Thermal behavior of some germanates with non-olivine structure

I. Koseva¹*, V. Nikolov¹, A. Yordanova¹, P. Tzvetkov¹, N. Petrova²

¹ Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria ² Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

Received January 26, 2017; Revised February 01, 2017

Dedicated to Acad. Bogdan Kurtev on the occasion of his 100th birth anniversary

Single phase germanates LiAlGeO₄, LiGaGeO₄ and Zn₂GeO₄ with hexagonal structure (space group, S. G., R3), Li₂CaGeO₄ with tetragonal structure (S. G. I-42m), Ca₅Ge₃O₁₁ with monoclinic structure (S. G. C1) and 5LiAlGeO₄.4Zn₂GeO₄ with cubic structure were obtained by solid-state synthesis. The thermal behavior of these germanates was studied with a view to finding out the most appropriate method and conditions for growing single crystals from them, which, after doping with Cr^{4+} , can be used as matrices for lasers with a broad emission spectrum in the range from 1.0 to 1.6 µm. By means of powder X-ray diffraction and DTA/TG analysis, the melting temperatures, the type of melting (with or without decomposition), the type of the phases crystallizing after decomposition, as well as the presence (or lack) of polymorphic transitions in the vicinity of the melting temperature, were studied. Most of the synthesized germanates (LiAlGeO₄, Zn₂GeO₄, Ca₅Ge₃O₁₁, and 5LiAlGeO₄.4Zn₂GeO₄) are melting congruently (without decomposition) and do not display phase transitions. Unlike the germanates with olivine structure, which are examined in more details for the same purpose, single crystals from non-olivine germanates could be directly grown from their own solutions (by the methods of Czochralski, Bridgman-Stockbarger or Kyropoulos) instead of using the flux method, which is characterized by a considerably lower rate of growing and a limited crystal size.

Key words: germanates, melting temperature, phase transitions, X-ray diffraction analysis, DTA analysis

INTRODUCTION

Single crystals of complex oxides doped with ions of transition 3d elements with different oxidation states are of particular interest as laser media. These single crystals display a broad emission range as tunable lasers [1, 2] and may also be used as media for femtosecond lasers [3, 4]. Of particular importance are the Cr4+ doped media emitting in the range from 1.1 to 1.6 µm. Lasers emitting in this range find increasing application in medicine, ecology and telecommunications [5, 6]. The most popular Cr⁴⁺ doped single crystals are those of Mg_2SiO_4 (forsterite) and $Y_3Al_5O_{12}$ (garnet). Both of these single crystals have, however, several drawbacks. For example, a severe problem is caused by nonradiative transitions, as a result of which the quantum efficiency amounts to about 9% for forsterite and 14-22% for YAG [7, 8]. Another problem is the undesired presence of Cr^{3+} along with Cr⁴⁺. As a rule, only a small percentage of chromium is in the desired Cr^{4+} state [8]. Owing to the issues mentioned, novel Cr⁴⁺ doped laser matrices are still looked for. Most promising among

the novel crystal matrices studied so far seem to be the Cr^{4+} doped germanates having Ge^{4+} in the tetrahedral environment preferred by Cr^{4+} as the ionic radii of Ge^{4+} and Cr^{4+} are very close – 0.41 and 0.39 Å [9], respectively. From this point of view, substitution of Ge^{4+} by Cr^{4+} is significantly facilitated up to high concentrations of Cr^{4+} . Favorable fact is that the existence of chromium as Cr^{3+} or Cr^{2+} in these germanates is highly improbable. Suitable class of single crystal matrices is that of

germanates with olivine structure (S. G. Pnma) with the general formulas: Me₂GeO₄ (Me=Mg, Ca); Li₂MeGeO₄ (Me=Mg, Zn); LiMeGeO₄ (Me= Sc, In, Y), as well as the compound Li_4GeO_4 . Our study of the thermal behavior of these germanates revealed that most of them are melting with decomposition (incongruently) or display phase transitions. The only exception is Mg_2GeO_4 Its melting temperature is, however, too high (1885 °C) and considerable amounts of GeO₂ evaporate. Hence, the flux method from high-temperature solutions is the only option of growing crystals from these compounds. The crystal growth should be performed below the decomposition temperature or the temperature of phase transition. A major drawback of this method compared with the growth from the own melt

^{*} To whom all correspondence should be sent: E-mail: ikosseva@svr.igic.bas.bg

(methods of Czochralski, Bridgman-Stockbarger or Kyropoulos) is the considerably lower rate of growing. This explains the search for other germanates which possess the advantages of the olivine-group ones (tetrahedral environment of germanium, close ionic radii of Ge^{4+} and Cr^{4+}) and melt with no decomposition or phase transitions.

