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The non-uniform heat generation/absorption and Newtonian heating effects on the steady two-dimensional laminar 

stagnation point boundary layer nanofluid flow past a stretching sheet in the presence of an external uniform magnetic 

field is investigated. The nanofluid is assumed to be viscous, incompressible and electrically conducting. The effects of 

Brownian motion and thermophoretic diffusion are taken into account. The governing non-linear partial differential 

equations are transformed to a set of ordinary differential equations in similarity form which are then solved using Spectral 

Relaxation Method (SRM). The effects of pertinent flow parameters on the flow, heat and nanoparticle concentration are 

studied with the help of graphs and tables. The nanofluid model presented in the paper has significant applications in the 

fluid engineering process where simultaneous effects of heat generation and convecting heating of the bounding surface 

take place such as in heat exchangers and nuclear reactor cooling. 

Keywords: Brownian motion, Magnetic field, Nanofluid, Newtonian heating, Non-uniform heat generation/absorption, 
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INTRODUCTION 

Nanofluids are fluids with suspended nanosized 

(typically 1-100nm in size) particles of metals such 

as copper and gold, oxides such as alumina, silica, 

copper oxide, carbides and carbon nanotubes etc. 

The base fluids are water, oils, ethylene glycol, bio-

fluids, polymer solutions and some lubricants. 

Nanofluids are potentially useful in heat transfer 

devices such as in microelectronics, fuel cells, 

automobiles, pharmaceutical processes, and hybrid- 

powered engines, engine cooling/vehicle thermal 

management, domestic refrigerator, chiller, heat 

exchanger, nuclear reactor coolant, in grinding, in 

space technology, and in defense and ships [1]. 

Nanofluids are reported to exhibit enhanced thermal 

conductivity and convective heat transfer coefficient 

compared to the base fluid [2]. Choi et al. [3] 

concluded that addition of small amount (less than 

1% by volume) of nanoparticles to conventional heat 

transfer liquids increased the thermal conductivity of 

the fluid upto approximately two times. Choi [4] was 

the first who used the term nanofluids to refer the 

fluids with suspended nano-sized particles. Later, it 

was revealed by Buongiorno [5] that the 

enhancement in the thermal conductivity occurs due 

to the presence of Brownian and thermophoretic 

diffusions in the flow field. 

Flow of a viscous, incompressible, and 

electrically conducting fluid over a continuously 

stretching surface under the influence of a transverse 

magnetic field finds applications in a variety of 

engineering processes such as in polymer extrusion 

process which involves cooling of a molten liquid 

being stretched into a cooling systems. The cooling 

liquid used and the rate of stretching are the main 

factors for the fluid mechanical properties of the 

penultimate product in these processes. Flow of the 

fluids, having better electromagnetic properties, 

such as polyethylene oxide, polyisobutylene solution 

in cetane can be controlled by applying external 

magnetic fields. A considerable attention must be 

given to control the rate of stretching of the extrudate 

rather than cooling liquids to accomplish the 

properties expected for outcome. Crane [6] was the 

first to analyze boundary layer flow of the 

Newtonian fluid caused solely by the linear 

stretching of an elastic sheet moving in its own plane 

with velocity proportional to the distance from the 

fixed point. Nadeem et al [7] presented a numerical 

investigation of three-dimensional flow of a water-

based nanofluid over an exponentially stretching 

sheet. Ibrahim and Shankar [8] studied the boundary 

layer flow and heat transfer of a nanofluid over a 

permeable stretching sheet in the presence of an 

external magnetic field, slip boundary condition and 

thermal radiation. The effect of magnetic field on 

stagnation point nanofluid flow and heat transfer 

over a stretching sheet was discussed by Ibrahim et 

al. [9]. They showed that the heat transfer rate at the 

surface increases with the magnetic parameter when 
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the free stream velocity exceeds the stretching sheet 

velocity. Qasim et al. [10] investigated 

magnetohydrodynamic flow of a ferrofluid along a 

stretching cylinder with velocity slip and prescribed 

surface heat flux. The boundary layer flow of a 

nanofluid due to an exponentially permeable 

stretching sheet with external magnetic field was 

studied by Bhattacharyya and Layek [11]. 

