Application of the bootstrap panel method an empirical study of the granger causality between carbon dioxide emissions and economic growth in emerging countries

M.-Y. Chen^{*}, Y.-S. Perng

¹ Department of Environmental Engineering Dayeh University 168 University Rd. Dacun Changhua 51591 Taiwan.

Received June 26, 2017; Revised August 25, 2017

This study discusses the dilemma countries face when implementing energy conservation policies to protect environmental resources. Implementation of such policies has reduced carbon dioxide CO₂ emissions and decreased industrial production momentum along with economic growth. This study employs the bootstrap panel Grangercausality method to address the conditions of heterogeneity and cross-sectional dependence to allow consideration of cross-country correlations. This study analyzes the link between economic growth and CO_2 emissions in 22 emerging countries from 1993 to 2011. The empirical results show that in a few countries positive and negative bidirectional causality exists between economic growth and CO₂ emissions while many countries surveyed exhibited a positive unidirectional relationship between CO₂ emissions and economic growth. A few countries showed other relationship patterns. These results imply that to pursue economic growth a country should adopt more environmentally-friendly sources energy addition using those that produce CO_2 emissions. of in to Keywords: economic growth carbon dioxide CO2 emission bootstrap panel Granger-causality test emerging country countries.

INTRODUCTION

Purpose

The main purpose of this study is to investigate the 22 emerging countries in four continents by geographic location namely Africa Asia Europe and America and discuss them respectively to explore the possible causal relationship between CO_2 emissions and economic growth. Under this aspect the study further explores when there is a unidirectional causal relationship from CO_2 emissions to economic growth whether the reduction of CO_2 emissions will impedes economic growth or when there is unidirectional causal relationship from economic growth to the CO_2 emissions whether the reduction of CO_2 emissions will have a negative impact on economic growth.

In this study the bootstrap panel Grangercausality measurement method proposed by Konya 2006 is used to re-examine the nexus between CO_2 emissions and economic growth.

METHODOLOGY

Panel Causality Tests

Based on the proposal of Granger 1969 the Granger causality indicates that the past historical data of variable X can improve the ability of predicting another variable Y. Given the situation

that cross-sectional dependence and heterogeneity exist between countries this method can illustrate this feature. Although different panel causality methods have been proposed the bootstrap penal causality method proposed by Konya 2006 is able take into account both cross-sectional to dependence and country-specific heterogeneity. The causal relationship can be tested through the bootstrap panel causality approach by estimating and Wald testing the country-specific critical values based on the SUR. The stability of variables under this system is not necessarily required indicating that there is no need to test the nature of the variables in advance through ADF and cointegration.

The utilization of the bootstrap panel causality method to estimate the system is described as follows

$$y_{1,t} = \alpha_{1,1} + \sum_{i=1}^{ly_1} \beta_{1,1,i} y_{1,t-i} + \sum_{i=1}^{lx_1} \delta_{1,1,i} x_{1,t-i} + \varepsilon_{1,1,t}$$

$$y_{2,t} = \alpha_{1,2} + \sum_{i=1}^{ly_1} \beta_{1,2,i} y_{2,t-i} + \sum_{i=1}^{lx_1} \delta_{1,2,i} x_{2,t-i} + \varepsilon_{1,2,t}$$

$$\vdots$$

$$y_{N,t} = \alpha_{1,N} + \sum_{i=1}^{ly_1} \beta_{1,N,i} y_{N,t-i} + \sum_{i=1}^{lx_1} \delta_{1,N,i} x_{1,N,t-i} + \varepsilon_{1,N,t}$$

and

^{*} To whom all correspondence should be sent: E-mail: yung.po@msa.hinet.net

$$\begin{aligned} x_{1,t} &= \alpha_{2,1} + \sum_{i=1}^{ly_2} \beta_{2,1,i} y_{1,t-i} + \sum_{i=1}^{lx_2} \delta_{2,1,i} x_{1,t-i} + \varepsilon_{2,1,t} \\ x_{2,t} &= \alpha_{2,2} + \sum_{i=1}^{ly_2} \beta_{2,2,i} y_{2,t-i} + \sum_{i=1}^{lx_2} \delta_{2,2,i} x_{2,t-i} + \varepsilon_{2,2,t} \\ \vdots \end{aligned}$$

