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Can a form of electrode/electrolyte interface change the ranges of dynamic
instabilities?
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Based on the theory of electrochemical impedance spectroscopy the ranges of dynamic instabilities leading to
oscillatory and bistable behaviour in a model electrocatalytic process with a preceding chemical reaction in the Nernst
diffusion layer and the potential-dependent adsorption/desorption of electroactive species under potentiostatic
conditionswere compared for a case of spherical, cylindrical and planar electrode.
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INTRODUCTION

The frequent appearance of oscillations and
pattern formation at electrolyte/electrode interface
can be explained by the inherently nonlinear
electrochemical kinetics and far from equilibrium
performance of electrochemical experiments [1-
14].In  impedance  spectroscopy [15, 16],
bifurcations leading to oscillatory and bistable
dynamics can be represented by zero of impedance
or admittance [9-14]. By instabilities, or
bifurcations, we mean a qualitative change in the
dynamical states of a system, occurring with the
attainment of a certain critical, bifurcation value of
the control parameter.

In the paper, we will answer the question
whether a simple change in a form of
electrode/electrolyte interface at fixed values of
other parameters of the electrochemical system can
influence its dynamic behaviour. In a model
process, the electroactive species of one sort are
produced by a preceding chemical reaction, diffuse
from the Nernst diffusion layer to the electrode
surface, where they are adsorbed and
electrochemically oxidized. We consider in detail
derivation of necessary conditions for the Hopf and
saddle-node instabilities in this electrocatalytic
process on a surface of cylindrical electrode and
compare these results with those obtained for the
planar and spherical ones[5-8].
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THEORY

The scheme of the model process can be written
as:
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where ki, ko are the rate constants of chemical
reaction in the bulk solution, ki, kq, Ke are the rate
constants of adsorption, desorption and electron
transfer. The last step of the reaction is considered
to be irreversible.

Neglecting the ohmic losses and double layer
influence, the main kinetic equations are:

oc(r,t) 10 oc(rt),
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ron0-ntEm. O

Here, c(r, t) is the electroactive species A
concentration, c(r, t) = ¢o + u (u is the concentration
deviation from the equilibrium value ¢, coinciding
with the bulk concentration of species), t —time, r —
distance from the origin of coordinates which
coincides with the center of the cylinder, k = ky+k>
is the effective rate of a preceding homogeneous
chemical reaction, A&t) is the electrode surface
coverage by the adsorbate, I' is the maximum
surface concentration at 6=1, wi(t) andw(t) — the
adsorption-desorption rate and the electron transfer
rate, that satisfy the equations

1 (1) =Tka exp(ya(t)/ 2) c(ry,t) @-O(1)) - (4)
—Tky exp(=y0(t)/2) (1),
v(t) =TK, (1)0(t) =Tk ¢ exp(abE(1) 6(1). (5)
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where 1o is the electrode radius, « is the symmetry
factor of electron transfer in the direction of

oxidation, E is the electrode potential, k, is the
rate constant of electron transfer at E(t) =0,
b=F/(RT), F is the Faraday’s number, R is the
gas constant, T is the absolute temperature, yis the
attraction constant. Positive values of the attraction
constant y correspond to the attraction between
adsorbed species, and its negative values
correspond to the repulsion between adsorbed
species. If attraction is small (y = 0) the Frumkin
isotherm passes in the Langmuir isotherm. Only
positive value of the attraction constant leads to
instability [9, 11].

As follows from egn. (4), for the adsorption-
desorption rate  v4(t)=0, the adsorption-

desorption of species A on the electrode surface
under steady-state conditions is described by the
Frumkin isotherm.

The boundary conditions allow for the fact that
at the electrode surface diffusion flux is equal to the
adsorption-desorption rate, and at the distance that
exceeds dthe bulk concentration of species A is
constant and equal to co

oc(r,t
(o) =D v 9, 0

0(51 t) =Cp. (7
Here J. is the diffusion flux, D is the diffusion

coefficient, =1y+d, d is the Nernst diffusion

layer thickness.

In eqgn. (2), we take into account the variation of
the concentration only in the radius line. The
dependence on the z and ¢ coordinates is absent.