The temperature dependent heat source/sink has 

significant contributions on the heat transfer 

characteristics. Temperature differences between the 

surface and ambient-fluid are encountered in several 

engineering applications. Nandepannavar et al. [12] 

studied the flow and heat transfer of a viscous and 

incompressible fluid over a non-linearly stretching 

sheet in the presence of non-uniform heat source and 

variable wall temperature. They numerically solved 

the problem for the case of non-linearly stretching 

sheet by shooting technique with a fourth-order 

Runge-Kutta method while an analytical solution 

was presented for the case of linearly stretching 

sheet. It was concluded that the cumulative effect of 

the temperature dependent and space dependent heat 

generation/absorption is significant on heat transfer 

characteristics. Pal [13] investigated the influence of 

Hall current and thermal radiation on the flow and 

heat transfer characteristics of a viscous, 

incompressible, and electrically conducting fluid 

over an unsteady stretching permeable surface in the 

presence of an externally applied magnetic field. The 

two-dimensional stagnation point flow of nanofluid 

toward an exponentially stretching sheet with non-

uniform heat generation/absorption was investigated 

by Malvandi et al. [14]. They observed that the 

increase in the heat generation causes the heat 

transfer rate to decrease. The problem of heat and 

mass transfer in unsteady MHD boundary layer flow 

of a nanofluid over a stretching sheet with a non-

uniform heat source/sink was considered by Shankar 

and Yirga [15]. There are several other studies [16, 

17] which discussed the effects of non-uniform heat 

generation/absorption under different conditions. In 

these studies the fluid was considered to be visco-

elastic. Goyal and Bhar- gava [18] presented 

numerical simulation of the MHD boundary layer 

flow of a viscoelastic nanofluid past a stretching 

sheet in the presence of partial slip and temperature 

dependent heat source/sink. In a comment, 

Mastroberardino [19] demonstrated that the 

analytical results reported by Nandeppanavar et al. 

[20] were incorrect. He then presented the valid 

solutions of the governing ordinary differential 

equations for the fluid flow and temperature field 

using the homotopy analysis method. 

There are several practical situations where the 

bottom wall is subjected to convective heating using 

a hot fluid situated on the other side of the wall. The 

heat transfer taking place due to such arrangement is 

referred as Newtonian heating. Newtonian heating 

process from the bottom wall has applications in 

many engineering devices such as, in heat exchanger 

where the conduction in the solid tube wall is 

influenced by the convection in the fluid past it, 

conjugate heat transfer around fins where the 

conduction within the fin and the convection 

surrounding the fluid must be analyzed 

simultaneously to obtain important design 

information, and convection flows setup when the 

bounding surfaces absorbs heat by solar radiation. 

Uddin et al. [21] investigated the steady two 

dimensional MHD laminar free convective 

boundary layer flow of an electrically conducting 

Newtonian nanofluid over a vertical plate in a 

quiescent fluid taking into account the Newtonian 

heating boundary condition. Makinde et al. [22] 

presented the combined effects of buoyancy force, 

convecting heating, Brownian motion and 

thermophoresis on the stagnation point flow and heat 

transfer of an electrically conducting nanofluid 

towards a stretching sheet under the influence of 

transverse magnetic field. The complex interaction 

between the electrical conductivity and that of 

nanoparticles in the presence of a magnetic field in a 

boundary layer flow past a convectively heated flat 

surface was discussed by Makinde and Mutuku [23]. 

They observed that the presence of nanoparticles 

greatly enhance the magnetic susceptibility of 

nanofluids as compared to the conventional base 

fluid. 

Motivated from the above studies, the authors 

intend to investigate the effects of non- uniform heat 

generation and Newtonian heating effects on the 

steady two dimensional laminar stagnation point 

boundary layer nanofluid flow past a stretching sheet 

in the presence of an external uniform magnetic 

field. The nanofluid model includes the effect of 

Brownian diffusion and thermophoresis forces. The 

governing nondimensionalized equations in 

similarity form are solved using spectral relaxation 

method (SRM). 

