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Based on the theory of electrochemical impedance spectroscopy the ranges of dynamic instabilities leading to 

oscillatory and bistable behaviour in a model electrocatalytic process with a preceding chemical reaction in the Nernst 

diffusion layer and the potential-dependent adsorption/desorption of electroactive species under potentiostatic 

conditionswere compared for a case of spherical, cylindrical and planar electrode. 
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INTRODUCTION 

The frequent appearance of oscillations and 

pattern formation at electrolyte/electrode interface 

can be explained by the inherently nonlinear 

electrochemical kinetics and far from equilibrium 

performance of electrochemical experiments [1-

14].In impedance spectroscopy [15, 16], 

bifurcations leading to oscillatory and bistable 

dynamics can be represented by zero of impedance 

or admittance [9-14]. By instabilities, or 

bifurcations, we mean a qualitative change in the 

dynamical states of a system, occurring with the 

attainment of a certain critical, bifurcation value of 

the control parameter.  

In the paper, we will answer the question 

whether a simple change in a form of 

electrode/electrolyte interface at fixed values of 

other parameters of the electrochemical system can 

influence its dynamic behaviour. In a model 

process, the electroactive species of one sort are 

produced by a preceding chemical reaction, diffuse 

from the Nernst diffusion layer to the electrode 

surface, where they are adsorbed and 

electrochemically oxidized. We consider in detail 

derivation of necessary conditions for the Hopf and 

saddle-node instabilities in this electrocatalytic 

process on a surface of cylindrical electrode and 

compare these results with those obtained for the 

planar and spherical ones[5-8]. 

 

THEORY 

The scheme of the model process can be written 

as: 
1

2

diff
bulk bulk surf adsB A A A P e

a e

d

k k K

k k

    
, (1) 

where k1, k2 are the rate constants of chemical 

reaction in the bulk solution, ka, kd, Ke are the rate 

constants of adsorption, desorption and electron 

transfer. The last step of the reaction is considered 

to be irreversible. 

Neglecting the ohmic losses and double layer 

influence, the main kinetic equations are: 
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Here, c(r, t) is the electroactive species A 

concentration, c(r, t) = c0 + u (u is the concentration 

deviation from the equilibrium value c0 coinciding 

with the bulk concentration of species), t – time, r – 

distance from the origin of coordinates which 

coincides with the center of the cylinder, k = k1+k2 

is the effective rate of a preceding homogeneous 

chemical reaction, (t) is the electrode surface 

coverage by the adsorbate,  is the maximum 

surface concentration at =1, 1(t) and2(t) – the 

adsorption-desorption rate and the electron transfer 

rate, that satisfy the equations 
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where r0 is the electrode radius,  is the symmetry 

factor of electron transfer in the direction of 

oxidation, E is the electrode potential, ek  is the 

rate constant of electron transfer at ( ) 0E t  , 

/( )b F RT , F is the Faraday’s number, R is the 

gas constant, T is the absolute temperature, γis the 

attraction constant. Positive values of the attraction 

constant  correspond to the attraction between 

adsorbed species, and its negative values 

correspond to the repulsion between adsorbed 

species. If attraction is small ( = 0) the Frumkin 

isotherm passes in the Langmuir isotherm. Only 

positive value of the attraction constant leads to 

instability [9, 11]. 

As follows from eqn. (4), for the adsorption-

desorption rate 1( ) 0t  , the adsorption-

desorption of species A on the electrode surface 

under steady-state conditions is described by the 

Frumkin isotherm. 

The boundary conditions allow for the fact that 

at the electrode surface diffusion flux is equal to the 

adsorption-desorption rate, and at the distance that 

exceeds the bulk concentration of species A is 

constant and equal to с0 

00 1

( , )
( , ) ( )c r r

c r t
J r t D t

r



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
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0( , )c t c  .                     (7) 

Here cJ  is the diffusion flux, D is the diffusion 

coefficient, 0 ,r d  
 
d is the Nernst diffusion 

layer thickness.  

In eqn. (2), we take into account the variation of 

the concentration only in the radius line. The 

dependence on the z and  coordinates is absent.  