The faradaic current density was determined
according to the following equation

Js (t) = Fvy(t) = FTk, exp[abE()]O(t) . (8)

Steady-State Conditions

Under steady-state conditions, i.e. when
d@/dt=0, oc(r,t)/ot=0, from eqgns. (2, 3)
with boundary conditions (6, 7) one can obtain the
steady-state concentration at the electrode surface
Cq(r=1ry), the steady-state electrode potential

E; and steady-state faradaic current density ¢
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Here m;=D/d, A=vk/D,
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X0=|’0\/k/D, X5=(r0+d)\/k/D,

lg(X), Kg(X) are modified zero-order Bessel

functions, 11(X), K;(X) are first-order modified

Bessel functions of first and second kind,
respectively.

The potential is counted off from the zero-
charge potential of the electrode free from species.

Impedance Spectra and System Dynamic
Instabilities

Under potentiostatic experimental conditions,
the studies of linear stability of the electrochemical
system near the steady state are based on analysis
of variation of the impedance zero values under
variation of the electrode potential [9-14]. A Hopf
bifurcation can be realized in the system when its
complex impedance is equal to zero at nonzero
frequency, Z(w) =0 at @ = am # 0 (@ = 2nf, T -
frequency). At Hopf bifurcation point the system
can produce its own undamped periodic oscillations
with frequency aw, S0 in the case of influence on
the system of an external signal with a frequency
exactly coinciding with this value, the external
signal will pass through the system without
resistance [11].

A saddle-node bifurcation can appear when
Z(w) =0 at w= 0, i.e. in points where polarization
resistance of an electrochemical  system
Zp = lim Z; (w) is equal to zero [9-11]. This

o—0

bifurcation initiates in a non-equilibrium system
bistability — the coexistence of two stable steady
states at the same values of the parameters. Which
one is chosen depends on where the system comes
from, i.e. on initial conditions. In this sense the
bistable system has a memory. The saddle — node
bifurcations always come in pairs and lead to
hysteresis.

Calculation of Faradaic Impedance

To calculate faradaic impedance of the system,
its behavior was analyzed under a low periodical

signal AE(t) = AEoei“’t applied in a given point of
the steady-state voltammetric curve
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E(t) = Eq + AEge'™, (12)
where i=+-1, AE, is the amplitude of a low

periodical signal.
In response to this excitation, the electrode
surface coverage @(t), faradaic current density

J¢(t) , and surface concentrationc(ry,t) will
oscillate near the steady — state values, namely
6(t) = Oy +AGE'™,
Jt ()= Jw+AJ5 (E,0),
c(ry,t) =cg (1) + Ac(ry, 0) . (13)
The expression for faradaic impedance in the

Laplace image space F(s)=[ f(t)e 'dt as a
0

function of complex frequency S=o+ jo takes
the form of
- AE(s
Z(S)=——= ) :
Aj (9)
Omitting some mathematical computations, let

us write the resultant expression for faradaic
impedance in the Laplace image space

Z;(5) = Raflr 2020 D)y
I's(1+Qg0.v1) —0gvy
where partial derivatives are designated here
aso,u=o0u/oxand the following notations are
introduced:
o, (Ko(xOs)lo(x&)— Ko<x5s)lo<xOs)j,
45D 1o(X55) K1 (Xos) + 11 (Xos) Ko (Xs5)

Opvo =Tk, exp(abEy), As =+/(k+s)/D,
Xos = lon/(K+8)/ D, X5¢ = (o +d)/(k+8)/ D,
Ogv1=T1{ky exp(—yOst/ 2)[yOst 12-1]+

+ka exp(76st / 2)Cst (1) [y 1—O5p) / 211},
Ocv1 =Tka (105 ) exp(y6s 1 2),

Oi fst
Ry =1/
ct OE

(14)

=1/ FI abk, exp(abEg; )by is the
st
charge transfer resistance.

In our calculations we ignored the electrolyte
resistance and the double-layer impedance. In this
case, the impedance of the model system under
consideration is equal to faradaic impedance, Z=Zx.

Assuming that the double-layer charging and the
faradaic process are not coupled and that the
double-layer capacitance Cgq is associated in
parallel with the faradaic impedance, the interfacial
impedance is given by

-1
Zint = {i-i- ia)Cd| ] . (16)
Zy

The impedance Z of the cell is the sum of the
series resistance Rs and the interfacial impedance
Zint

Z=Rs+Zjy, a7
where R; is the sum of the electrolyte and external
resistance.