$$x_{N,t} = \alpha_{2,N} + \sum_{i=1}^{l_{2}} \beta_{2,N,i} y_{N,t-i} + \sum_{i=1}^{l_{2}} \delta_{2,N,i} x_{N,t-i} + \varepsilon_{2,N,t}$$

where y denotes the economic growth x is the CO₂ emissions and l is the length of time delayed. Because each equation under the system has different predetermined variables as long as the error terms may contemporaneously have correlations i.e. cross-sectional dependencies such an equation set is regarded as the SUR system.

To test Granger-causality on the system the causal relationship can be divided into four categories 1 if estimated parameters $\delta_{1,i}$ are not all zero and $\beta_{2,i}$ are all zero there is a unidirectional causal relationship from variable X to variable Y 2 If estimated parameters $\delta_{1,i}$ are all zero and $\beta_{2,i}$ are not all zero there is a unidirectional causal relationship from variable Y to variable X 3 If neigher estimated parameters $\delta_{1,i}$ nor $\beta_{2,i}$ are zero there is bidirectional leading–lagging Granger causality between variables X and variables Y. 4 If both estimated parameters $\delta_{1,i}$ and $\beta_{2,i}$ are zero there is no any Granger causality between variables X.

Because the causality test is resulted from the selection of a lag structure the choice of the optimal lag number is very important. Therefore the number of lag periods should be described and determined prior to estimation. For the large panel data the equation the variables and the lag structure may lead to a computational burden. To solve this problem Konya 2006 proposed to take into account the maximum lag period between different variables rather than between the same equations. If a lag periods is assumed as 1-4 to estimate the potential pair combinations of $ly_1 \ lx_1$, ly_2 and lx_2 under the system in accordance to the Schwarz Bayesian criterion SBC the minimum SBC value will be selected to determine the number of the optimal lag periods.

RESULTS AND DISCUSSIONS

Results and Discussions of the Bootstrap Panel Causality Tests

The determination of the cross-sectional dependence existence and slope heterogeneity in all the countries of four continents can support the empirical results of the bootstrap panel Grangercausality approach. The empirical results of Granger causality between economic growth GDP and CO_2 emissions in the four continents are shown in Table 4.4 – 4.11.

The results of Table 4.3 show that there exists no nexus from economic growth to CO_2 emissions. The results of Table 4.4 show that for the five countries located in Africa, at the 5% significance level the Wald statistics of Egypt and Morocco are greater than the bootstrap critical value and are against the null hypothesis that economic growth will not outpace CO_2 emissions and present a unidirectional relationship from economic growth to CO_2 emissions. However there are no significant relationships between South Africa Zambia and Namibia according to the statistical results.

As we learned from the results in Table 4.5 and 4.6 for the seven countries in Asia there is a bidirectional causal relationship between the economic growth and CO_2 emissions in Korea whereas there is a unidirectional causal relationship from the economic growth to CO_2 emissions in India the Philippines and Malaysia. In China Thailand and Indonesia on the other hand there is no relationship between economic growth and CO_2 emissions.

The results from Table 4.7 and 4.8 show that for the five countries in Europe there is a unidirectional relationship from economic growth to CO_2 emissions in Poland but there is a unidirectional relationship from CO_2 emissions to economic growth in Hungary. In Turkey the Czech Republic and Russia on the other hand there is no relationship between economic growth and CO_2 emissions.

As we learned from the results in Table 4.9 and 4.10 for the five countries of America there is a bidirectional relationship between economic growth and CO_2 emissions in Mexico but there is a unidirectional relationship from economic growth to CO_2 emissions in Brazil Colombia and Chile. In Peru however there is no relationship between economic growth and CO_2 emissions.

The causal relationships between economic growth and CO_2 emissions in the above 22 emerging countries of the four continents are shown in Table 4.11.