The faradaic current density was determined 

according to the following equation 

2( ) ( ) exp[ ( )] ( )f ej t F t F k bE t t     .   (8) 

Steady-State Conditions 

Under steady-state conditions, i.e. when 

/ 0d dt  , ( , ) / 0c r t t   , from eqns. (2, 3) 

with boundary conditions (6, 7) one can obtain the 

steady-state concentration at the electrode surface 

0( )stc r r , the steady-state electrode potential 

stE  and steady-state faradaic current density fstj  
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0 0 /x r k D , 0( ) /x r d k D   ,  

0( )I x , 0( )K x
 

are modified zero-order Bessel 

functions, 1( )I x , 1( )K x
 
are first-order modified 

Bessel functions of first and second kind, 

respectively. 

The potential is counted off from the zero-

charge potential of the electrode free from species.  

Impedance Spectra and System Dynamic 

Instabilities 

Under potentiostatic experimental conditions, 

the studies of linear stability of the electrochemical 

system near the steady state are based on analysis 

of variation of the impedance zero values under 

variation of the electrode potential [9-14]. A Hopf 

bifurcation can be realized in the system when its 

complex impedance is equal to zero at nonzero 

frequency, Z() = 0 at  = H  0 ( = 2f, f – 

frequency). At Hopf bifurcation point the system 

can produce its own undamped periodic oscillations 

with frequency H, so in the case of influence on 

the system of an external signal with a frequency 

exactly coinciding with this value, the external 

signal will pass through the system without 

resistance [11]. 

A saddle-node bifurcation can appear when 

Z() = 0 at  = 0, i.e. in points where polarization 

resistance of an electrochemical system 

0
lim ( )P fZ Z





  is equal to zero [9-11]. This 

bifurcation initiates in a non-equilibrium system 

bistability – the coexistence of two stable steady 

states at the same values of the parameters. Which 

one is chosen depends on where the system comes 

from, i.e. on initial conditions. In this sense the 

bistable system has a memory. The saddle – node 

bifurcations always come in pairs and lead to 

hysteresis.  

Calculation of Faradaic Impedance 

To calculate faradaic impedance of the system, 

its behavior was analyzed under a low periodical 

signal 0( ) i tE t E e     applied in a given point of 

the steady-state voltammetric curve 
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0( ) i t
stE t E E e  , (12) 

where 1i   , 0E  is the amplitude of a low 

periodical signal.  

In response to this excitation, the electrode 

surface coverage ( )t , faradaic current density 

( )fj t  , and surface concentration 0( , )c r t  will 

oscillate near the steady – state values, namely 

0( ) i t
stt e    , 

( ) ( , )f fst fj t j j E    , 

0 0 0( , ) ( ) ( , )stc r t c r c r   .           (13) 

The expression for faradaic impedance in the 

Laplace image space 
0

( ) ( ) stF s f t e dt


   as a 

function of complex frequency s j    takes 

the form of 
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Omitting some mathematical computations, let 

us write the resultant expression for faradaic 

impedance in the Laplace image space 
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where partial derivatives are designated here 

as /xu u x    and the following notations are 

introduced: 
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1/ 1/ exp( )
fst

ct e st st
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i
R F bk bE

E
  


  


 is the 

charge transfer resistance. 

In our calculations we ignored the electrolyte 

resistance and the double-layer impedance. In this 

case, the impedance of the model system under 

consideration is equal to faradaic impedance, Z=Zf. 

Assuming that the double-layer charging and the 

faradaic process are not coupled and that the 

double-layer capacitance Cdl is associated in 

parallel with the faradaic impedance, the interfacial 

impedance is given by 

1

int

1
.dl

f

Z i C
Z




 

  
 
 

            (16) 

The impedance Z of the cell is the sum of the 

series resistance Rs and the interfacial impedance 

Zint 

intsZ R Z  ,                        (17) 

where Rs is the sum of the electrolyte and external 

resistance. 

It is known that the effect of ohmic resistance on 

the impedance spectrum is reduced to a horizontal 

shift of impedance diagrams in the complex plane 

[10]. This can result in a change in the number of 

bifurcation points in the system. 

