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Chemical gas leakage source determination with sensor networks has become a research significance in the 

pollution environmental monitoring and security protection fields, which also known as gas leakage source 

parameters estimation. In this paper, we proposed a distributed EM algorithm for the chemical gas leakage source 

determination, and which was based on Gaussian Mixture model. Simulation results show that the proposed EM 

algorithm could determinate the gas leakage source localization and emission rate, Compare to the central EM 

algorithm, the distributed EM method was suggested because it can balance the accuracy performance and energy 

consumption in the sensor network, and it will get a significant reduction in the required numbers of sensor nodes 

and less energy to achieve the desired performance with less time, all of that was based on the dynamical adjusting 

scheme for computing sensor nodes selection.  
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INTRODUCTION 

With the development of chemical industry, the 

hazardous chemical leakage, especially toxic gas 

leakage accidents occur occasionally. The leakage 

source’s position and intensity determination has 

become the key problem to be solved urgently in the 

emergency rescue. Leakage source detection and 

determination generally means the process of 

discovering and tracking the spread of plume and 

finally determine the location and related parameters 

of the gas source, usually with "active" searching by 

sensor networks or mobile robots [1]. The research 

involves fundamental problems in information 

processing in sensor networks, detection and 

estimation, stochastic process, information entropy, 

artificial intelligence search and node routing 

planning in the field of information and automation 

[2-4]. And biomimetic olfaction and computational 

fluid dynamics and other studies are also related 

closely [5-7]. 

Scholars have made unremitting efforts and 

explorations on the study of leakage sources 

determination for many years, and achieved some 

research results. The results were mainly based on 

the stochastic process theory and probabilistic 

statistical estimation method, in which, the basic 

idea is to estimate the occurrence probability of the 

related leakage accidents. The accident occurred 

probability determination problem in the designated 

location, also generally known as dangerous leakage 

reconstruction [8,9]. The common methods such as 

Bayesian inference [10], minimum relative entropy 

(MRE) [11,12] and statistic induction were often 

used in the reconstruction of leakage accident 

inversion. Bayesian inference is the main research 

method of leakage accident reconstruction and 

source parameter determination.  

At first, the Bayesian inference method makes 

use of the prior information of the likelihood 

function and the parameter to get the posterior 

probability distribution based on the known prior 

probability distribution. Secondly, the measurement 

result should be obtained to fit the posterior 

probability density function distribution, and finally 

the estimated value of the parameters to be obtained 

by sampling method. The current research mainly 

combines the Bayesian inference method with the 

stochastic Monte Carlo sampling method (MC) or 

the Markov chain Monte Carlo sampling method 

(MCMC) to achieve the estimation of source 

parameters [13,14]. 

Monte Carlo method was usually easy to 

converge to local optimal solution, especially when 

the initial value selected far away from the true value. 

The limitation is more serious in large-scale spatial 

hazardous chemical leakage determination studies, 

which will increase the difficulty of the method [15]. 

However, when the Bayesian inference method 

combining with the Monte Carlo method or the 

Markov chain Monte Carlo method with (the former 

is abbreviated as BMC, the latter is BMCMC), the 

probability distribution of iterative updating 
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parameters could overcome the Monte Carlo method 

insufficient. The Markov chain Monte Carlo method 

(MCMC) extends the application of Bayesian 

inference to parameter inverse calculation. The 

Markov chain can be obtained by means of random 

search, so that the limit distribution of the Markov 

chain is the posterior probability density function 

[16,17]. Markov chains of sufficient length can 

guarantee that the sampling results close to the 

posterior distribution. Senocak [18], Chow[19] and 

Kosovic [20] realized that the combination of 

Bayesian inference and MCMC method can estimate 

the parameters of the release source with a set of 

concentration observations, and the parameters 

estimation results will reached based on the obtain 

posterior probability density function of the source 

parameters (position and intensity) by MCMC 

sampling. Since MCMC sampling usually takes 

several thousand iterations to converge to the 

posterior probability distribution, it is 

computationally intensive and computationally 

time-consuming, which is usually not sufficient in an 

accident contingency. 

Keats[21-23],Yee[24] used the convective 

diffusion equation with the MCMC method to 

describe the source-receiver association to determine 

the likelihood function, which resulted in a 

significant increase in computational efficiency.  