According to the literature data, LiAlGeO₄, LiGaGeO₄ and Zn₂GeO₄ are isostructural and belong to the same structural group (S. G. R3) [10-15]. Germanium participates in this structure in two tetrahedra differing by size and deformation degree; lithium and aluminium (lithium and gallium), as well as zinc in Zn₂GeO₄ are also in tetrahedral positions. The structural differences between these three compounds are due to the different Ge-O and Me-Ge distances, where Me is Li, Al, Ga or Zn. There is no information on their thermal behavior before melting (presence or lack of transitions).

Li₂CaGeO₄ has tetragonal structure (S. G. I-42m), in which germanium and lithium are in tetrahedral environment, while calcium is in dodecahedral coordination [16]. Although this compound, doped with rare earth elements (Er, Tb, Dy), has been examined as a phosphorescent substance, there are no data about its thermal behavior. The phase Ca₅Ge₃O₁₁ has monoclinic structure in which germanium participates in three tetrahedra differing by size and deformation degree, while calcium is in a dodecahedral occupation [17, 18]. There is no data about the thermal behavior of this compound either.

According to the pseudobinary diagram of LiAlGeO₄-Zn₂GeO₄ [19], the compound 5LiAlGeO₄: $4Zn_2GeO_4$ (Li₅Al₅Zn₈Ge₄O₃₆) exists and has a temperature of congruent decomposition about 1080°C with no polymorphic transitions up to this temperature.

All the above mentioned six germanates possess Ge^{4+} in a tetrahedral position, therefore they are suitable for Cr^{4+} doping as the already investigated germanates with olivine structure.

The main purpose of this work was to study the thermal behavior (melting temperatures, type of phases obtained by eventual decomposition, presence or lack of polymorphic transitions) of the above mentioned six germinates. The thermal behavior strongly determines the method and conditions of single crystals growth.

EXPERIMENTAL

The studied germanates were obtained by solidstate synthesis using the following reagents: CaCO₃

(99.9), Li₂CO₃ (99.99), ZnO (99.0), Al₂O₃ (99.99), Ga_2O_3 (99.9) and GeO_2 (99.999). Stoichiometric amounts of the starting reagents for the corresponding germanate were weighed with a precision of ± 0.01 g and were mixed and ground in an agate mortar. The reaction mixtures were thermally pretreated at 900 °C for 2 h for decomposition of the carbonates present. After a further homogenization, the mixture was heated for 16 h, with two intermediate grindings, at different temperatures until the minimal temperature was established, which was sufficient for obtaining a well-crystallized pure germanate product with no of unreacted reagents admixtures or side compounds. After synthesis different at temperatures the following optimal temperatures for solid-state synthesis were found: 1050 °C for LiAlGeO₄, 1100 °C for LiGaGeO₄, 1150 °C for Zn₂GeO₄, 1050 °C for Li₂CaGeO₄, 1200 °C for Ca₅Ge₃O₁₁ and 1050 °C for 5LiAlGeO₄.4Zn₂GeO₄.

Structural characterization was carried out by powder X-ray diffraction (XRD) using a Bruker D8 Advance powder diffractometer with Cu Ka radiation and SolX detector. XRD spectra were recorded at room temperature. Data were collected in the 2θ range from 10 to 80° 2θ with a step of 0.048 2θ and counting time of 1 s/step. XRD spectra were identified using the Diffractplus EVA program.

Differential thermal analysis was carried out on a DTA-TG analyzer SETSYS Evolution 2400, SETARAM in static air atmosphere with a heating rate of 10 $^{\circ}$ C min⁻¹ and 15-20 mg sample weight.

Additional experiments were performed in order to establish the melting type (congruent or incongruent). For this purpose a sample of about 2 g was placed in a platinum crucible and was heated in a furnace with a $MoSi_2$ heater with controllable temperature (± 1 °C) up to a temperature by 20-30 °C above the melting temperature established by DTA. After holding for 30 min, the sample was withdrawn from the hot area and was briskly cooled on a cold copper plate. The sample cooled down to room temperature for 10-15 s. The briskly crystallized sample was subjected to XRD analysis for identification of the crystallized phases.

RESULTS AND DISCUSSION

Figs. 1 and 2 present the powder XRD patterns of germanates obtained by solid-state synthesis, compared to the corresponding PDF data. No additional phases can be distinguished and the patterns are consistent with the literature data.

Fig. 1. Powder XRD patterns of the LiAlGeO₄, LiGaGeO₄ and Zn_2GeO_4 obtained by solid-state synthesis, compared to the corresponding PDF data.