It is known that the effect of ohmic resistance on
the impedance spectrum is reduced to a horizontal
shift of impedance diagrams in the complex plane
[10]. This can result in a change in the number of
bifurcation points in the system.

It was shown that the parameter R can regulate
the ranges of Hopf and saddle — node instabilities in
an opposite way [7, 8]. Its increase results in a Hopf
instability region decrease and a saddle — node
instability region increase. There are threshold
values of the parameter Rs critical for appearance
and disappearance of the instabilities in question.
The threshold values of the ohmic resistance
depend on the preceding chemical reaction rate in
bulk solution.

Double layer capacitance does not affect either
Hopf or saddle-node bifurcation points. The effect
of this parameter on the impedance spectrum is
manifested only in the high—frequency region [7,
8].

Determination of Hopf Bifurcation Points

To determine the Hopf bifurcation points,

impedance zero points were studied under electrode

potential variation. The impedance zero points were
found according to the following equation:

Z=Rs+Zjy =0. (18)
In order to satisfy condition (18), it is necessary
that
Re[Z]=0
(19)
Im[Z]=0.

One can solve the system of equations only
numerically.

Determination of Saddle-Node Bifurcation Points

To determine saddle — node bifurcation points,
the solutions of the following equation were studied
numerically:

Zp+Rs =0, (20)
where polarization resistance of  the
electrochemicalsystem is
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In order to pass from the Laplace space to the
Fourier space, it is necessary to perform a
substitutions =iw.

In the model calculation, the following values of
system parameters were assumed: I' = 107°
mol/cm2; v = 8; I'ka = 0.1 cm s7;I'kq =107 mol/cm?
s; ke=10st D =10°cm?s; a =0.5; d = 103cm;
co = 7.5 10"°mol/cm?; ro = 10-“cm (for spherical and
cylindrical electrodes);Cq =2.5 10°F cm?; F =
96484 C/mol; T = 300 K; R = 8.314 J/mol K;
b=F/(RT) = 38.7 V'1; k = 10s%; Rs=0.3 Ohm cm?.

All numerical calculations were performed on
the basis of the mathematical package
Mathematica™.

RESULTS AND DISCUSSION

Fig. 1 schematically presents a cylindrical
electrode of radius ro and the Nernst diffusion layer
with thickness d, where concentration of
electroactive species varies. At the distance that
exceeds & the bulk concentration of species is
constant. The variation of the concentration is taken
into account only in the radius line. The
dependence on the z and ¢ coordinates is absent.

Zp =Re{l-

d
-+ :
I
I E) .

Fig. 1. Schematic presentation of cylindrical
electrode of radius ro and Nernst diffusion layer of d
value.

As shown by the performed calculations, the
steady-state polarization jwi, Est - curves are N-
shaped form with the negative differential
resistance (NDR) region. Two opposite factors

10

determine the current value in the model process:
the increase in the potential and the decrease in the
concentration of electroactive species in the near-
electrode layer due to the adsorption. The later
depends on the potential in the non-linear fashion.
When the diffusion rate of electroactive species is
equal to the rates of processes occurring on the
electrode, the voltammogram contains a maximum.
If the rate of consumption of reacting species is
predominant, the faradaic current decreases due to
the insufficient rate of their delivery from diffusion
layer, while the potential increases.
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Fig. 2. (a) Nyquist diagrams of the behavior of total
cell impedance normalized on charge transfer resistance
in a complex plane at the Hopf bifurcation points (H1)
for the case of planar (1), cylindrical (2) and spherical
(3) electrodes. Dependences of (b) absolute impedance
and (c) impedance phase angle on logw at the
bifurcation points.

This is the range of the NDR. The Hopf and
saddle-node bifurcation points are in this region.
The current density value is the smallest for the
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case of a planar electrode; it is the largest for the
case of a spherical electrode.

Figs. 2a-2c and Figs. 3a—-3c show the Nyquist
and Bode diagrams for total cell impedance
calculated according to formula (16) in the Hopf
(H1) and saddle-node (SN1) bifurcation points for a
planar, cylindrical and spherical electrode (table).

Table 1. Parameter values of the electrochemical
system at the bifurcation points.