It was shown that the parameter Rs can regulate 

the ranges of Hopf and saddle – node instabilities in 

an opposite way [7, 8]. Its increase results in a Hopf 

instability region decrease and a saddle – node 

instability region increase. There are threshold 

values of the parameter Rs critical for appearance 

and disappearance of the instabilities in question. 

The threshold values of the ohmic resistance 

depend on the preceding chemical reaction rate in 

bulk solution. 

Double layer capacitance does not affect either 

Hopf or saddle-node bifurcation points. The effect 

of this parameter on the impedance spectrum is 

manifested only in the high–frequency region [7, 

8]. 

Determination of Hopf Bifurcation Points 

To determine the Hopf bifurcation points, 

impedance zero points were studied under electrode 

potential variation. The impedance zero points were 

found according to the following equation: 

int 0sZ R Z   .                   (18) 

In order to satisfy condition (18), it is necessary 

that 

Re[ ] 0

Im[ ] 0.

Z

Z





                             (19) 

One can solve the system of equations only 

numerically. 

Determination of Saddle-Node Bifurcation Points 

To determine saddle – node bifurcation points, 

the solutions of the following equation were studied 

numerically: 

0P sZ R  ,                     (20) 

where polarization resistance of the 

electrochemicalsystem is  
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 


.      (21) 

     In order to pass from the Laplace space to the 

Fourier space, it is necessary to perform a 

substitution s i . 

In the model calculation, the following values of 

system parameters were assumed: Γ = 10–9 

mol/cm2; γ = 8; Γka = 0.1 cm s–1;Γkd =10–5 mol/cm2 

s; ke = 10 s–1; D = 10–5 cm2/s; α =0.5; d = 10–3cm;  

с0 = 7.5 10–6mol/cm3; r0 = 10–4cm (for spherical and 

cylindrical electrodes);Cdl =2.5 10–5F cm–2; F = 

96484 C/mol; T = 300 K; R = 8.314 J/mol K; 

b=F/(RT) = 38.7 V–1; k = 10s–1; Rs=0.3 Ohm cm2. 

All numerical calculations were performed on 

the basis of the mathematical package 

MathematicaTM. 

RESULTS AND DISCUSSION 

Fig. 1 schematically presents a cylindrical 

electrode of radius r0 and the Nernst diffusion layer 

with thickness d, where concentration of 

electroactive species varies. At the distance that 

exceeds  the bulk concentration of species is 

constant. The variation of the concentration is taken 

into account only in the radius line. The 

dependence on the z and  coordinates is absent.  

 

Fig. 1. Schematic presentation of cylindrical 

electrode of radius r0 and Nernst diffusion layer of d 

value. 

As shown by the performed calculations, the 

steady–state polarization jfct, ESt - curves are N-

shaped form with the negative differential 

resistance (NDR) region. Two opposite factors 

determine the current value in the model process: 

the increase in the potential and the decrease in the 

concentration of electroactive species in the near-

electrode layer due to the adsorption. The later 

depends on the potential in the non-linear fashion. 

When the diffusion rate of electroactive species is 

equal to the rates of processes occurring on the 

electrode, the voltammogram contains a maximum. 

If the rate of consumption of reacting species is 

predominant, the faradaic current decreases due to 

the insufficient rate of their delivery from diffusion 

layer, while the potential increases.  

 

 
Fig. 2. (a) Nyquist diagrams of the behavior of total 

cell impedance normalized on charge transfer resistance 

in a complex plane at the Hopf bifurcation points (H1) 

for the case of planar (1), cylindrical (2) and spherical 

(3) electrodes. Dependences of (b) absolute impedance 

and (c) impedance phase angle on log  at the 

bifurcation points. 

This is the range of the NDR. The Hopf and 

saddle-node bifurcation points are in this region. 

The current density value is the smallest for the 
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case of a planar electrode; it is the largest for the 

case of a spherical electrode. 

