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Terrestrial Laser Scanning (TLS) enables easy and fast Point Cloud Data (PCD) acquisition from objects, and it has 
been widely used in complex scene survey. However, trees have seriously irregular and complex morphology, and 
scanning process always be influenced by external environment variation and have occlusion effect, so quantifying the 
3-D morphology structure and assessing parameters of forest stands by TLS is challenging. In order to solve these 
problems, we applied computer technique to improve Terrestrial Laser Scanning (TLS) performance in forestry 
measurement. Here, new PCD feature vectors, including shape, orientation, normal vector distribution and normal 
vectors of tangent plane, was proposed, and Supervised Locally Linear Embedding (SLLE) algorithm and Gaussian 
Mixture Model (GMM) were adopted for the feature dimensionality reduction and PCD classification as well. Hence, 
the algorithm efficiency was improved and various tree organs could be automatically identified. Moreover, a leaf 
modeling method using polynomial fitting method and Moving Least Squares (MLS) were presented to depict real 
foliage silhouette and eliminate ghost points, yielding accurate reconstruction of complex foliage surface. As detailed 
experimental comparison stated, the recognition rate remained higher than 87.51 % while our classification method was 
applied to different tree PCD, and accurate 3D morphological reconstruction of leaf models have similar leaf area 
versus manually LI-3000C measurement results. Thus, our method show promise in further exploration of utilizing TLS 
as an effective tool for forestry parameter retrieval.  

Keywords: Terrestrial Laser Scanning (TLS), Point Cloud Data (PCD), Tree organ classification, Leaf surface 
reconstruction. 

INTRODUCTION 

The forest has an irreplaceable status and role in 
regulating the earth's environment for human 
survival and slowing down and even curbing the 
global environmental degradation trend. Moreover, 
forest measurement science and forestry 
information research have become an important 
issue in recent years, we have to face the task that 
exploring the fine measurement of forest trees and 
providing an effective way to improve the accuracy 
and efficiency of forestry data collection for 
forestry surveying.  

In recent years, quite a few methods of 
analyzing plant structure and measuring plant 
parameters was proposed, which could be divided 
into two types.  

Firstly, tree measurement method based on the 
image processing and computer graphics theory is 
designed to calculate ecological parameters of the 
plants. Image recognition methods [1,2] was 
adopted to analyse numerous leaf images in order 

to classify different plant species. 3D reconstruction 
model of plant was utilized to characterize tree 
structures, light interception within the canopy and 
leaf photosynthetic capacity [3,4,5]. Moreover, a 
multitude of computer software, including 
YPLANT [6], Arbaro [7], VegeSTAR [8] and 
Speedtree [9] were designed for bio-simulation.  

Secondly, laser scanning shows incomparable 
advantages in tree measurement in recent years. 
Many researchers selected Terrestrial laser scanner 
to obtain spatial explicit points representing target 
trees, and proposed a plethora of methods on basis 
of scanning data to retrieve ecological parameters. 
These achievements include developing PCD 
feature histograms to reflect plant geometrical 
information [10], reflecting changes in the deep 
oxidation state of the xanthophylls cycle from TLS 
return intensity [11], presenting voxel-based 
method with line quadrat direction to retrieve the 
biophysical characteristics of the forest canopy 
[12,13] and modeling laser-vegetation interactions 
probabilistically based on Poisson gap model [14], 
and so on. Besides, airborne laser scanning (ALS) 
offers an opportunity to conduct large scale 
surveying of vegetation at great resolution than has 
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previously been available. Commercially-available 
equipments, such as aircraft and drones, loaded 
laser scanners and was manipulated by engineers to 
rapidly generate point-cloud data of vegetation. 
Corresponding algorithm were proposed for a broad 
range of forestry and environment management 
applications, such as forest biomass estimation [15], 
delineation of individual tree crown [16], 
aboveground biomass and carbon storage 
evaluation [17,18] and tree species recognition [19].  