Fig. 2. Powder XRD patterns of the Li_2CaGeO_4 , $Ca_5Ge_3O_{11}$ and $Li_5Zn_8Al_5Ge_9O_{36}$ obtained by solid-state synthesis, compared to the corresponding PDF data.

The DTA/TG curves of the samples are shown in Fig. 3. As can be seen, none of the germanates displays phase transitions in the vicinity of the melting temperature. The established melting temperatures are: 1190 °C for LiAlGeO₄, 1147 °C for LiGaGeO₄, 1505 °C for Zn₂GeO₄, 1120 °C for Li₂CaGeO₄, 1560 °C for Ca₅Ge₃O₁₁ and 1160 °C for 5LiAlGeO₄.4Zn₂GeO₄. Except for the melting temperature of Zn₂GeO₄, these data differ from those given in the literature. Thus, for LiAlGeO₄ the temperature 1150°C is given in [13] (1190 °C in this work); for LiGaGeO₄ -1200 °C [20] (1147 °C in this work); for Zn₂GeO₄ -1502 °C [12] (1505 °C in this work); no data are available for Ca₅Ge₃O₁₁ and Li₂CaGeO₄; while the temperature 1080 °C is given for 5LiAlGeO₄.4Zn₂GeO₄ according to the phase diagram [19], (1160 °C in this work).

Fig. 3. DTA/TG curves of LiAlGeO₄, LiGaGeO₄, Zn_2GeO_4 , Li₂CaGeO₄, $Ca_5Ge_3O_{11}$ and $Li_5Zn_8Al_5Ge_9O_{36}$ up to the melting temperature. 1 – melting temperature.

The results of the experimental study of the type of melting of the germanates and the phases crystallizing from the melts are presented in Fig. 4. As can be seen, the XRD pattern of the products after melting of LiAlGeO₄ and subsequent brisk cooling, does not contain any peaks different from those of LiAlGeO₄ and matches very well the one given in the literature (PDF-270289), i.e. LiAlGeO₄ is melting congruently at 1160 °C. Similar behavior is displayed by Zn_2GeO_4 , $Ca_5Ge_3O_{11}$ and 5LiAlGeO₄.4Zn₂GeO₄. The congruent melting of these four germanates (LiAlGeO₄, Zn₂GeO₄, Ca₅Ge₃O₁₁ and 5LiAlGeO₄.4Zn₂GeO₄) is of great significance as crystal growth is concerned, because single crystals of these germanates could be grown from their own melts by methods characterized by technological simplicity and high growing rate.

Fig. 4 illustrates the thermal behavior of LiGaGeO₄ after melting. Differently from the published assertion [10] that this compound melts congruently, our studies revealed that it melts at 1147°C with decomposition, the main decomposition product being Li₂GeO₃. Fig. 4 also presents the thermal behavior of Li₂CaGeO₄ which melts with decomposition to Ca₂GeO₄ and Li₂GeO₃.

Fig. 4. Powder XRD patterns of the products after melting of LiAlGeO₄, LiGaGeO₄, Zn₂GeO₄, Li₂CaGeO₄, Ca₅Ge₃O₁₁ and Li₅Zn₈Al₅Ge₉O₃₆. Additional phases in the cases of incongruent melting are marked.

As was already said, none of the examined germanates displays phase transitions.

CONCLUSION

The germanates examined in the present study are considerably more appropriate for crystal growth than the germanates with olivine structure. Our former studies revealed that out of nine germanates with olivine structure, none could be directly grown from its own melt. Unlike the olivine-type germanates, four of the germanates in the present study (LiAlGeO₄, Zn₂GeO₄, Ca₅Ge₃O₁₁ and 5LiAlGeO₄.4Zn₂GeO₄) are melting congruently without phase transitions. Hence, methods for

single crystal growth from the own melt can be applied (Czochralski, Bridgman-Stockbarger and Kyropoulos). It should be kept in mind, however, that two of these germanates (Zn₂GeO₄ and $Ca_5Ge_3O_{11}$) are melting at relatively high temperatures (1505 °C and 1560 °C, respectively), which would hamper the crystal growth due to some evaporation of GeO₂. The thermal behavior of other two germanates (LiAlGeO₄ the and 5LiAlGeO₄.4Zn₂GeO₄) is perfectly suited for single crystal growth from their own melts. The compounds LiGaGeO₄ and Li₂CaGeO₄ are melting with decomposition and crystal growth from them could be realized only by the flux method, as in the case of the germanates of the olivine group.