Keats [21] used BMCMC method to estimate the 

location and intensity of the source in a complex 

urban environment. The results show that the 

convective diffusion equation and the MCMC 

sampling method can be used to obtain accurate 

values of four parameters within a reasonable time. 

Keats[22] combine the inverse Lagrangian 

stochastic model with Eulerian type concomitant 

convection-diffusion equation further, and the 

source parameters can also be solved in BMCMC 

under non-conservation conditions quickly. Yee [24] 

established an adjoint model for Eulerian and 

Lagrangian type diffusion equations, respectively, in 

which, the concentration distribution can be 

calculated directly when the distribution of the 

source is given, and the computational efficiency can 

be improved significantly. Yee [25] deduces the 

source location and intensity with unknown number 

of leak sources. Guo [29] used an unsteady 

concomitant transfer model and an advanced 

numerical scheme (finite volume method) based on 

adaptive mesh encryption to perform the 

reconstruction of leakage source in a three-

dimensional urban environment. Numerical results 

show that the application of the unsteady state 

transfer equation and the MCMC method is very 

effective, and the introduction of the non-stationary 

inversion method can significantly improve the 

accuracy of the leakage source location in the wind 

direction. 

Because of the time-varying nature of the sensor 

data and the instability of the initial concentration 

field, it is necessary to perform a real-time 

determination method for the leakage source. For 

example, Johannesson [27] proposed a sequential 

Monte Carlo (SMC), The Monte Carlo (SMCMC) 

method to inverse the unstable dynamic system, 

which further extends the application of Bayesian 

inference method in the leakage source parameters 

determination problem. Chinese scholars were also 

use probability and statistics methods to fulfill the 

leakage source determination related research. Zhu 

[28] proposed a method based on Bayesian 

estimation theory, the ensemble Kalman smoothing 

and Kalman filtering method for the inverse problem 

of leakage source. Guo [29] used Bayesian inference 

combined with Markov chain Monte Carlo sampling 

method to calculate the gas source in urban area. 

The Bayesian-Monte Carlo method has been 

widely used in the study of leakage source 

determination of various scales, but it needs to know 

the prior distribution of parameters at first, and the 

sampling process of parameter posterior distribution 

is extremely time consuming, so that the 

computational efficiency of the determination 

algorithm should be improved in the event of an 

happened emergency [30]. 

The inverse theory has been widely used in the 

source determination research of groundwater 

sources [31], earthquake sources [32], sound sources 

[33], heat sources [34]. In addition, most of the 

current research has been focused on the application 

of methods, and the analysis of diffusion patterns 

and its impact on the real-time and applicability of 

leakage source determination is seldom involved. 

Most of them used the static plume Gaussian model 

with a constant flow conditions, however, the actual 

flow is more time-varying and dynamic, and the 

static Gaussian model also has some 

limitations[35,36], so the real time performance was 

usually not meet the practical requirements.  

Therefore, in this paper, we propose an integrated 

method for the gas leakage sources rapid 

determination problem based on the information 

processing technology of sensor network and the 

theoretical analysis of mixed Gaussian model. The 

proposed distributed EM algorithm with Gaussian 

Mixture models was considered for the distributed 

determination implementation because of the highly 

nonlinear diffusion model and the heavily noise 

corrupted sensor node’s measurements. On the other 

hand, we also gave a computing sensor nodes 
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modification method for the estimation performance 

improving and the energy consumption reducing.   

The following structure: Section 2, the problem 

description is given. we analyzed the gas leakage 

diffusion Gaussian Mixture Model, proposed an 

distributed EM algorithm for chemical gas leakage 

source determination. In section 3, we compare the 

distributed EM method with the central EM method 

and analyze the simulation results. Section 4, 

conclusion. 

PROBLEM DESCRIPTION 

The gas leakage concentration information 

measured by sensor nodes in the sensor network is 

generally consistent with a diffusion model. 

Gaussian model and the model based on turbulent 

diffusion theory are usually used in the existing gas 

leakage source determination. Gas leakage 

concentration diffusion model usually can be 

described as a stochastic process and the source 

determination problem can also be known as a gas 

leakage diffusion model reconstruction problem.  

In this paper, we assume that the flow 

environment is consistent with the Gaussian model 

distribution and based on the following application 

of turbulent gas diffusion model. 