Although a number of researches have done 
considerable work on agricultural and forestry 
measurement, three challenging questions still 
remained in forestry parameters acquisition from 
scanning data. 1) How do we extract and 
distinguish every leaf from the flourishing tree’s 
PCD with enormous variation in leaf inclination 
angle and azimuth angle? 2) The scanning data 
exists noise and deviation caused by occlusion 
effect and external environment interferences [20]. 
How do we eliminate deviation and design 
appropriate algorithm to construct real foliage data? 
3) The presentation of scanned leaf is in the discrete 
points and not 3D surface model. How do we 
design a reasonable algorithm realizing the 
transformation from scanned point to leaflet surface. 

Based on the above issues, here, two meaningful 
works have been done on basis of PCD. Firstly, 
original feature vector composed by normal vector, 
normal vector distribution and normal vectors of 
tangent plane was proposed, and supervised 
manifold learning method was designed to process 
these feature vectors for principal component 
analysis and dimensionality reduction. Then, 
Gaussian Mixture Model (GMM) and Expectation-
Maximization (EM) method were adopted to the 
processed features in order to realize PCD 
classification and automatically recognize tree 
organs. Secondly, we established polynomial 
equations to fit leaf boundaries based on PCD, and 
manipulated MLS algorithm to eliminate noise 
points caused by external interference. Then, 
Delaunay triangulation method was introduced to 
generate numerous triangle meshes composing real 
leaf surface. 

MATERIALS AND METHODS 

Data collection by TLS 

Our experimental trees were chose on the 
campus of Nanjing Forestry University
( )32 08 ,118 81N E′ ′° °

, including many well-isolated 
individual trees such as Michelia trees and Sakura 
trees. Assuming that the shape of target tree crowns 

is ellipsoidal, each scan was obtained in 
azimuthally symmetric location and target tree 
located in the centre of the experimental plot. Every 
TLS placed in turn at different lateral side and kept 
several meters away from target tree. After TLS 
scanning procedure finished, every scan of different 
angle was finally integrated into a single coordinate 
system through registration process to acquire full 
coverage of objective trees.  

Extraction of PCD feature 

The features we employed include color, shape 
and orientation information. For every point 

( ), ,i i i ip x y z=  in point cloud P , 3P R⊂ , its 
surrounding finite space is defined the set of k  

nearest points ( ), ,j j j jp x y z=  with the mean being 
( ) 1
1 k

j jj
p k p

=
= ∑ , The covariance matrix PC  of 

point ip  is defined by ( ) ( )
1

1
i

k T

p j j j j
j

C p p p p
k =

= − −∑ . 

Let { }0 1 2, ,i i i ie e e e=  be the eigenvector and 

{ }0 1 2, ,i i i iλ λ λ λ=  be the corresponding eigenvalue of 

ipC  and 0 1 2
i i iλ λ λ≤ ≤ . 0

ie  corresponding to the 

minimum 
0
iλ  approximates the normal vector at 

point ip .  
Next, we computed the covariance matrix of 

normal vector about this neighborhood using 
equation (1), where ie  denotes the mean normal 
vector of the 3D points in the neighborhood 

( ) 0
1

1 k
i jj

e k e
=

= ∑ . 

( ) ( )0 0

1

1 k T

p j i j i
j

V e e e e
k =

= − −∑               (1) 

Consequently, Eigenvalue Decomposition on 
this covariance matrix pV  was performed to get 
three eigenvalues 0 1 2

i i il l l  of pV . For isotropic 
spatial distributions (corresponding to fruits), 
always 0 1 2

i i il l l≈ ≈ ; for predominantly linear 
distributions (branches), 0 1 2

i i il l l≥ ≈ ; and for 
roughly planar distributions (leaves), 0 1 2

i i il l l≈ ≥ .  
Next, we calculated local tangent space feature 

of every point cloud. Assuming that the set of data 
points are sampled from a d-dimensional affine 
subspace, i.e.,   

( )1j i i j jp c Q j kθ ε= + + ≤ ≤              (2) 
where 3

j Rε ∈  represents noise vector, d
j Rθ ∈  is 

projection coordinates about jp  on the local 
tangent space, [ ]1 2, ,...,i kθ θ θΘ =  and 3d ≤ . 3

ic R∈  
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is the origin coordinates of the tangent space and 
3 d

iQ R ×∈  is a matrix which forms an orthonormal 
basis of the affine subspace. The problem of linear 
manifold learning amounts to seek , ,i i jc Q θ  to 
minimize the reconstruction error, i.e.,  

