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Modeling the penetration of laser radiation in enamel-dentin tissue 
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A model for numerical calculation of laser radiation penetration in enamel-dental tissue has been developed. For 

these numerical computations a phase function suitable for the specific case is used and statistical methods for modeling 

the behavior of photons in the turbid media are implemented. By means of this model, we can get an idea of the 

proportion of radiation that passes and that is dissipated inside the tissue. Similar calculations are convenient to guide us 

in the use of certain techniques for laser impact on the dental tissues. 
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INTRODUCTION 

The penetration of laser radiation in dental 

tissues is a very important process related with the 

interaction of this radiation with tissues and 

respectively its impact on their structure and 

properties. Understanding the light propagation in 

teeth is important for therapeutic laser applications 

[1, 2] or diagnostics. For the treatment of hard tooth 

tissue, the parameters of laser radiation should be 

precisely controlled. The exposure of the pulp to 

laser radiation depends on the penetration of this 

radiation through the enamel and dentin. Upon 

irradiation with laser radiation a fraction of the 

energy is absorbed in the enamel and dentin, which 

in turn leads to increase in their temperature. The 

evaluation of this thermal effect is an important 

procedure. 

In this article we consider a model of passing 

series of photons with the same parameters in 

enamel-dentin structure. The estimates based on 

this model are made of the portion of photons 

absorbed into the enamel and dentin respectively 

(in percentage).By varying the parameters such as 

wavelength, anisotropic factor and thickness of the 

layers enamel and dentin we can estimate the 

absorption in the respective layers in these set 

parameters. 

MODELING 

The enamel is the hardest substance of the 

human body [3]. It is made ofapproximately 95% 

(by weight) hydroxyapatite, 4% water, and 1% 

organic matter. Hydroxyapatite is a mineralized 

compound with the chemical formula 

Ca10(PO4)6(OH)2. Its substructure consists of tiny 

crystallites which form so called enamel prisms 

with diameters ranging from 4 μm to 6μm. This 

forms the inorganic apatite-like tooth surface [4]. 

The crystallattice itself is intruded by several 

impurities, especially Cl−, F−, Na+, K+and Mg2+. 

The crystals are approximately 15 to 40 nm in the 

diameter and can be as long as 20 μm. Prisms are 

surrounded by a protein/lipid/water matrix.  

The dentin, on the other hand, is much softer. 

Dentin can be described as a conglomerate of 

several compartments. Only 70% of its 

volumeconsists of hydroxyapatite, whereas 20% is 

organic matter – mainly collagen fibers – and 10% 

is water. The internal structure of dentin is 

characterizedby small tubuli which measure up to a 

few millimeters in length, and between100nm and 3 

μm in diameter. These tubuli are essential for the 

growth of the tooth. It contains long tubules 

surrounded by the peritubular dentin. Between the 

tubules with their peritubular dentin lays 

intertubular dentin. 

Intertubular dentin, in its turn, is divided into 

collagen fibrils and interfibrillar compartments. 

Except for the tubules all compartments contain 

mineral crystals of hydroxyapatite, which are 

needle shaped with an ~ 5 nm thickness and an ~ 20 

nm length. The tubules have the diameter of 1 to 5 

μm, and its density is 15 000–75 000 tubules per 

mm2 [4]. They are uniformly oriented from the 
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enamel-dentin junction to the pulp, and so in a 

small sample they lay more or less parallel (Fig. 1). 

 
Fig. 1. Optical microscope picture of tooth structure - 

enamel, dentin and DEJ (dentin-enamel junction). 

In stochastic models of photon transport through 

tissue, individual photon paths are simulated by 

considering the probability of absorption and 

scattering interactions. One of the most commonly 

used stochastic models is the Monte Carlo method. 

The term Monte Carlo (MC) method (stochastic) 

refers to numerical simulations based on random 

sampling from appropriate probability distributions. 