REFERENCES

- 1. E. V. Zharikov, V. A. Smirnov, *Wide Gap Luminescent Materials: Theory and Applications,* Kluwer Academic, Nowell, MA, 1997.
- 2. S. Kück, Appl. Phys. B, 72, 515 (2001).
- M. J. Hayduk, S. T. Johns, M. F. Krol, *Laser focus world*, **32**, 73 (1996).
- S. Spälter, M. Böhm, M. Burk, B. Mikulla, R. Fluck, I.D. Jung, G. Zhang, U. Keller, A. Sizmann, G. Leuchs, *Appl. Phys. B*, 65, 335 (1997).
- 5. Y. Kalisky, Prog. Quant. Electron., 28, 249 (2004).
- 6. A. Sennaroglu, Prog. Quant. Electron., 26, 287 (2002).
- C. R. Pollock, D. B. Barber, J. L. Mass, S. Margraf, *IEEE J. Selec. Topics Quantum Electron.*, 1, 62 (1995).
- 8. A. G. Okhrimchuk, A. V. Shestakov, *Opt. Mater.*, **3**, 1 (1994).
- 9. R. T. Shannon, Acta Crystallogr. A, 32, 751 (1976).
- 10. M. E. Fleet, Z. Kristallogr., 180, 63 (1987).
- 11. G. Blasse, J. Inorg. Nucl. Chem., 25, 743 (1963).
- 12. P. G. Bruce, A. R. West, *Mat. Res. Bull.*, **15**, 379 (1980).
- K. A. Subbotin, V. A. Smirnov, E. V. Zharikov, A. V. Gaister, I. A. Shcherbakov, L. D. Iskhakova, *Opt. Spectrosc.*, **89**, 56 (2000).
- K. A. Soubbotin, V. A. Smirnov, S. V. Kovaliov, H. J. Scheel, E. V. Zharikov, *Opt. Mater.*, **13**, 405 (2000).
- K. A. Soubbotin, V. A. Smirnov, E. V. Zharikov, I. A. Shcherbakov, *Advanced Solid State Lasers*, Optical Society of America, 2002.
- 16. J. A. Gard, A. R. West, J. Solid State Chem., 7, 422 (1973).
- 17. G. J. Redhammer, G. Roth, G. Amthauer, Acta Crystallogr. C, 62, i94 (2006).
- 18. J. Barbier, D. Levy, Z. Kristallogr., 212, 519 (1997).
- 19. R. K. Datta, J. Am. Ceram. Soc., 50, 384 (1967).
- 20. M. Behruzi, Th. Hahn, Z. Kristallogr., 133, 405 (1971).

ТЕРМИЧНО ПОВЕДЕНИЕ НА НЯКОИ ГЕРМАНАТИ С НЕОЛИВИНОВА СТРУКТУРА

Й. Косева¹*, В. Николов¹, А. Йорданова¹, П. Цветков¹, Н. Петрова²

¹ Институт по обща и неорганична химия, Българска Академия на Науките, 1113 София, България ² Институт по минералогия и кристалография, Българска Академия на Науките, 1113 София, България

Постъпила на 26 януари 2017 г.; Коригирана на 01 февруари 2017 г.

(Резюме)

Чрез твърдофазен синтез бяха получени монофазни германати от съединенията с хексагонална структура LiAlGeO₄, LiGaGeO₄ и Zn₂GeO₄ (S.G. R3), от съединението с тетрагонална структура Li₂CaGeO₄ (S.G. I-42m), от съединението с моноклинна структура $Ca_5Ge_3O_{11}$ (S.G. C1⁻) и от съединението с кубична структура 5LiAlGeO₄.4Zn₂GeO₄. Беше изследвано термичното поведение на тези германати от гледна точка да се намерят най-подходящия метод и условия за израстване от тях на монокристали, които след дотиране с Cr⁴⁺, могат да бъдат използвани като лазерни матрици за лазери с широк спектър на излъчване в областта от 1.0 до 1.6 µm. Температурите на топене, вида на стапяне (с разлагане или без разлагане), вида на кристализиращите фази след разлагане, както и наличието или липсата на полиморфно превръщане близко до температурата на топене бяха изследвани чрез рентгенов фазов анализ и диференциален термичен анализ. Голяма част от данните за термичното поведение на тези германати се публикуват за първи път. Установено е, че четири от синтезираните германати (LiAlGeO₄, Zn₂GeO₄, Ca₅Ge₃O₁₁, и 5LiAlGeO₄.4Zn₂GeO₄) се топят конгруентно (без разлагане) и не показват наличие на фазов преход. За разлика от германатите с оливинова структура, които бяха изследвани подетайлно за същите цели, монокристали от неоливиновите германати могат да бъдат израствани директно от тяхната собствена стопилка (по методите на Чохралски, Бриджман-Стокбаргер или Киропулос) вместо да се използва флакс метода, който се характеризира със значително по-малка скорост на израстване и ограничение за размера на израствания кристал.