2 2

2 2, , , ,1
min min
i i j i i j

k

j i i j j i ic Q c Qj
p c Q p c Q

θ θ
θ

=

− − = − − Θ∑        (3) 

The matrix of ip  neighborhood is also denoted 
as [ ]1 2, ,...i kX p p p= , and we extract local 
information by calculating the eigenvectors and 
eigenvalue of the correlation matrix 

( ) ( )TT T
i i i iX p X pι ι− − , where 

1

1 k

i j
j

p p
k =

= ∑ , ι  is a k-

dimensional column vector of all ones. i.e., 
1 T T T

i i i i iX I X U U
k
ιι − = Λ 

 
               (4) 

where 1 2, ,... k
i i i iU u u u =    is orthogonal matrix, and 

the diagonal elements of the diagonal matrix iΛ  are 
monotone decreasing, so the local tangent space 
information for the sample point ip  is calculated: 

1 2

1

, ,...

1

i i

d
i i i i

T T
i i i

c X
k

Q u u u

Q X I
k

ι

ιι


=

  =  


 Θ = −   

                   (5) 

From the above derivation, we can calculate the 
column vector m

iu  which is corresponding to the 
smallest diagonal element of iΛ , and m

iu  is also the 
normal vectors of local tangent space on ip .  

We represented the features of a given point ip  
using the color information ( ), ,i i ir g b , normal vector 

0
ie , normal vector distribution 0 1 2

i i il l l  and normal 
vectors of tangent plane m

iu  to form 12-dimensional 
feature vector { }0 0 1 2, , , , , m

pi i i i i i i i ic r g b e l l l u=  for each 
point in the cloud. Consequently, these features 
were taken into the supervised manifold learning 
method to extract the principal component for 
realizing dimensionality compression.  

Feature optimization by supervised LLE 

Sam [21] proposed nonlinear dimensionality 
reduction algorithm by Locally Linear Embedding 
(LLE), which include unsupervised LLE and 
supervised LLE algorithms. Here, supervised LLE 
was introduced to deal with PCD features for 
improving algorithm efficiency.  

Specific steps of the SLLE are as follows: 
Firstly, we separated whole PCD into training 
samples and testing samples, The features of 

training samples denote as q HC × . Through the LLE 
projection we can get t HY × , where q  is original 
dimension of training samples, t  is output 
dimension of training samples, H is the numbers of 
training samples; Let C′  be the set of testing 
samples, and choose one test sample 1Hc + , 1Hc C+ ′∈ . 

1Hc +  is taken into the matrix q HC × , then the matrix 
size of q HC ×  becomes ( )1q H× + . Afterwards, try to 
finding K  nearest neighbors of 1Hc +  in testing 
samples. The Dijkstra distance is used as a 
similarity measure, but for the testing samples, the 
priori category information cannot be taken into 
account. Secondly, find weight coefficients of 1Hc +  
and its k-nearest neighbor points, which satisfy the 
following conditions: 

( )
2

1
1 1,

1
min

k
H

H j H j
j

W c w cε +
∏ + +

=

= −∑ , where 

1

1
1

k
H
j

j
w +

=

=∑ . 1,H jc +  ( )1,2,...,j k=  are the neighbor 

points of the 1Hc + , 1H
jw +  is the weight coefficients 

between 1Hc +  and 1,H jc + . Thirdly, the LLE algorithm 
is used to find low-dimensional embedding features 
of the testing samples, which preserve the 
geometries inalterability in a low-dimensional 
space. Through the SLLE transform, training 
samples and testing samples of PCD are projected 
into the low dimensional space with the invariance 
of main characteristics, the original features pic  of 
point ip  reduce to low-dimensional vectors piℑ . 

PCD classification based on GMM 

Our tree PCD data set was manually labeled as 
two semantic classes (branch and leaf). Using a 
portion of the data, Gaussian Mixture Model 
(GMM) classifier was used to classify tree PCD.  

A Gaussian mixture model is a weighted sum of 
A  component Gaussian densities as given by 
following equation. 