FORMULATION OF THE PROBLEM 

We consider the steady two dimensional 

stagnation point laminar boundary layer flow of a 

viscous, incompressible, and electrically conducting 

nanofluid past a stretching sheet. The x axis is taken 

along the stretching sheet while the y axis is normal 

to the sheet. The surface of the sheet is stretched with 

a velocity proportional to the distance along x axis 
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keeping the origin as fixed. Thus, the fluid flow is 

induced due to the stretching velocity, say Uw = ax, 

of the sheet. The fluid flow is permitted by an 

external uniform magnetic field B0 which acts in y− 

direction. The fluid out side the boundary layer is 

also assumed to have a velocity  U∞.  The  surface  

of  the  sheet  is  convectively  heated by  a  hot  fluid  

of  temperature Tf and the concentration of the 

nanoparticle at the surface is Cw while the values at 

free stream temperature and nanoparticle 

concentration are T∞  and C∞, respectively. 

Assuming that the induced magnetic field effects 

are negligible and there is no external electric field 

applied to the system, so that the effect of 

polarization of electric field is neglected, the 

equations governing the nanofluid velocity, 

nanofluid temperature and nonopar- ticle volume 

friction, are given by 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                                                  (1)  

u
∂u

∂x
+v
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U∞)                                                                                (2)  
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                                                                                (3)  

𝑢
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𝜕𝑥
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𝜕𝑦
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𝐷𝑇

𝑇∞

𝜕2𝑇

𝜕𝑦2                                 (4)  

where u and v are the velocity components along the 

x and y axes, respectively, C and T are nanoparticle 

concentration and nanofluid temperature, 

respectively, ν is the kinematic viscosity, σ is 

electrical conductivity, α is the thermal diffusivity of 

the fluid, DB is the Brownian diffusion coefficient, 

DT is the thermophoretic diffusion coefficient and 

𝜏 =
(𝑝𝑐)𝑝

(𝑝𝑐)𝑓
 is the ratio between the effective heat 

capacity of the nanoparticle material and heat 

capacity of the fluid with ρ being the density, and c 

being the specific heat at constant pressure. The 

subscripts p and f are used to denote the physical 

properties of nanoparticles and base fluid, 

respectively. 

In Eq. (3), q/// is the space and temperature 

dependent internal heat generation/absorption (non-

uniform heat source/sink) which can be expressed as 

𝑞′′′ = (
𝑘𝑈𝑤(𝑥)

𝑥𝑣
) [𝐴∗ 𝑢(𝑇𝑓−𝑇∞)

𝑈∞(𝑥)
+ 𝐵∗(𝑇 − 𝑇∞)]      (5)  

where A∗ and B∗ are the parameters of the space and 

temperature dependent internal heat 

generation/absorption. It is to be noted that A∗ and 

B∗ are positive to internal heat source and negative 

to internal heat sink, ν is the kinematic viscosity. 

The boundary conditions for the problem are 

𝑢 = 𝑈𝑥(𝑥) = 𝑎𝑥, 𝑣 = 0, −𝑘
𝜕𝑇

𝜕𝑦
= ℎ(𝑇𝑓 − 𝑇), 𝐶 =

𝐶𝑤 𝑎𝑡 𝑦 = 0; 𝑢 → 𝑈∞(𝑥) = 𝑏𝑥, 𝑣 → 0, 𝑇 → 𝑇∞,
𝐶 → 𝐶∞,   𝑎𝑠 𝑦 → ∞.                                                  (6)  

We introduce the following dimensionless quantities 

ψ(x,y)=√bvxf(η),  θ=
(T-T∞)

(Tf-T∞)
,  ϕ=

(C-C∞)

(Cw-T∞)
   

where η=√
b

v
y,                                                            (7)  

where η is the dimensionless stream function, and 

the above transformation is chosen in such a way that 

u = ∂ψ/∂y and v = −∂ψ/∂x. 