Light is considered as a stream of particles 

(photons) that are injected into the medium, and 

move in straight lines through tissue between 

successive interactions. The advantages of the 

Monte Carlo method include simple 

implementation, the ability to handle any complex 

geometry and inhomogeneity, as well as the 

possibility to incorporate time-dependency. It is 

even possible to model wave phenomena such as 

polarization and interference. The main 

disadvantage is the inherently high computational 

cost.  

Fig. 2 presents a simple model of enamel-dentin 

structure. There are denoted three layers of enamel, 

DEJ (dentin-enamel junction) [5, 6] and dentin 

through which passes the laser radiation. 

 
Fig. 2. Model of enamel-dentin structure representing 

the three successive layers – enamel, DEJ and dentin. 

This radiation is represented as series of photons 

which sequentially enter perpendicularly to the 

surface of the enamel (the first layer) after which 

each of these photons undergoes reflection or 

multiple scattering in the structure with the result 

that the photon is reflected, absorbed or passes. We 

model these processes with Monte Carlo [7, 8, 9] 

simulation and Henyey-Greenstein (HG) phase 

function [10], since this phase function is a good 

approximation of the light scattering in the turbid 

tissue.In our model, we consider the penetration of 

the laser radiation with a wavelength of 1,064μm in 

dental tissue. This laser radiation is directed along 

the normal to the surface of the tooth sample, and 

has the shape of a Gaussian pulse. For the intensity 

of this impulse we can write: 

𝐼 = 𝐼𝑚𝑎𝑥 . 𝑒
−2

𝑟2

𝜔2    (1) 

where 𝑟 = √𝑥2 + 𝑦2, and ω is the width of the 

laser beam. In our case we have chosen r=0.1 mm 

and ω=1 mm. 

The first assumption in our model is that for 

each particular step the number of photons in the 

pulse is proportional to the intensity. Thus at some 

initial value for the number of photons, the intensity 

value is close to the maximum and we can get 

values for the number of photons at other levels of 

intensity, using approximation for a given 

distribution. So with every step we take certain 

volume of the spatial distribution of energy in the 

pulse, which corresponds to the number of photons, 

entering through the surface of the tissue. It is clear 

that in this case, at each step the area through which 

the photons enter increases. In the model, this is 

done using Monte-Carlo simulation for each step. 

Next assumption in our model is that the 

anisotropy factor g of DEJ is not a constant, but is a 

function of the coordinate z, i.e. it is a function of 

the depth of penetration of laser radiation. In this 

way we consider it appropriate to introduce a 

function in the form: 

𝑔(𝑧) = (𝐴𝑔1 + 𝐵𝑔2
1

𝑒𝛽(𝑧−𝑧0))   (2) 

where g1 and g2 are anisotropic factors for enamel 

and dentin respectively and g(z) is the anisotropy 

factor in junction. Coefficients A and B show 

which anisotropy dominates from the respective 

border. Here z denotes the current coordinate and z0 

corresponds to the coordinate at DEJ depth. 

Coefficient β indicates how deep the change of 

anisotropy in DEJ is. 

If we assume also that the A=B=1/2 and 

coefficient β≈1 (in order to ensure almost complete 

anisotropy of DEJ in close proximity to the dentin), 

we can write: 

𝑔(𝑧) =
1

2
(𝑔1 +

𝑔2

𝑒(𝑧−𝑧0))    (3) 

Also the coefficients of the scattering are a function 

of the wavelength [11]. These functions are 

introduced by their polynomial approximations. 

The parameters which are required to trace a 
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photon path through some arbitrary random 

medium are the local absorption coefficient µa, 

scattering coefficient µs, and scattering phase 

function. Scattering in tissue is characterized by the 

Henyey-Greenstein phase function: 

p(𝜃)  =
1

4𝜋

1−𝑔1,2
2

(1+𝑔1,2
2 −2𝑔 cos 𝜃)

3
2⁄
   (4) 

whereg is the mean cosine of the scattering 

anisotropy angle θ. This coefficient g is called 

factor of anisotropy and is expressed as follows: 

𝑔 = ∫ p(𝜃)
𝜋

0
cos 𝜃 2𝜋 sin 𝜃𝑑𝜃   (5) 