( ) ( )
1

,
A

p i p i i
i

p gλ ω µ σ
=

ℑ = ℑ∑             (6) 

where pℑ  is processed PCD features. 

( ),p i ig µ σℑ , 1,...,i A= , are the component 
Gaussian densities. Each component density is a 
Gaussian function of the form, with mean vector iµ  
and covariance matrix iσ , and iω  is the weight 
coefficient of each class. The expansion formula of 
g  is:  

( )
( )

( ) ( )1
1 2

1 1, exp
22

p i i p i i p i
i

g µ σ µ σ µ
πσ

− ′ℑ = − ℑ − ℑ − 
 

 (7) 
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The mixture weights satisfy the constraint that 

1
1M

ii
ω

=
=∑ . The mean vectors, covariance matrices 

and mixture weights from all component densities 
parameterize GMM. These parameters are 
collectively represented by the notation, 

{ }, ,i i iλ ω µ σ= , 1,...,i A= . Then the Expectation 
Maximization (EM) algorithm is proposed to 
maximize the likelihood ( )pp λℑ  of the data pℑ  
drawn from an unknown distribution. Specific 
formula is expressed as follows: 

( )*

11

arg max ,
n A

k pj k
kj

g
λ

λ ω λ
==

= ℑ∑∏             (8) 

where n  represents the number of whole PCD. The 
output of the SLLE, GMM and EM generated an 
integrated classification for scanning points based 
solely upon their feature vectors.  

Foliage surface reconstruction  

TLS scanned data always be interfered by plant 
swaying in the wind and perspective occlusion. 
This section addressed accurate leaf boundary 
detection and 3D leaf surface reconstruction on 
basis of discrete points. 

Foliage boundary depiction 

TLS rangefinder system was based upon the 
principle of time-of-flight measurement of short 
infrared laser pulses. A rotating polygon mirror 
wheel realizes the line scan measurement and the 
frame scanner mechanism relies on rotating the 
optical head together with the fast line scan 
mechanism. Both the vertical scan and tilt scan 
covering the whole field of tree can produce global 
scan with a line scan angle. Thus, the tree PCD 
obtained by TLS show linear characteristics and 
can be represented by linear function i i i iy k x b= +  
on horizontal (X-Y) plane. After each scan line 
equation was obtained, we can easily determine the 
endpoints of every scanning line, which represent 
the edge points of scanned foliage. These edge 
points at left and right sides can be denoted as 

( ) ( ) ( ){ }1 1 1 2 2 2 ln ln ln, , , , , ,... , ,Ledge l l l l l lP x y z x y z x y z= , 

( ) ( ) ( ){ }1 1 1 2 2 2 n n n, , , , , ,... , ,Redge r r r r r r r r rP x y z x y z x y z= , 
respectively. Under the guidance of polynomial 
fitting, we firstly proposed fitting algorithm to 
locate the true leaf boundary points based on each 
half-side edge points. To the end points 

{ }, ,Ledge l l lP x y z= , the magnitudes of ly  was taken 
as input parameters to calculate the corresponding 
fitting lx′  and lz′  values. Polynomial fitting was 
adopted to find the polynomial coefficients 

( ),x
l lv x y  with term number n′  that make the data 

lx′  close to lx , i.e., 
1 2

1 2 3 1...x n x n x n x x
l l l l l n l nx x v y v y v y v y v′ ′ ′− −

′ ′−′ ≈ = + + + + + , 
where lx′  is calculated value to substitute lx . 
Likewise, Polynomial fitting was also used to 
obtain fitted lz′  substituting initial lz . The specific 
formula is as follows: 

( ) 1 2
1 2 3 1...z n z n z n z z

l l z l l l l n l nz z v y v y v y v y v y v− −
′ ′−′≈ = = + + + + + . 

Thus, smooth outer contour of each foliage could 
be delineated when the fitted boundary points 

{ }, , ; , ,edge l l l r r rP x y z x y z′ ′ ′ ′ ′=  are connected in sequence. 