Using the above transformation, the equation of 

continuity (1) is automatically satisfied and we 

obtain from Eqs. (2)-(5), as 

𝑓 = 0, 𝑓′ = 𝜖, 𝜃′ = −𝐵𝑖(1 − 𝜃),
𝜙 = 1 𝑎𝑡 𝜂 = 0,     𝑓′ → 1,      𝜃 → 0,    𝜙 → 0 𝑎𝑠  
𝜂 → ∞.                                                                        (11) 

In the above equations, primes denote differentiation 

with respect to η and the parameters are defined as 

𝑃𝑟 =
𝑣

𝛼
,   𝑁𝑏 =

(𝑝𝑐)𝑝𝐷𝐵(𝑐𝑤 − 𝑐∞)

(𝑝𝑐)𝑓𝑣
,

𝜖 =
𝑎

𝑏
,    𝐿𝑒 =

𝑣

𝐷𝐵
,   𝑁𝑡 =

(𝑝𝑐)𝑝𝐷𝑇(𝑇𝑓 − 𝑇∞)

(𝑝𝑐)𝑓𝑇∞𝑣
,       

𝐵𝑖 =
ℎ

𝑘
√

𝑣

𝑏
, 

where Е > 0 is for a stretching sheet and Е < 0 is for 

a shrinking sheet. Further, Pr is the Prandtl number, 

Le is the Lewis number, Nb is the Brownian motion 

parameter, and Nt is the thermophoresis parameter. 

The physical quantities of interest are the local 

skin friction coefficient Cfx , the local Nusselt 

number Nux and the local Sherwood number Shx 

which are defined as 

Cfx
=

τw

ρU∞
2 ,   Nux=

xqw

k(Tf-T∞)
,  Shx=

xqm

DB(Cw-C∞)
, 

where the surface shear stress τw, the local heat flux 

qw, and the local mass flux qm are given by 

𝜏𝑤 = 𝜇 (
𝜕𝑢

𝑑𝑦
)

𝑦=0

,   𝑞𝑤 = −𝑘 (
𝜕𝑇

𝑑𝑦
)

𝑦=0

, 

 
 

  𝑞𝑚
= −𝐷𝐵 (

𝜕𝐶

𝑑𝑦
)

𝑦=0

, 

with µ and k being the dynamic viscosity and thermal 

conductivity of the nanofluids, re- spectively. Using 

the similarity variables (7), we obtain 

(𝑅𝑒𝑥)1 2⁄ 𝐶𝑓𝑥
= 𝑓′′(0),                                             (12) 
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− 

(𝑅𝑒𝑥)−1 2⁄ 𝑁𝑢𝑥 = −𝜃′(0),                                      (13) 

(𝑅𝑒𝑥)−1 2⁄ 𝑆ℎ𝑥 = −𝜙′(0),                                      (14) 

where 𝑅𝑒𝑥 =
𝑈∞𝑥

𝑣
 is the local Reynolds number. 

SOLUTION TECHNIQUE 

The spectral relaxation method (SRM) (see 

Motsa and Makukula [24], Kameswaran et al. [25]) 

is employed to solve the Eqs. (8)-(10) subject to the 

boundary conditions (11). The method uses the 

Gauss-Seidel approach to decouple the system of 

equations. In the framework of SRM method the 

iteration scheme is obtained as 

𝑓𝑟+1
′ = 𝑝𝑟 ,    𝑓𝑟+1(0) = 0                                       (15) 

𝑝𝑟+1
′′ + 𝑓𝑟+1𝑝𝑟+1

′ − 𝑀𝑝𝑟+1 = 𝑝𝑟
2 − 𝑀 − 1,       (16) 

𝜃𝑟+1
′′ + 𝑃𝑟𝑓𝑟+1𝜃𝑟+1

′ + 𝜖𝐵∗𝜃𝑟+1

= −[𝑃𝑟𝑁𝑏𝜃𝑟
′𝜙𝑟

′ + 𝑃𝑟𝑁𝑡𝜃𝑟
′2 + 𝜖𝐴∗𝑓𝑟+1

′ ],           (17) 

𝜙𝑟+1
′′ + 𝐿𝑒𝑓𝑟+1𝜙𝑟+1

′ = −
𝑁𝑡

𝑁𝑏
𝜃𝑟+1

′′ .                      (18) 

The boundary conditions for the above iteration 

scheme are 

𝑝𝑟+1(0) = 𝜖,      𝑝𝑟+1(∞) → 1,                             (19) 

θr+1
' (0)=-Bi{1-θr+1(0)}, θr+1(∞)→0,              (20) 

𝜙𝑟+1(0) = 1,      𝜙𝑟+1(∞) → 0.                            (21) 

In order to solve the decoupled equations (15)-(18), 

we use the Chebyshev spectral collocation method. 