M.-Y. Chen, Y.-S. Perng: Application of the bootstrap panel method an empirical study of the granger causality between carbon ...

CONCLUSIONS

The present study analyzes the causal relationships between the economic growth and CO₂ emissions in 22 emerging countries for the period from 1993 to 2011. For the five countries located in Africa there are unidirectional relationships from economic growth to CO₂ emissions in Egypt and Morocco. For the seven countries located in Asia there is a bidirectional relationship between economic growth and CO₂ emissions in Korea whereas in India the Philippines and Malaysia there are unidirectional relationships from economic growth to CO₂ emissions. For the five European countries there is a unidirectional relationship from economic growth to CO₂ emissions in Poland whereas in Hungary there exists a unidirectional relationship from CO2 emissions to economic growth. For the five American countries there are bidirectional relationships between economic growth and CO₂ emissions in Mexico whereas in Brazil Colombia and Chile there are unidirectional relationships from economic growth to CO₂ emissions.

In addition to the positive and negative bidirectional causality between economic growth and CO_2 emissions respectively in Mexico and Korea there is a positive and unidirectional relationship from CO_2 emissions to economic growth in Egypt Morocco India Malaysia and Poland whereas the results of the Philippines are on the opposite. At last we observe the negative and unidirectional relationship from CO_2 emissions to economic growth only in Hungary.

RECOMMENDATIONS

Based on the discussion of the causal relationship between economic growth and CO₂ emissions of the above 22 emerging countries we have learnt the dilemma faced by the countries on the implementation of energy conservation policies for the protection of environmental resources because the implementation of energy conservation policies has not only reduced the CO₂ emissions but also driven down the industrial production momentum along with their economic growth. However for the two countries of Korea and the Philippines in this study the former has negative and the bidirectional causal relationship between economic growth and CO₂ emissions and the latter has a negative and unidirectional causal relationship from economic growth to CO₂ emissions. That is to say to pursue the positive economic growth of a country in addition to the use of energy that produces CO_2 emissions policy

makers can adopt alternative energy that is more environment friendly as the energy for corporate expansion to promote the economic growth of the country.

Table 4.1. Cross-sectional Dependence Tests

Continent	Variable	CD _{bp}	CD _{lm}	CD
Africa	Economic	12.989***	0.549^{***}	6.945***
Asian	growth/	37.028***	3.244***	15.869***
Europe	CO_2	20.958^{***}	1.431***	8.811***
America	emissions	8.156***	1.754^{***}	4.347***

Note *** at the 1% significance level the null hypothesis of invalid cross-sectional dependence is rejected.

Table 4.2. Slope Homogeneity Tests

Continent	Variable			SH
Africa				226.9***
Asian	Economic	growth/	CO_2	245.23***
Europe	emissions			150.97^{***}
America				114.47^{***}

Note *** at the 1% significance level the null hypothesis of slope homogeneity is rejected.

 Table 4.3. H₀ CO₂ Emissions Will Not Outpace

 Economic Growth

Country	Wald	Bootst	Bootstrap Critical Values			
Country	Statistic	1%	5%	10%		
Egypt	2.716	17.416	9.333	6.199		
Morocco	0.009	17.371	8.284	5.514		
South Africa	0.816	18.855	10.034	6.502		
Zambia	4.767	19.038	10.392	6.966		
Namibia	2.170	24.534	11.481	7.626		
Note 1 Destature suities1 sullies are abtained from						

Note 1. Bootstrap critical values are obtained from 10,000 replications.

 Table 4.4. H₀ Economic Growth Will Not Outpace

 CO₂ Emissions

Country	Wald	Bootst	rap Critica	l Values
Country	Statistic -	1%	5%	10%
Egypt	37.022***	15.162	7.530	5.102
Morocco	17.234***	16.695	8.368	5.596
South Africa	1.804	14.432	7.394	5.060
Zambia	8.132	23.775	12.550	8.931
Namibia	2.528	21.725	10.924	7.414

Note 1. Bootstrap critical values are obtained from 10,000 replications.