Leaf surface fitting based on MLS 

In this step, we smoothed and re-sampled data 
for each leaf point cloud using the Moving Least 
Square (MLS) method [22]. The algorithm fitted a 
2D manifold to the 3D point cloud data and re-
sampled the points to place them on the estimated 
surface. The method also provided surface normal 
and curvature estimates and up-sampled or down-
sampled the point set appropriately. After MLS 
fitting processing, foliage scanned point 

( ), ,i i i ip x y z=  was transformed into ( ), ,i i i ip x y z′ ′= .  
Delaunay triangulation was applied to convert 

every point ip′  into smooth leaf surface as 
triangular mesh.  

As shown above, we extended method to deal 
with foliage silhouette delineation and smooth 
surface reconstruction on basis of PCD. Our 
method is intuitive and well suited for processing 
deviations caused by leaf jitter in wind and 
perspective occlusion. Visually important aspects 
of foliage appearance such as posture and smooth 
boundary be easily captured and described. Next, 
the experiments were conducted to demonstrate the 
effectiveness of our approach. 

RESULTS AND DISCUSSION 

Every target trees including Michelia tree and 
Sakura tree on our campus was scanned from three 
side-lateral locations with a middle sampling 
resolution and three markers were used as reference 
to align the three scans. Then, the ground points 
were removed and each individual tree was isolated 
for analysis.  

Plant organs classification 

After applying our algorithm to TLS point cloud 
data of an individual tree, we obtained a promising 
classification result as shown in Fig 1. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 1. Visualization of final classification of 
different components being to an individual tree. (a) 
Original point cloud data of Michelia tree. (b) Partially 
selected PCD was manually labeled as two classes 
(branch and leaf), which was taken as training samples 
of SLLE and used in GMM. (c) Preliminary 
classification with linear class points in blue color (i.e., 
branches and stems), surface class points in red color 
(i.e., leaves and shoots) and undetermined class points in 
green color. (d) Adjusted classification of Michelia tree 
after adapting algorithm parameters. (e) Final 
classification of Sakura tree after correcting 
misclassified points by our method. 

 
(a) 

 
(b)  

 
 (c) 

Fig. 2. Comparison with various algorithms and 
feature sets. (a) Recognition rates of different classifiers. 
(b) Recognition results using different feature sets. (c) 
Computation time of different classifiers. 

The misclassification of minor points was 
occurred while leaves and shoots were 
misclassified as linear class due to perspective 
occlusion. Besides, small branches shaded by 
surrounding leaves always be misclassified as 
planar class. However, for most of scanned data, 
our method can identified photosynthetic and non-
photosynthetic components using color, orientation 
and geomantic information. These salient features 
make the proposed method robust to lighting and 
inevitable color changes as the plant matures. Thus, 
obtaining better non-destructive measurements of 
foliage from tree PCD are realized for convenient 
leaf area estimate. 
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Consequently, we conducted a comparison with 
different classifiers and feature sets. Fig. 2 (a) 
shows that our SLLE + GMM classification method 
achieved a significant improvement in tree organ 
recognition. There are 92.38 % and 87.51 % 
recognition rate on the Michella tree and Sakura 
tree, respectively. The result is higher than other 
similar algorithms such as SVM and GEPSVM23, 
which is shown in Fig. 2(a). Color, normal vector, 
normal distribution and normal vectors of local 
tangent plane of PCD features were respectively 
adopted to address the recognition rate of our 
method. It is clearly visible from Fig. 2(b) that all 
feature combination gives the highest recognition 
rate, with an average recognition rate of higher than 
85.01 %. Due to the interference of external 
environment light, the minimal average recognition 
rates depending upon the color features only 
achieve average 50.27 %. In terms of time 
consuming, our algorithm takes similar time with 
GEPSVM method, but less time than other semi-
supervised SVM classification methods, which is 
shown in Fig. 2 (c).  

Plant leaf reconstruction 

In order to test validation of our leaf surface 
construction algorithm, we preliminarily measure 
real Michelia leaf by LI-3000C portable area meter, 
which can displays and stores plant parameters such 
as: individual leaf area, accumulated area, leaf 
length and width. The practical experiment 
conducted by our student was shown in Fig 3(a).    

Consequently, 3D watershed algorithm was 
designed to separate each leaf from whole leaf PCD 
and the classification results were shown in Fig 
3(b). 