 (1) The positive direction of the x axis is 

considered as the direction of the wind direction, 

without considering the obstruction of the 

obstruction and other effects, assuming that the flow 

environment is a stable and uniform airflow field; 

(2) The main study is to determinate a gas source 

parameters of source coordinates ),( sss yxr  and 

the estimated value q̂  of the source emission rate 

(3) A rate of gas release from the gas source; 

(4) N  sensor nodes were used with a simple 

dynamic topology distributed in the square area, the 

location of each node itself was known. 

The main goal is to design a determination 

method to achieve the gas leakage source parameters 

vector θ estimation via stochastic process 

information processing and the estimator defined as:  

]ˆ,ˆ,ˆ[ˆ qyx ssθ  

Where ]ˆ,ˆ[ ss yx means the estimator of source 

coordinates, and q̂  is the source emission rate 

estimator.  

Gas Leakage Diffusion Model 

In this paper, an approximate analytic model that 

adapted proposed by Ishida [10] was used:  
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Where ),( tc ir  is the concentration at ),( iii yxr

and time t; q  is the gas diffusion rate; K  is the 

turbulent diffusion coefficient; U  is the wind speed; 

   22
sisi yyxxd   is the distance from 

any point to the gas source, and ),( iii yxr is the 

current sensor node position. 

 sin)(cos)( isis yyxxx  ,   is the 

upwind direction angle with x-axis.  

If we take the x-axis as the downwind direction, 

the equation (1) can be rewritten as: 
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Figure 2 shows the two-dimensional gas 

diffusion model under different wind speed and 

direction. Since the static model based on turbulent 

diffusion theory introduces the wind direction 

consideration, and more in line with the simulated 

environmental conditions. So in this paper, the gas 

source determination algorithm is mainly based on 

the Gaussian model and its Mixture models.  
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Fig. 1 Gas concentration diffusion in a 400m×500m rectangle 

area 

Figure 1 shows the gas diffusion with equation 

(2), the gas leakage source location is (50, 0) m, the 

color bars stand for the diffusion concentration (unit 

is ppm). And figure 2 gives the diffusion with 

different wind speed and direction in the field.  

 
Fig. 2 Diffusion shape with different direction and speed 
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Observation Model 

Based on the above gas leakage diffusion model, 

the measurement model at each sensor node is 

defined as following [8-9]: 

),(),(),( tebtctz iii rrr                     (3) 

Where ),( tc ir  is the chemical source 

concentration; b  is a unknown constant bias term; 

and ),( te ir  is the sensor’s measurement noise 

subject to Gaussian distribution.  Denoting

),()( tytz ii r  , ),()( tete ii r  , and ),()()( tcht ii rθ  , 

we can rewrite (3) as  

)()()()( tettz iii  xθH                        (4) 

Where ]1),([)( θθH ii h , Tbt ]),([x , and 

],,[ qyx ssθ  represent the gas source parameters.  

In order to use Bayesian inference method for the 

gas leakage source determination, we convert the 

space-time gas diffusion model into a discrete state 

space form, in which, the gas leakage diffusion 

process described by two equations and the 

observation state according to a classical Gauss-

Markov model. The space-time continuous ),( tc ir  

represented by a finite state vector kx  at discrete 

time kt , the system equation is as follow: 

kkkkk wθBxθAx )()( 1                       (5) 

Where )(θAk  represent the system matrix, 

)(θBk  is the input matrix, kw  is the process noise 

with white zero-mean Gaussian distribution.  

The observation equation:  
i
kk

i
k

i
k vxθHz  )(                            (6) 

Where i
kz  is the observation of sensor node i  at 

kt , )(θH
i
k is the observation matrix, i

kv  is 

observation noise also with white zero-mean 

Gaussian distribution.  

The noise kw  and i
kv  satisfy as following 

equations. 

klk
T

lkE Qww ][                            (7) 

kl
i
k
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i
kE Rvv ][                             (8) 

Where 1kl  , if lk  , and 0kl otherwise. 

