .S  

7a 7b  

Fig. 7. Variation of the temperature gradient     with for several values of the Prandtlnumber Pr . 

8a 8b  

Fig. 8.Variation of the temperature gradient     with  for several values of the suction/injection parameter .S  

9a 9b  

Fig. 9.Variation of the temperature gradient     with for several values of the thermal stratification parameter 

.St
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The influence of the Prandtl number Pr  on the 

temperature gradient    in the presence of 

suction/injection S is displayed in figures )7,7( ba .  

From these figures it is observed that initially an 

increase in the Prandtl number Pr results in a 

decrease in the temperature gradient  .  It is also 

observed that the temperature gradient    starts 

increasing after a certain distance   from the 

surface. Moreover this effect is more prominent in 

the case of injection  .0S From figures )8,8( ba it 

can be seen that by increasing the suction parameter 

)0( S the temperature gradient     increases 

up to a certain distance from the surface and then 

decreases. Quite the opposite behavior is observed in 

the case of injection  0S . To analyze the effect 

of the stratification parameter St on the temperature 

gradient the figures )9,9( ba are plotted. It is 

noticed that the temperature gradient   

increases with an increase in the stratification 

parameter St for both suction andthe injection 

parameter S . Furthermore, it is also observed that 

this increase is more prominent in the case of 

injection   .0S   

Table 1. Values of the skin friction coefficient fC

)0(Re 2/1 f  for several values of the material 

parameters. 

82288.10.1

50000.15.0

22474.10.0

00000.15.0

822876.00.15.0

68614.10.1

50000.15.0

28078.15.00.0

)0(





 fSM

 

Table 1  is displayed in order to see the effect of 

the magnetic parameter M  and the 

suction/injection parameter S on the skin friction 

coefficient. We can see that by increasing the values 

of the magnetic parameter M and the 

suction/injection parameter S , the values of the skin 

friction coefficient increase. Table 2  shows the 

effect of the Prandtlnumber Pr , suction/injection S

and stratification parameter St  on the 

dimensionless heat transfer rate at the wall. It has 

been observed that the increase in thePrandtl number 

Pr  and stratification parameter, St  results,an 

increase in the dimensionless heat transfer rate at the 

wall. While increasing values ofsuction/injection 

parameter S decreasesthe dimensionless heat 

transfer rate at the wall. 

Table 2.Values of the Nusselt number 
uN

)0(Re 2/1   for several values of the material 

parameters for .1M  

756596.00.1

831958.05.0

904259.00.0

969256.05.0

02462.12.00.17.0

760405.05.0

831958.02.0

87966.00.05.07.0

08195.10.1

831958.07.0

640382.02.05.05.0

)0(Pr





StS

 

CONCLUDING REMARKS 

In this contribution, we have articulated the exact 

solutions of a viscous fluid over a stretching sheet in 

a thermally stratified medium in the presence of a 

magnetic field. The modeled non-linear partial 

equations were transformed into a system of 

non-dimensional ordinary differential equations 

using appropriate transformations. The exact 

solutions were found in the form of confluent 

hyper-geometric functions (Kummer's function). 

The influence of pertinent parameters on the 

velocity and temperature profiles were shown 

graphically and discussed in details. Numerical 

values concerning the skin friction coefficient and 

Nusselt numbers with several respective parameters 

were provided in tabular form. 
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(Резюме) 

В тази статия ние изследвахме топлопренасянето в електропроводящ вискозен флуид над разтегнат порьозен 

лист в термично еднородна среда. Не-линейните частни диференциални уравнения на преноса са сведени до 

обикновени с помощта на автомоделни трансформации. Получените обикновени диференциални уравнения са 

решени точно във вид на изродени хипергеометрични функции.Получените точни решения за скоростното и 

температурното поле са представени графично и са изследвани за различни съществени параметри на течението, 

включвайки числото на Прандтл, параметъра на стратификация, параметъра за всмукване/впръскване и за 

магнитните свойства. Табулирани са и подробно са обсъдени коефициента на триене и числото на Нуселт.  

 