We randomly chose some classified foliage data 
for 3D reconstruction, and Fig. 4 illustrates tree 
leaves modeling process on basis of PCD. Fig 4(a) 
shows classified scanned points of one leaf, where 
the green points are the original scanning PCD with 
noise and deviation and show linear arrangement 
along laser beam emitting angle. The linear 
equation was adopted to fit each scan line that likes 
blue lines in Fig 4(a). Preliminary leaf silhouette 
was labeled by the endpoints of each line. Then, we 
focused on the half side endpoints of every blue 
line and adopted polynomial curve fitting method to 
draw two fitting surfaces, and the lx  and lz  
magnitude of these points were modified to define 
smooth and real leaf boundary through the 
intersection algorithm of these two surfaces. The 
process was shown in Fig 4(b). After the detection 
of leaf boundary, we discarded outlier points 
outside the leaf silhouette, and then the Least 

Squares (LS) estimation and Moving Least Squares 
(MLS) method were adopted to the residual foliage 
points for eliminating deviation caused by wind. 
Fig. 3(c) is the result of foliage surface fitting 
through the LS method (blue color) and the result 
of the MLS method (red color). The comparison 
between LS and MLS methods were carried out in 
Fig. 4(d), where original scanning points, fitted 
results by LS approach and by MLS approach were 
shown by green, blue and red color, respectively. 
Due to the global convergence performance, the LS 
method cannot reflect local curvature of the leaf 
surface. MLS can achieve partial optimal solutions 
of the equations, so the MLS surface fitting scheme 
can describe the local geometric information of 
foliage. Seen from the Fig. 4(e), the MLS method 
gives a better result than the LS method as MLS 
fitted results are closer to the original topological 
properties of real foliage surface. Finally, after leaf 
silhouette extraction, Fig. 4(f) gives polygon-based 
representations and curled meshes of leaf surface. 
Then the transform from discrete scanning points 
into 3D leaf surface was realized and visualization 
of Michelia and Sakura leaf by our method were 
achieved.  

We compared the area of our reconstruction leaf 
model with the precise measurement value by LI-
3000C. Specific comparison data was shown in 
Table 1. For the experimental leaves such as 
Michelia and Sakura tree with different size and 
curvature, measured results from LI-3000C and our 
method got similar value, which proved our method 
is versatile and effective enough to apply for a 
much larger variety of plant leaf modeling. 

Table 1. Leaf area estimation from meter and our 3D 
model. 

 
Number of 
tetrahedron 
composing 
leaf model 

Area of the 
reconstruction 

leaf model 

Leaf 
area 

using 
LI-

3000C 

Deviation 
between 

two 
methods 

Michelia 
leaf 

Mesophyll  
(3212) 
Vein 
(487) 

61.13 
(cm2) 

63.03 
(cm2) 3.02 % 

Sakura 
leaf 

Mesophyll  
(879) 

Vein (148) 

14.93 
(cm2) 

15.72 
(cm2) 5.03 % 

CONCLUSION 

In recent years, TLS has been used for forestry 
parameter measurement, but the topology structure 
of tree is irregular. The scanning results always be 
interfered by external environment, such as wind 
and illumination variation, so deviation often exists 
in the scans and results in failing to capture 
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accurate 3D structural information of forest stands. 
Meanwhile, TLS using LiDAR popular tools is 
capable of producing 3D PCD about scanning trees, 
but extracting structural and biophysical parameters 
directly from discrete PCD is a problem to be 
solved. 

 
(a) 

 
(b) 

Fig. 3. Schematic to illustrate the (a) practical 
experiment using LI-3000C portable area meter and (b) 
separation of each leaf using 3D watershed method from 
scanned data. 