Gas Leakage Diffusion Gaussian Mixture Model  

In the gas leakage accident area, the gas 

concentration measurement information is mainly 

composed of the gas diffusion noise and the wind 

turbulence noise with the sensor network. Through 

statistical analysis of the sensor observation, we can 

see that the diffusion noise usually follows the 

stationary Gaussian distribution, while the 

turbulence noise has strong nonlinearity, which 

could not be directly described by Gaussian 

distribution. In this paper, we assume that the gas 

diffusion model is a Gaussian Mixture Model(GGM), 

which composed of two different Gaussian 

distributions. The linear combination is expressed as 

follows: 
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Where m denotes that the model is composed of 

m different Gaussian distributions,  θz;1p denoting 

the diffusion noise subject to Gaussian distribution, 

1 and 2 are the weighting coefficient, and 

satisfies 10  , 12 ， 1 + 2 =1。 

When 02 , the GMM model can be expressed 

by Gaussian model, which indicating that there is no 

wind turbulence in the environment and the noise in 

the spill area is relatively stable.  

When 02 , it belongs to the GMM model, and 

with the 2  increase, indicates that the environment 

has a strong effect of turbulence, which has 

weighting factors for the leakage source parameters 

determination.  

The parameters to be determinate include the 

weighting factors 1 , 2 , and the leakage source 

parameters θ . 

Distributed EM Algorithm 

The observed environment information by sensor 

nodes does not contain all the diffusion and 

turbulence information, so the concentration 

information was an incomplete data set. For the 

imperfect data set, the most commonly used method 

is EM algorithm. The EM algorithm is an effective 

tool to estimate the maximum likelihood of the 

incomplete data set. The core of the method is to 

convert the complex problem of maximization of the 

likelihood function into a series of simple solutions 

of the expected value and the maximum value. 

Function optimization problem, which greatly 

reduces the computational complexity.  

EM algorithm is essentially an iterative algorithm. 

It is composed of two steps for iteration: E step 

(Expectation) and M step (Maximization). 

Assuming the observed data set  nzzz 21,z , 

the posterior distribution  zθp  with unknown 

parameters θ is complex and difficult to directly 

perform statistical calculations. If it is assumed that 

some unobserved latent data cz are known, then a 

simple posterior distribution  cp zzθ ,  may be 

obtained, which can be used for various statistical 
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calculations with the simplicity, thus a complex 

maximization problem into a series simple 

maximization problem. 

Let kθ̂ to be the k-th estimator of the maximum 

likelihood estimate of the representation θ , EM 

iterative algorithm can be achieved by the following 

two steps: 

Step E: Determine the average log likelihood 

function for the complete data set cz
: 

      ckcck dppQ zzθzzzθθθ  ,ˆ,logˆ,         (10) 

Step M: Find the largest θ  with log-likelihood 

function of complete data 

 kk Q θθθ
θ

ˆ,maxargˆ
1                         (11) 

The E and M steps are iteratively calculated to 

obtain the estimated sequence kθθθ ˆ,ˆ,ˆ
21   of 

unknown parametersθ . The final convergence value 

of the sequence is the maximum likelihood estimator 

of the unknown parameterθ . 

EM algorithm is an iterative algorithm to 

maximize the expected value, which can be divided 

into two categories: centralized EM algorithm and 

distributed EM algorithm. It mainly used in the 

following two cases:  

(1) The observation data is not complete, which 

due to the limitations of the observation process; 

(2) The likelihood function does not resolve, or 

likelihood function expression is too complex, which 

will result in maximum likelihood function of the 

traditional estimation method failure.  

As for the second one, the centralized EM 

algorithm is usually used. Although the method can 

get more accurate results in the actual calculation, 

the entire sensor network carries a lot of data 

communications. Its communication bandwidth and 

energy have higher requirements, or easily lead to 

partial network paralysis, especially the sink node 

and its neighbor nodes. On the other hand, a large 

number of data traffic congestion will also increase 

the response time and reduce network efficiency. 

Therefore, in this paper, we introduce a distributed 

EM algorithm to effectively solve the problems. 

Distributed EM algorithm is an improvement on 

the centralized EM algorithm, whose main purpose 

is to reduce the energy consumption of the whole 

network without affecting the positioning accuracy. 