The computational domain [0, L] is transformed to 

the interval [ 1, 1] using η = L(ξ + 1)/2 on which the 

spectral method is implemented. Here L is used to 

invoke the boundary conditions at . The basic idea 

behind the spectral collocation method is the 

introduction of a differentiation matrix which is used 

to approximate the derivatives of the unknown 

variables at the collocation points as the matrix 

vector product of the form 

𝑑𝑓𝑟+1

𝑑𝜂
= ∑ 𝐷𝑙𝑘𝑓𝑟

𝑁

𝑘=0

(𝜉𝑘) = 𝐷𝑓𝑟,    

   𝑙 = 0, 1, 2, … , 𝑁,                                                    (22) 
where N + 1  is  the  number  of  collocation  points  

(grid  points), D = 2/L, and f = [f (ξ0), f (ξ1), . . . , f 

(ξN )]T is the vector function at the collocation 

points. Higher-order derivatives are obtained as 

powers of D, that is, 

𝑓𝑟
(𝑝)

= 𝐷𝑝𝑓𝑟,                                                              (23) 

where p is the order of the derivative. 

Applying the spectral method to equations (15)-

(18), we obtain 

𝐴1𝑓𝑟+1 = 𝐵1,      𝑓𝑟+1(𝜉𝑁) = 0,                             (24) 

𝐴2𝑝𝑟+1 = 𝐵2, 𝑝𝑟+1(𝜉𝑁) = 𝜖,      𝑝𝑟+1(𝜉0) = 1  (25) 

𝐴3𝛩𝑟+1 = 𝐵3,      𝜃𝑟+1
′ (𝜉𝑁)

= −𝐵𝑖{1 − 𝜃𝑟+1(𝜉𝑁)},     𝜃𝑟+1(𝜉0) = 0             (26) 

𝐴4Φr+1 = B4,    𝜙𝑟+1(𝜉𝑁) = 1, 𝜙𝑟+1(𝜉0) = 0 (27) 

where, 

𝐴1 = 𝐷,     𝐵1 = 𝑝𝑟 ,                                                 (28) 

𝐴2 = 𝐷2 + 𝑑𝑖𝑎𝑔(𝑓𝑟)𝐷 + 𝑑𝑖𝑎𝑔(−𝑀)𝐼, 

𝐵2 = 𝑝𝑟
2 − (𝑀 − 1),                                                (29) 

𝐴3 = 𝐷2 + 𝑑𝑖𝑎𝑔(𝑃𝑟𝑓𝑟)𝐷 + 𝑑𝑖𝑎𝑔(𝜖𝐵∗)𝐼, 

 𝐵3 = −[𝑃𝑟𝑁𝑏𝜙𝑟
′ 𝜃𝑟

′ + 𝑃𝑟𝑁𝑡𝜃𝑟
′2 + 𝜖𝐴∗𝑓𝑟+1

′ ],     (30) 

𝐴4 = 𝐷2 + 𝑑𝑖𝑎𝑔(𝐿𝑒𝑓2)𝐷,   𝐵4 = −
𝑁𝑡

𝑁𝑏
𝜃𝑟+1

′′ , (31) 

In equations (28)-(31), I is an identity matrix and 

diag[.] is a diagonal matrix, all of size (N + 1) (N + 

1) where N is the number of grid points, f , p, Θ, and 

Φ are the values of the functions f ,, p, θ and φ, 

respectively, when evaluated at the grid points and 

the subscript r denotes the iteration number. 