.M.-Y. Chen, Y.-S. Perng: Application of the bootstrap panel method an empirical study of the granger causality between carbon ...

 $\label{eq:constraint} \begin{array}{c} \textbf{Table 4.5.} \ H_0 \ CO_2 \ Emissions \ Will \ Not \ Outpace \\ Economic \ Growth \end{array}$

Country	Wald Bootstra		p Critical Values		
Country	Statistic	1%	5%	10%	
India	1.676	29.190	15.878	10.751	
The Philippines	0.283	22.697	11.148	7.355	
Indonesia	1.431	30.468	16.205	11.081	
Malaysia	3.288	26.511	13.671	8.966	
Thailand	0.000	27.848	12.640	8.242	
Korea	12.339**	21.163	10.573	7.083	
China	9.147	29.003	13.350	9.164	

Note 1. Bootstrap critical values are obtained from 10,000 replications.

Table 4.6. H_0 Economic Growth Will Not Outpace CO_2 Emissions

Country	Wald	Bootstrap Critical Values				
Country	Statistic	1%	5%	10%		
India	15.449** *	15.100	8.270	5.518		
The Philippines	6.051*	15.112	7.926	5.363		
Indonesia	0.485	15.836	7.258	5.007		
Malaysia	11.229**	14.116	7.410	5.058		
Thailand	0.974	17.794	8.502	5.692		
Korea	16.853**	17.697	9.337	6.271		
China	0.725	25.273	13.020	8.752		

Note 1. Bootstrap critical values are obtained from 10,000 replications.

Table 4.7. H_0 CO₂ Emissions Will Not Outpace Economic Growth

Country	Wald	Bootstra	p Critica	l Values	
Country	Statistic	1%	5%	10%	
Hungary	22.071***	17.139	8.727	5.666	
Poland	0.282	16.421	8.489	5.527	
Russia	2.050	19.335	8.854	5.771	
Turkey	1.055	17.692	8.733	5.514	
The Czech Republic 0.427 17.343 8.252 5.567					
Note 1. Bootstrap critical values are obtained from					

10,000 replications.

Table 4.8. H ₀ Economic (Growth	W1ll	Not	Outpace
CO En	nicoiona			

	CO_2	EIIIISSIOI	.18	
Country	Wald	Bootstra	p Critica	l Values
Country	Statistic	1%	5%	10%
Hungary	0.212	15.054	7.544	4.944
Poland	15.824** *	15.542	8.283	5.701
Russia	1.878	14.139	7.539	5.011
Turkey	0.512	14.595	7.679	5.035
The Czech Republic	0.008	12.864	7.033	4.769

Note 1. Bootstrap critical values are obtained from 10,000 replications.

Table 4.9. H0 CO2 Emissions Will Not Outpace

 Economic Growth

Country	Wald	Bootstra	l Values	
Country	Statistic	1%	5%	10%
Brazil	0.836	19.311	10.081	6.774
Mexico	8.388**	14.854	8.178	5.812
Colombia	1.548	15.134	7.560	4.976
Chile	2.974	15.904	7.950	5.273
Peru	0.285	15.941	8.064	5.492
Note 1. Bootstrap critical values are obtained from				
	10,000) replication	ons.	

 $\begin{array}{c} \textbf{Table 4.10. } H_0 \text{ Economic Growth Will Not Outpace} \\ CO_2 \text{ Emissions} \end{array}$

Country	Wald	Bootstra	p Critica	l Values
Country	Statistic	1%	5%	10%
Brazil	20.285***	14.528	6.966	4.608
Mexico	14.058**	18.615	8.775	5.574
Colombia	5.466*	13.874	7.339	4.870
Chile	30.269***	13.079	7.180	4.956
Peru	4.009	15.344	7.582	4.995

Note 1. Bootstrap critical values are obtained from 10,000 replications.