The maximum energy consumption in sensor 

network was the communication cost, the number of 

nodes involved in the calculation and the inter-node 

traffic will be reduced with the use of distributed 

computing method, thus the entire network time life 

will extend. We proposed the distributed EM 

algorithm to estimate the maximum likelihood point 

to achieve the leakage source, which is based on the 

leak gas diffusion Gaussian Mixture Model. The 

algorithm can be divided into two steps: solving the 

maximum likelihood function and the distributed 

EM algorithm: 

 (1) The maximum likelihood function 

The process of solving the log-likelihood 

function is described as follows:  

      
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take a logarithm on the formula (12): 

     



N

n

n
N

N

n

n
N ppp

1

22

1

11 logloglog θzθzθz 

(13) 

The estimated value of θ  can be get from the 

solution of Partial Differential Equation: 
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It is difficult to obtain the estimator of θ directly 

from Eq.(14), so we use the distributed EM 

algorithm to estimate the unknown parameters in the 

GMM model. According to Eq. (12) and Eq. (13), 

the EM iterative algorithm for Gaussian Mixture 

model parameters is: 
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Where  
 
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


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mmm

mmm

m

p

p

θz

θz
zθ




  is the 

posteriori probability based on Bayesian theory and 

    121  zθzθ  。 

By choosing the reasonable initial value, the 

maximum likelihood estimation can be obtained 

using Eqs. (15) and (16). EM algorithm is essentially 

an iterative algorithm, so two issues should be 

considered in the estimation of parameters:  

(1) the convergence of parameter estimation;  

(2) the convergence rate of parameter estimation.  

To ensure the convergence of the EM algorithm, 

it is necessary that the iteration estimate value of the 

parameters should ensure the likelihood function to 

be monotonic. The convergence rate of the EM 

algorithm is usually related to the allowable error 

level of the initial value and the estimated value. The 
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chosen initial value 1 , 2  is a uniformly distributed 

random number. 

Since the observation noise set can be 

decomposed into the diffusion environmental noise 

and the turbulence noise, the weighting coefficient 

satisfies the condition 1 + 2 =1. 

Therefore, we can improve the iteration of the 

weighting coefficient by choosing the distribution of 

 1,0~1 U , and 12 1    , for the mean and 

variance convergence rate improvement can be 

found in the literature [8], simulation shows that this 

simplification can effectively reduce the number of 

iterations and improve operational efficiency than 

traditional EM algorithm . 

Distributed EM algorithm is different from the 

centralized EM algorithm, it does not require all the 

network nodes to participate in the calculation at the 

same time, but select the appropriate number of 

nodes involved in the operation according to the 

accuracy of the algorithm performance needed, the 

selected node is called running node set. In this paper, 

we assume that the N-1operation node sends 2
ˆ
kθ and

1
ˆ
kθ  to node N by communication, and if θ  does 

not converge, it moves on to the next cycle, 

otherwise, the calculation will stop when the 

convergence is out of the loop. 

Because the EM algorithm has the convergence, 

as for the distributed EM algorithm, we can say that 

it also has the convergence. However, due to the 

limited computing number of nodes and the noise 

interference, the convergence may be slow in the real 

calculation. There are two solutions: the number of 

sensor nodes can be adjusted in real time to improve 

the convergence rate, such as the use of four nodes 

involved in the calculation, if not converged in the 

next cycle, we can use five or six nodes involved in 

the calculation. This computing nodes increasing 

method can effectively increase the convergence 

speed, but also it will increase the energy 

consumption of the entire network; the other method 

is the threshold adjusting method, which means that 

you can increase the threshold to end the calculation 

if the operation has not converged for a long time. In 

this paper, the former method is used to solve the 

slow convergence problem. From the view of 

communication, the node with information in 

distributed method only communicates with the 

neighbor node, while the centralized method needs 

to communicate all the location information to sink, 

the former has great advantage in reducing the 

communication energy consumption. In the 

simulation experiment, the convergence of the 

distributed method is obvious and fast, and the 

problem of the slow convergence is only 

theoretically analyzed. 

It can be seen that distributed EM algorithm is an 

effective method for the determination of leakage 

source, which can reduce the energy consumption of 

the whole network while ensuring high positioning 

accuracy with great significance for practical 

applications. 

SIMULATION RESULTS AND VALUATION 

It is assumed that the Gaussian Mixture Model 

distribution is composed of N1 (0, 0.5) and N2 (0, 4) 

two Gaussian noise random variables, the mixed 

weighting coefficients are 75.01 and 

25.075.012  . Since no Gaussian mixture 

distribution function is provided in the Matlab tool 

box, we use the Bernoulli test method to generate the 

observed data of the GGM model according to Eq. 