The initial guesses, to start the SRM scheme for 

equations (15)-(18), are chosen as 

𝑓0(𝜂) = 𝜂 + 𝑒−𝜂 − 𝑒−𝜖𝜂 ,  
𝑝0(𝜂) = 1 − 𝑒−𝜂 + 𝜖𝑒−𝜖𝜂 , 

𝜃0(𝜂) =
1

2
𝑒−𝜂𝐵𝑖𝜙0(𝜂) = 𝑒−𝜂 .                              (32)  

ERROR ANALYSIS 

The error in the iteration scheme is assessed by 

taking the norm of the difference in the values of 

functions between two successive iterations. For 

each iteration scheme, we define the following 

maximum error Ed at the (r + 1)th iteration level 

𝐸𝑑 = 𝑚𝑎𝑥 (‖𝑧1,𝑟+1 − 𝑧1,𝑟‖
∞

, ‖𝑧2,𝑟+1 −

𝑧2,𝑟‖
∞

, … , ‖𝑧𝑚,𝑟+1 − 𝑧𝑚,𝑟‖
∞

),                            (33)  

where zi; i = 1, 2, ...., m are the governing 

unknown functions in the nonlinear system. It is 

observed from Fig 1 that the error Ed decreases 

rapidly with an increase in the number of iterations, 

which ascertain us the convergence of iteration 

schemes. It may be noted from 

Fig 1 that about 50 iterations are required to 

obtain an accuracy of up to 10−12 in nanofluid 

velocity, temperature, and species concentration. 

The unknowns are calculated, for a given number of 

collocation points N , until the following criteria for 

convergence is satisfied at iteration r 

𝐸𝑑 ≤ 𝜖, 

where Е is the convergence tolerance level. The 

effect of the number of collocation points N is 

examined in order to select the smallest value of N 

which gives a consistent solution to the error level Е. 
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This is achieved by repeatedly solving the governing 

equations using the above iteration schemes with 

different values of N until the consistent solution is 

reached. 

 
Fig. 1. Maximum error in f , θ, and φ versus 

number of iterations. 

RESULTS AND DISCUSSION 

The steady two dimensional laminar stagnation 

point boundary layer flow of a viscous, 

incompressible, and electrically conducting 

nanofluid past a stretching sheet in the presence of 

an external magnetic field is investigated with a view 

to analyze the effects of non-uniform heat 

generation/absorption and Newtonian heating. In 

order to analyze the effects of several flow 

parameters viz. the magnetic parameter M, 

Brownian motion parameter Nb, thermophoresis 

parameter Nt, heat generation/absorption parameter 

A∗ and B∗, and the Biot number Bi, the profiles of 

nanofluid velocity f /, nanofluid temperature θ, and 

nano-particle concentration φ are depicted 

graphically in Figs. 2- 6 while the values of 

coefficient of skin-friction, Nusselt number, and 

Sherwood number are tabulated in Table 1. 

In Figs. 2 and 3, the effects of Brownian motion 

parameter Nb and thermophoresis parameter Nt on 

the nanofluid temperature and nanoparticle 

concentration are visualized. These are the two 

important effects which perturb the heat transfer 

characteristics of the fluid significantly due to the 

presence of nanoparticles in the flow field. The 

increase in Brownian motion parameter Nb measures 

an increase in the Brownian motion of the nano- 

sized particles present in the fluid. It is observed that 

the increase in Brownian motion of the nanoparticles 

causes an increase in the nanofluid temperature and 

a decrease in nanoparticle concentration within the 

boundary layer region. This is the cumulative effect 

due to transfer of heat from the surface to the fluid 

and the kinematic energy gained by the nanoparticle 

due to Brownian motion. The Brownian motion of 

nanoparticles transfers the surface heat to the fluid 

while the nanoparticles gain higher kinematic energy 

which contributes to the thermal energy of the fluid. 

Also there is a movement of the nanoparticles from 

the high temperature region towards the low 

temperature region and as a result the concentration 

of the nanoparticles within the boundary layer region 

decrease with the increase Brownian motion of the 

nanoparticles. It is concluded from Fig. 3, that the 

increase in thermopheretic parameter Nt increases 

the nanofluid temperature. The increase in the 

temperature is viewed as a result of the 

thermophoresis force by which a nanoparticle 

pushes the other nanoparticles away from the heated 

surface which in turn generates thermal energy due 

to the collision of nanoparticles. On the other hand, 

the effect of thermopheretic force on nanoparticle 

concentration is only significant in a region away 

from the surface where it increases with the increase 

in thermopheretic force. 