In this paper, we have used computer graphics 
and vision theory to quantitatively identify the tree 
structure and accomplished the foliage surface 
reconstruction from discrete PCD. The main 
contributions of our research were as follows: 

1) We demonstrated the feasibility of 
recovering fine-scale plant structure in 3D point 
clouds using features extraction and pattern 
recognition theory. The proposed feature extraction 
method employs a combination of color, shape, 
normal vector distribution and normal vectors of 
tangent plane to model the local neighborhood 
about given 3D point in terms of its spatial 
distribution. Consequently, the dimensionality of 
PCD features reduced by SLLE were brought into 
the GMM and EM classifiers, which enabled us to 
label each point as the fruit (isotropic distribution), 
leaf (planar) or branch (linear). Our experiment 
results on different tree PCD show that our method 
can automatically detect tree leaves and branches 
with high accuracy.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 4. Different stages of foliage surface 
reconstruction through our method. (a) Original scanned 
points of one leaf, which shows linear arrangement on 
X-Y plane. (b) Smooth edge points generated through 
the binary polynomial fitting. (c) The points with blue 
and red color are the fitted results through LS and MLS, 
respectively. The points in green color are the original 
scanned points. (d) Visualization results through LS and 
MLS processing from different viewpoints. (e) 
Triangulation based on the LS and MLS fitted points. (f) 
Final construction model of 3D foliage surface using our 
method.  
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2) In the multi-location scanning process of TLS, 
foliage jittering in the wind and perspective 
occlusion always occurred to lead to inadequately 
representation of target object surfaces. Thus, 
scanned PCD can not reflect integrated information 
of real canopy leaves. In our work, the bilateral 
edge points of foliage elements were extracted 
through calculation of bilateral endpoints of spatial 
lines, which were arranged along with the scanning 
angle of TLS increasing. Based on these extracted 
edge points, polynomial curve fitting method was 
adopted to obtain two fitting surfaces with original 
Y magnitude. Consequently, the intersection 
algorithm of this two fitting surfaces was proposed 
to determine smooth foliage silhouette. For the 
inner points of leaf surface, MLS approach was 
designed to remove deviation caused by tree 
joggling in wind and preserve the localized biologic 
deformation characteristics. Finally, Delaunay 
triangulation algorithm was designed to realize the 
transform from the discrete PCD into real leaf 
surface.  

In brief, this paper used the latest measurement 
technology (TLS) to extend the traditional 
approaches of tree index acquisition. The main 
contributions include combining pattern recognition 
theory to identify different plant organs and 
accurate leaf surface reconstruction based on the 
computer graphics technique. After this subject 
study, we can provide more useful information 
about canopy structure and enhanced the capability 
of terrestrial LiDAR for characterizing forest 
canopies. With further development of our methods 
for extracting biophysical and ecological 
parameters from TLS data sets, long-term forest 
ecosystem monitoring will benefit from our 
techniques assuring data for sustainable forest 
management practices. 
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(Резюме) 

Наземното лазерно сканиране (TLS) позволява лесното и бързо събиране на точкови данни в облак (PCD) от 
различни обекти и се използва масово. Дърветата обаче имат съществено не-регулярна и сложна морфология и 
сканирането винаги ще бъде повлияно от външни промени и ефекти на включване. Затова количественото 
определяне на 3D морфологията и оценката на параметрите в горите чрез TLS е предизвикателство. За да 
решим този проблем, ние приложихме компютърна техника за подобряване на наземното лазерно сканиране 
(TLS) за измервания в горска среда. Предложени са нови PCD-вектори, включително форма, ориентация, 
нормално разпределение на векторите и  нормалните вектори в равнината на тангентите и алгоритъм за 
контролирано локално линейно включване (SLLE). Гаусов смесен модел (GMM) е възприет за намаляване 
размерността на задачата, както и PCD-класификацията. Така ефективността на алгоритъма е подобрена и 
различни органи на дърветата се идентифицират. Освен това, методът за моделиране на листата използва 
полиномиална апроксимация и с „подвижните най-малки квадрати“ (MLS) се описват истинските силуети на 
листата, избягват се случайнипетна, водейки доточна реконструкция на сложната повърхност на листата. 
Подробните експерименти показват, че разпознаваемостта остава по-висока от 87.51 %, като нашият метод е 
приложен за различни PCD на дърветата, а точната 3D-морфологична реконструкция на листата дава подобна 
площ на ръчно определените по LI-3000C–методика. Така нашият метод дава обещаващи резултати за 
използването на ТLS като ефикасно средство за намиране на параметри на растенията.  
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