ElectrodeBifurcation

2
form point wlHz 0 i/ A cm Es/V
Hi 110 0.583 0.00760  0.13455
SN1 0 0.374 0.00545  0.14028
plane
SN2 0 0.232  0.00330  0.13901
Ha 114 0.178  0.00269 0.1421
Hi 152 0.565 0.02427  0.19618
cylinder SN1 0 0.442  0.02016  0.19927
SN2 0 0.214  0.00916  0.19606
Ha 136 0.188 0.00823  0.19717
Hi 97 0567 0.05239  0.23575
SN1 0 0.544  0.05080  0.23629
sphere
SN2 0 0.198 0.01622  0.22953
Ha 59 0.196 0.01605  0.22959

For chosen values of the system parameters
there are two Hopf bifurcation points for all
electrodes. Let’s consider the behavior of
impedance in a complex plane at the Hopf
bifurcation points H; (Figs. 2a). At the low-
frequency range in the Nyquist diagram, there is a
loop with a negative real part of impedance that
indicates the existence of instability in the system.
This inductive loop decreases as symmetry of
electrode increases, i.e. for a planar electrode this
loop isthe largest, for a spherical electrode it is the
smallest. Such change in electrode form leads to a
change in a form of conductive loop with positive
real part of impedance. The absolute impedance,

Abs[Z(w)/Ry], turns to zero in the Hopf

bifurcation point at w=wn (Figs. 2b, 2c). This
bifurcation frequency is different for case of planar,
cylindrical and spherical electrode. In the Hopf
bifurcation point the functional dependence of the

impedance  phase angle Arg[Z(w)/Ry] on
logw changes drastically.
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Fig. 3. (a) Nyquist diagrams of the behavior of total
cell impedance normalized on charge transfer resistance
in a complex plane at the saddle-node bifurcation points
(SN1) for the case of planar (1), cylindrical (2) and
spherical (3) electrodes. Dependences of (b) absolute
impedance and (c) impedance phase angle on log o at
the bifurcation points.

The Nyquist diagrams in the saddle-node
bifurcation points SN; are presented in Fig. 3a. An
inductive loop with a positive real part of
impedance increases as the symmetry of electrode
decreases from spherical electrode to planar one. A
conductive loop with a positive real part of
impedance also changes. A decrease in the
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symmetry of electrode results in a decrease in
absolute impedance and change in its phase angle
for bifurcation points under consideration.

CONCLUSIONS

Thus, we can conclude that a simple change in a
form of electrode/electrolyte interface can change
the dynamic stability of the model electrocatalytic
process with a preceding homogeneous chemical
reaction in the Nernst diffusion layer and the
potential-dependent  adsorption/desorption  of
electroactive specieson the electrode surface under
potentiostatic conditions. The analytically derived
expression for total cell impedance allows us to
investigate the possible realization of the Hopf and
saddle-node instabilities in the electrochemical
system in case of a spherical, cylindrical and planar
electrode.

The region of bistability is wider for a spherical
electrode than for a planar electrode. In contrast to
this a decrease in the electrode symmetry is the
reason for the Hopf instability region increase.
Varying a form of electrode we can vary frequency
of spontaneous current oscillations n. This
presents the way of possible control of dynamic
behavior of real electrochemical systems.
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MOXE JI1 ®OPMATHT HA UHTEP®ENCA EJIEKTPOJI/EJIEKTPOJIUT JIA IIPOMEHU
OBXBATUTE HA IMUHAMUWYHUTE HECTABMJIHOCTHN?
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(Pesrome)

Ha G6azara Ha TeopusiTa Ha EJNEKTPOXMMUYHATA HMIICJAHCHA CIEKTPOCKOMHS OOXBaTUTE OT

JUHAMUYHHU

HEeCTaOMIIHOCTH BOJCUIM JIO OCLMJIMpAI0 M OHCTaOMIHO IOBEACHHE B MOJEN Ha eNeKTPOKATAJIMTHYEH IPOLEC
MpeIIecTBAaH OT XHMHUYECKa peakius B AAQY3HOHHHUS ciIoi Ha HepHCT W IOTEHIMAIHO 3aBHCHMAaTa
azcopOuus/necopOIyst Ha eIeKTPOAKTUBHU BUAOBE MPH MOTEHIIMOCTATUYHN YCIOBHSI.
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