 
Fig. 2. The effect of Brownian motion parameterNb on 

(a) the fluid temperature θ and (b) the species 

concentration φ, when M = 2, Е = 0.1, Le = 5, Pr = 5, Bi 

= 5, Nt = 0.1, A∗ = 0.5, and B∗ = 0.5. 
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Fig. 3. The effect of Thermophoresis parameter Nt on 

(a) the fluid temperature θ and (b) the species 

concentration φ, when M = 2, Е = 0.1, Le = 5, Bi = 5, Nb 

= 0.1, Pr = 5, and B∗ = 0.05. 

Fig. 4 displays the effect of space dependent heat 

generation/absorption parameter A∗ and temperature 

dependent heat generation/absorption parameter B∗ 

on the nanofluid temperature and nanoparticle 

concentration within the boundary layer region. An 

increase in A∗ and B∗ cumulatively decides up to 

what extent the temperature will rise or fall within 

the boundary layer. Increase in the values of A∗ > 0, 

B∗ > 0 contribute in the generation of thermal energy 

and hence the nanofluid temperature increases while 

an increase in A∗ < 0, B∗ < 0 takes the thermal 

energy from the system and the nanofluid 

temperature decreases. As the nanofluid temperature 

increases, with increasing A∗and B∗, diffusion of 

nanoparticles take place from the high temperature 

region to the low temperature region and as a result 

the nanoparticle concentration within the boundary 

layer decreases which is depicted in Fig. 4(b). 

The surface of stretching sheet is convectively 

heated by a hot fluid via Newtonian heating process. 

The effect of this heating is measured by the non-

dimensional parameter Bi, and is captured in Fig. 5. 

It is clearly observed that the nanofluid temperature 

increases with the increase in convective heating of 

the surface. Also there is an increase in the 

nanoparticle concentration with the increase in 

convective heating of the surface. 

 
Fig. 4. The effect of space dependent heat source/sink 

A∗ and temperature dependent heat source/sink  B∗ on (a) 

the fluid temperature θ and (b) the species concentration 

φ, when M = 2, Е = 0.1, Le = 5, Bi = 5, Nt = Nb = 0.1, and 

Pr = 5. 

The effect of magnetic parameter M is presented 

in Fig. 6. An increase in magnetic parameter 

measures the increage in the strength of the 

externally applied magnetic field. Interestingly, it is 

observed that the incasing in magnetic parameter 

causes a flow acceleration while it decreases the 

nanofluid temperature and nano-particle 

concentration. This is an opposite effect with the 

usual effect of magnetic field because in most of the 

cases the application of an external magnetic field 

gives rise to a resistive force, known as Lorentz 

force. However the obtained results are in agreement 

with the results of Ibrahim et al. [9]. Thus, in order 

to delay the boundary layer formation the magnetic 

field strength should be decreased appropriately. 
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Fig. 5. The effect of Biot number Bi on (a) the fluid 

temperature θ and (b) the species concentration φ,     when 

M = 2, Е = 0.1, Le = 5, Nb = Nt = 0.1, Pr = 5, A∗    = 0.05, 

and B∗ = 0.05. 

It is perceived from Table 1 that an increase in the 

magnetic field causes an increase in the coefficient 

of skin-friction which is due to the increase in the 

tangential force taking place as a result of increasing 

velocity. It is observed that the Nusselt number, 

which measures the rate of heat transfer from the 

surface, increases with increasing values of M   and 

Bi, while it decreases with increasing values of Nb, 

Nt and A∗ = B∗. This implies that the rate of heat 

transfer from the surface increases with an increases 

in the magnetic field and convective heating of the 

surface while the effects of Brownian motion, 

thermopheresis and heat generation/absorption is to 

decrease the rate of heat transfer from the surface. It 

may also be noted that the nanoparticle mass transfer 

increases with the increase in magnetic field, 

Brownian motion, thermophoresis, and heat 

generation/absorption while it is reversely affected 

by an increase in the convective heating at the 

surface. 