The assumption of random distribution of 

scatters in a medium, leads to normalization 

∫ p(𝜃)
𝜋

0
2𝜋 sin 𝜃𝑑𝜃 = 1    (6) 

Photons are emitted by a source and travel in 

straight lines until theyare scattered. The 

probability for a photon to be scattered after a 

distance dτ is defined by 
𝑝(𝜏)𝑑𝜏 = 𝑒−𝜇𝑠𝜏𝑑𝜏    (7) 

Hence the cumulative probability of being scattered 

after travelling a distance τ is 

∫ 𝑒−𝜇𝑠𝜏′
𝑑𝜏′𝜏

0
= 1 − 𝑒−𝜇𝑠𝜏 = 𝜌1   (8) 

where ρ1∈ [0...1] is a random number. Thus the 

distance between scattering events is given by 

𝜏 = −
1

𝜇𝑠
𝑙𝑛(𝜌1)     (9) 

The azimuthally and polar scattering angles, θ 

and ψ, relative to the previous direction of motion 

are given by 
𝜓 = 2𝜋𝜌2               (10) 

∫ 𝑝(𝜃′)
𝜃

0
𝑑𝜃′ = 𝜌3              (11) 

where ρ2 and ρ3∈ [0...1] are uniformly distributed 

random numbers. 

Absorption can be taken into account either by 

terminating an absorbed photon’s path or by 

introducing a weighting scheme. Thereby the 

photon’s weight W ∈ [0...1] is reducedbetween 

successive scattering events according to 
𝑊 = 𝑊′𝑒−𝜇𝑎𝜏,               (12) 

where W is the weight before the interaction, and τ 

is the distance travelled since the lastscattering 

event. Photon paths are terminated when either the 

weight becomes negligible (by a predetermined 

value) the photon leaves the boundary or region of 

interest, or hits the detector. In the latter event the 

detection count rate is increased by the remaining 

photon weight W.  

The possibility of internal reflection occurs 

when the photon is propagated across the boundary 

into the region with a different index of refraction. 

The probability that the photon will be internally 

reflected is determined by the Fresnel reflection 

coefficient R(θi) 

R(θi) =
1

2
[

𝑠𝑖𝑛2(𝜃𝑖−𝜃𝑡)

𝑠𝑖𝑛2(𝜃𝑖+𝜃𝑡)
+

𝑡𝑎𝑛2(𝜃𝑖−𝜃𝑡)

𝑡𝑎𝑛2(𝜃𝑖+𝜃𝑡)
] (13) 

Where θi =cos-1 µz is the angle of incidence on the 

boundary and the angle of transmission θt is given 

by Snell’s law 

sin sini i t tn n 
   

(14) 

where ni and nt are the indices of refraction of the 

medium from which the photon incident and 

transmits, respectively. The random number ρ2 

uniformly distributed between zero and unit is used 

to decide whether the photon is reflected or 

transmitted.  If ρ2< R(θi) the photon is internally 

reflected, otherwise the photon exits the tissue and 

the event is recorded as backscattered light or 

transmitted light (when it exits the bottom). If the 

photon is internally reflected, then the position and 

direction of the photon is adjusted accordingly. For 

a slab geometry, infinite in the x and y directions 

with a thickness τ in the z-direction, the internally 

reflected photon position (x'',y'', z'') is obtained by 

changing only the z-component of the photon 

coordinates 

   zyxzyx  ,,,, ''''''
if z < 0      

   zyxzyx  2,,,, ''''''
if z < τ            (15) 

The new photon direction (µx',µy', µz') is  

(𝜇𝑥,
′ 𝜇𝑦

′ , 𝜇𝑧
′ ) = (𝜇𝑥,

′ 𝜇𝑦
′ , −𝜇𝑧

′ )             (16) 

and both µx and µy remain unchanged. 