(9). In this paper, the simulation data length is N = 

128 and the number of iterations is 20. GGM model 

parameters, after 20 iterations with (16), the 

estimated values are 7493.01  and 2507.02 , it 

is clear that we get a good mixture of the weighted 

coefficients of the estimated value by the EM 

estimation.  

In order to generate realistic environmental 

concentration data of the 2-D sensor field , We 

designed a simulation environment with MATLAB 

and VC++. As shown in Figure 3 and in Figure 4 the 

wind speed and direction in the fluent field was 

given. 

FLUENT CFD

Fluent Field 

Vector

(ACS II File)

ectorGuass Mixture 

Model

MOS Sensor 

Model
Sensor Network 

Visual C++

 

 
Fig. 3 The realistic environmental of 2-D sensor field 

 
Fig. 4 The fluent field of wind speed and direction data 
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Figure 4 shows several typical moments of the 

gas leak source search and determination process in 

the indoor turbulence environment where the gas 

leak source is located at (7m, 9m). A red circle with 

a red arrow indicates the position and attitude of the 

sensor nodes. The length and direction of the blue 

arrows indicate the intensity and direction of the 

wind, respectively. After the gas leak source releases 

100s (the number in the upper left corner of each 

subgraph indicates the time), the sensing node 

begins to diverge in different directions in the 

vicinity of the position (1m, 1m). When any node 

detects the gas concentration, the gas leakage source 

determination started. In Figure 5, the determination 

process with four time were provided 

In order to analyze the performance of the 

distributed EM method, we compare to the central 

EM algorithm with the estimation errors of chemical 

gas leakage source’s coordinates and emission rate, 

and the determination speed is also considered.  

The trajectories of the chemical gas leakage 

source determination process with the distributed 

EM and central EM algorithms were given in Figure 

6. The blue points represented the selected nodes that 

computed the parameters, and the circle with 

different radius surrounding means the sensor 

measurement. The source determination process 

could be started at any sensor node (such as the pink 

node) and iteratively  move to the source field, until 

the final gas source determination was reached, (68,-

45) of the central EM method and (52, 13) of the 

distributed EM method, which represented by the 

black star and the green triangle independently. 

As for Figure 6, the distributed EM method was 

better than central EM method with less sensor 

nodes, faster speed and lower communication in the 

same time step. 

In order to compare the two algorithms more 

clearly between the determination accuracy and the 

selected sensors number, we give the performance of 

the distributed EM and central EM in Figure 7. The 

determination error of the gas leakage source 

coordinates and the emission rate with the execution 

time was shown respectively. The determination 

accuracy of the distributed EM were higher than the 

central EM with the same sensor nodes, but the 

execution time speed was not improved because that 

the sensor nodes selected was confirmed at each time 

step. 

 

 
(a) t = 2.2 s 

 
(b) t = 40.7 s 

 
(c) t = 77.7 s     

 
(d) t = 98.4 s 

Fig. 5  The determination process  
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 (a)  Central EM parameter determination process 
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(b)  Distributed EM parameter determination process 

Fig. 6. An example of the distributed estimation algorithm 

At last, we compared the different approach 

method with the energy consumption considering, 

the energy remaining results was shown with the 

sensor node selected numbers adjusting pattern in 

the Figure 8. 

CONCLUDING 

We have presented the distributed EM parameter 

determination method with Gaussian Mixture model 

analysis. At the same time, a dynamically adjusting 

method of sensor nodes selected based on the 

estimation covariance value was given for the balance 

of the determination performance and the sensor 

network consumption. The analysis of the two 

algorithms had presented with the simulation results. 

We can see that the distributed EM algorithm was 

better than central EM method and the nodes number 

affects the energy consumption and the bias estimation. 
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 (a)  X localization estimation error of the chemical source 
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 (b)  Y localization estimation error of the chemical source 
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(c) The emission rate estimation errors of the chemical 

source  
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(d)  The execution time of the methods 

Fig. 7 Determination error of coordinates and emission rate 

with the execution time 
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Fig. 8 The energy remaining results of different method 
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