 
Fig. 6. The effect of magnetic parameter M on (a) the 

fluid velocity f t, (b) the fluid temperature θ and (c) 

species concentration φ when Le = 5, Pr = 5, Bi = 5, Е = 

0.1, Nb = Nt = 0.1, A∗  = 0.05, and B∗    = 0.05. 

CONCLUSIONS 

The effects of space/temperature dependent non-

uniform heat generation/absorption and Newtonian 

heating on the flow of a viscous, incompressible, and 

electrically conducting nanofluid past a stretching 

sheet is studied. The space dependent and 

temperature dependent heat generation have 

increasing effect on the nanofluid temperature while 

the heat absorption has a decreasing effect. 

However, the observed effects were found to be very 

less in these cases. The Newtonian heating at the 

surface of the sheet has an increasing effect on the 

nanofluid temperature and nanoparticle 
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concentration and the effect on the nanofluid 

temperature is significant. One of the interesting 

results of the present study is the increasing effect of 

the magnetic field on the nanofluid velocity and an 

opposite one on the nanofluid temperature where 

these two physical quantities behave opposite to 

their usual trend with a change in the strength of the 

applied magnetic field. Thus in physical problems of 

the type as presented in this study, it is worthwhile 

to have a lesser applied magnetic field, as this will 

delay the boundary layer formation in the flow-field 

and will also decrease the skin-friction coefficient 

and rate of heat transfer from the surface. 

Table 1. Effects of different parameters on coefficient of 

local skin-friction Cfx, local Nusselt number Nux, and local 

Sherwood number Shx. 

M BI NB NT A∗ = B∗ Cfx√REx NUx/√REx SHx/√REx 

2 5 0.1 0.1 0.05 1.7104942 0.682568 1.09760339 

6     2.48213545 0.72527974 1.16350495 

10     3.06583575 0.74933533 1.19956408 

 

1 

   

1.7104942 0.45554137 1.12193154 

5 1.7104942 0.682568 1.09760339 

10 1.7104942 0.72469558 1.095271 

  

0.1 

  

1.7104942 0.682568 1.09760339 

0.2 1.7104942 0.52739275 1.22560301 

0.3 1.7104942 0.39744915 1.25879947 

   

0.1 

 

1.7104942 0.682568 1.09760339 

0.2 1.7104942 0.58963076 1.13147173 

0.3 1.7104942 0.5069898 1.28114771 

    0.05 1.7104942 0.69148946 1.09310392 

      0 1.7104942 0.68703939 1.09534757 

    0.05 1.7104942 0.682568 1.09760339 
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НАНОФЛУИДЕН ПОТОК С ТОЧКА НА СТАГНАЦИЯ ПО ПРОТЕЖЕНИЕ НА 

РАЗТЕГЛЯЩА СЕ ПЛАСТИНА С НЕЕДНАКВО ГЕНЕРИРАНЕ / ПОГЛЪЩАНЕ НА 
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(Резюме) 

Разглеждат се неравномерното генериране / абсорбция на топлина и ефектите на Нютоново нагряване върху 

постоянния двумерен ламинарен граничен слой на стагнация на нанофлуид преминаващ разтягаща се пластина 
в присъствието на външно унифицирано магнитно поле . Предполага се, че нанофлуидът е вискозен, несвиваем 

и електрически проводим. Ефектите от Брауновото движението и термофоретичната дифузия са взети под 

внимание. Управляващите нелинейни частни диференциални уравнения се трансформират в набор от обикновени 

диференциални уравнения, които се решават с помощта на спектралния метод на релаксация (SRM). Ефектите от 

съответните параметри на потока, топлината и концентрацията на наночастици се изследват с помощта на 

графики и таблици. Представеният нанофлуиден модел има значителни приложения при инженерни процеси с 

течение, при които се осъществява едновременен процес на генериране на топлина и конвективно нагряване на 

граничната повърхност, като топлообменници и охлаждане на ядрен реактор. 

 