 Table 4.11. The Leading–Lagging Relationships

 between Economic Growth and CO₂ Emissions

	Africa
Egypt	$GDP \rightarrow CO_2$
Morocco	$GDP \rightarrow CO_2$
South Africa	No leading-lagging relationship
	between economic growth and
	carbon emissions
Zambia	No leading-lagging relationship
	between economic growth and
	carbon emissions
Namibia	No leading-lagging relationship
	between economic growth and
	carbon emissions
	Asia
India	$GDP \rightarrow CO_2$
The	$GDP \rightarrow CO_2$
Philippines	
Indonesia	No leading-lagging relationship
	between economic growth and
	carbon emissions
Malaysia	$GDP \rightarrow CO_2$
Thailand	No causal relationship between
	economic growth and carbon
	emissions
Korea	$CO_2 \leftrightarrow GDP$
China	No causal relationship between
	economic growth and carbon
	emissions

M.-Y. Chen, Y.-S. Perng: Application of the bootstrap panel method an empirical study of the granger causality between carbon ...

Europe	
Hungary	$CO_2 \rightarrow GDP$
Poland	$GDP \rightarrow CO_2$
Russia	No causal relationship between economic growth and carbon emissions
Turkey	No any causal relationship between economic growth and CO ₂ emissions
The Czech	No causal relationship between
Republic	economic growth and carbon
-	emissions
America	
Brazil	$GDP \rightarrow CO_2$
Mexico	$CO_2 \leftrightarrow GDP$
Colombia	$GDP \rightarrow CO_2$
Chile	$GDP \rightarrow CO_2$
Peru	No causal relationship between
	economic growth and carbon emissions
Note 1. \rightarrow Unidirectional causal relationship	

Table 4.11. Continued

Note 1. → Unidirectional causal relationship 2. ↔ Bidirectional causal relationship

REFERENCES

- 1. M.J.I.A. Alama, B.J. Buysse, G.V. Huylenbroeck, *Energy Policy*, **45**, 217 (2012).
- 2. N. Apergis, J.E. Payne, *Energy Economics*, **31**, 641 (2009).

- 3. M.E.H.A.B. Arouri, Y.H. M'henni, C. Rault, *Energy Policy*, **45**, 342 (2012).
- 4. N.B. Behmiri, J.R.P. Manso, *Energy Policy*, **45**, 628 (2012).
- 5. G.H. Erdal, K. Esengün, *Energy Policy*, **36**, 3838 (2008).
- 6. F. Halicioglu, *Energy Policy*, **37**, 1156 (2009).
- 7. G.E. Halkos, N.G. Tzeremes, *Ecological Economics*, **70**, 1354 (2011).
- 8. E.H. Polatidis, D. Haralambopoulos, *Applied Energy*, **88**(4), 1377 (2011).
- 9. Md.S. Hossain, Energy Policy, 39, 6991 (2011).
- 10. V.C. Jaunky, *Energy Policy*, **39**, 1228 (2011).
- 11. K.S.W.K. Lee, K. Nam, *Energy Policy*, **38**, 5938 (2010).
- 12. F.S. Li, X. Donga, L.Q. Liang, W. Yang, *Energy Policy*, **39**(2), 568 (2012).
- 13. M.R. Lotfalipour, M.A. Falahi, M. Ashena, *Energy* **35**, 5115 (2010).
- 14. R.J.M. Asafu-Adjaye, Energy Policy, 35, 481 (2007).
- 15. O.I.A. Aslan, H. Kalyoncu, *Energy Policy*, **38**, 4422 (2010).
- 16. H.T. Pao, C.M. Tsai, *Energy*, **36**, 685 (2011).
- 17. S.S. Sharma, Applied Energy, 87, 3565 (2010).
- 18. U. Soytas, R. Sari, '*Ecological economics*, **68**, 1667 (2009).
- 19. K.M. Wang, *Economic Modelling*, **29**, 1537 (2012.
- 20. X.P. Zhang, X.M. Cheng, *Ecological Economics*, **68**, 2706 (2009).
- 21. G. Zou, K. W. Chau, Energy Policy, 34, 3644 (2006).