A normalized phase function describes the 

probability for density function for the azimuth and 

longitudinal angles for a photon when it is 

scattered. If the phase function has no azimuth 

dependence, then the azimuth angle ψis uniformly 

distributed between 0 and 2π, and may be generated 

by multiplying a pseudo-random number ρ2 

uniformly distributed over the interval zero to one 

by 2π (ψ = 2πρ2). The deflection angle θ for an 

isotropic distribution is given by  

2cos 2 -1                 (17) 

If a photon is scattered at an angle (θ, ψ) from 

the direction  (µx, µy, µz) in which it is travelling, 

then the new direction (µx',µy', µz') is specified by  

µ𝑥
′ =  

sin 𝜃

√1−µ𝑧
2

(µx µz cos ψ − µysinψ) + µxcosθ           (18) 

 µ𝑦
′ =  

sin 𝜃

√1−µ𝑧
2

(µy µz cos ψ + µxsinψ) + µycosθ         (19) 

 µ𝑧
′ =  − sin 𝜃 cos ψ √1 − µ𝑧

2 + µzcosθ.              (20) 
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RESULTS AND DISCUSSIONS 

We performed numerical method Monte Carlo 

using a computer program designed for the specific 

case. Into the computer program we used the 

following coefficients, as shown in Table 1 [4,5]. 

The results of numerical calculation are presented 

in Table 2. 

Table 1. Specific coefficients of enamel and dentin 

tissues 

Coefficients Enamel Dentin 

μa <1,cm-1 4, cm-1 

μs(λ) 18, cm-1 205, cm-1 

g1,2 0,93  0,96 

Thickness 1, mm 3, mm 

ne,d 1,63 1,54 

Weight   10-4 

λ 1064nm 

In Table 2 are presented coefficients for 

absorption in enamel (Abs1) and dentin (Abs2) 

respectively as well as reflectance (Ref) and 

transition (Tr) coefficients for this biological 

structure. These results were obtained by computer 

simulation program created by us in Matlab 

software package by implementation thirty numbers 

of calculations with a total number of 106 photons. 

Table 2.Results of numerical calculation 

Abs1 Abs 2 Ref Tr 

23% 66% 24% 0,34% 

Computer calculations are shown graphically in 

Figs 3 - 4 for one case of photons penetrating in 

tooth tissue. 

(a) 

 
(b) 

Fig. 3. (a) 3D view and (b) 2D (Y, Z axis) view of path 

of the penetrating photons. 

Our calculations show that the assumptions 

made in the model are selected appropriately and 

the obtained results come close to the experimental 

results [12, 13]. For the transition of radiation 

through the dentine at [12] we have obtained 

experimentally 4% with a wavelength of 1064 nm, 

laser beam diameter 1 mm and incident energy of 

10mJ. The thickness of the test slice is 1 mm. For 

this case we have a thickness of 3 mm, i.e. if is 

valid the Beer-Bouguer-Lambert law then we must 

have approximately 20 times greater attenuation of 

radiation. This means that in this case the photons 

will have a transition to the amount of 0.2 %. 

Computer calculations show value of 0.34 %. 

 

Fig. 4. Enlarged view of the photons path (Y, Zaxis). 

CONCLUSIONS 

Use and development of numerical methods, in 

particular methods based on Monte Carlo 

simulations are an essential part of the whole 

scientific study of penetration of laser radiation in 

turbid tissues. Monte Carlo modeling has been used 

for applying the technique to light dosimetry in 

tissue by receiving quantitative estimates of 

absorbed and transited radiation through various 

components of the tissue, which is very complex 

and difficult experimental process. 
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 (Резюме) 

В настоящата работа е развит модел за числено пресмятане на проникването на лазерно лъчение в емайл-

дентин биологична тъкан. За численото пресмятане е използвана фазова функция, подходяща за дадения 

случай,  както и статистически методи за моделиране на поведението на фотоните в мътна тъкан. От 

получените чрез този модел резултати можем да добием представа за преминалото лъчение и за лъчението, 

погълнато от тъканта. Подобни пресмятания ни помагат за подбора на определени техники за лазерно 

въздействие върху зъбна тъкан.  

 

 