Figs. 2a–2c and Figs. 3a–3c show the Nyquist 

and Bode diagrams for total cell impedance 

calculated according to formula (16) in the Hopf 

(H1) and saddle-node (SN1) bifurcation points for a 

planar, cylindrical and spherical electrode (table). 

Table 1. Parameter values of the electrochemical 

system at the bifurcation points. 

Electrode 

form 

Bifurcation 

point 
/Hz  ifst/А сm

-2

 Est/V 

plane 

H1 110 0.583 0.00760 0.13455 

SN1 0 0.374 0.00545 0.14028 

SN2 0 0.232 0.00330 0.13901 

H2 114 0.178 0.00269 0.1421 

cylinder 

 

H1 152 0.565 0.02427 0.19618 

SN1 0 0.442 0.02016 0.19927 

SN2 0 0.214 0.00916 0.19606 

H2 136 0.188 0.00823 0.19717 

sphere 

H1 97 0.567 0.05239 0.23575 

SN1 0 0.544 0.05080 0.23629 

SN2 0 0.198 0.01622 0.22953 

H2 59 0.196 0.01605 0.22959 

For chosen values of the system parameters 

there are two Hopf bifurcation points for all 

electrodes. Let’s consider the behavior of 

impedance in a complex plane at the Hopf 

bifurcation points H1 (Figs. 2a). At the low-

frequency range in the Nyquist diagram, there is a 

loop with a negative real part of impedance that 

indicates the existence of instability in the system. 

This inductive loop decreases as symmetry of 

electrode increases, i.e. for a planar electrode this 

loop isthe largest, for a spherical electrode it is the 

smallest. Such change in electrode form leads to a 

change in a form of conductive loop with positive 

real part of impedance. The absolute impedance, 

[ ( ) / ]ctAbs Z R , turns to zero in the Hopf 

bifurcation point at =H (Figs. 2b, 2c). This 

bifurcation frequency is different for case of planar, 

cylindrical and spherical electrode. In the Hopf 

bifurcation point the functional dependence of the 

impedance phase angle [ ( ) / ]ctArg Z R  on 

log changes drastically. 

 

 
Fig. 3. (a) Nyquist diagrams of the behavior of total 

cell impedance normalized on charge transfer resistance 

in a complex plane at the saddle-node bifurcation points 

(SN1) for the case of planar (1), cylindrical (2) and 

spherical (3) electrodes. Dependences of (b) absolute 

impedance and (c) impedance phase angle on log  at 

the bifurcation points. 

The Nyquist diagrams in the saddle-node 

bifurcation points SN1 are presented in Fig. 3a. An 

inductive loop with a positive real part of 

impedance increases as the symmetry of electrode 

decreases from spherical electrode to planar one. A 

conductive loop with a positive real part of 

impedance also changes. A decrease in the 
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symmetry of electrode results in a decrease in 

absolute impedance and change in its phase angle 

for bifurcation points under consideration. 

CONCLUSIONS 

Thus, we can conclude that a simple change in a 

form of electrode/electrolyte interface can change 

the dynamic stability of the model electrocatalytic 

process with a preceding homogeneous chemical 

reaction in the Nernst diffusion layer and the 

potential-dependent adsorption/desorption of 

electroactive specieson the electrode surface under 

potentiostatic conditions. The analytically derived 

expression for total cell impedance allows us to 

investigate the possible realization of the Hopf and 

saddle-node instabilities in the electrochemical 

system in case of a spherical, cylindrical and planar 

electrode.  

The region of bistability is wider for a spherical 

electrode than for a planar electrode. In contrast to 

this a decrease in the electrode symmetry is the 

reason for the Hopf instability region increase. 

Varying a form of electrode we can vary frequency 

of spontaneous current oscillations H. This 

presents the way of possible control of dynamic 

behavior of real electrochemical systems.  
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(Резюме) 

На базата на теорията на електрохимичната импедансна спектроскопия обхватите от  динамични 

нестабилности водещи до осцилиращо и бистабилно поведение в модел на електрокаталитичен процес 

предшестван от химическа реакция в дифузионния слой на Нернст и потенциално зависимата 

адсорбция/десорбция на електроактивни видове при потенциостатични условия. 

 


