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Previous studies on the relationship between foreign direct investment (FDI) and environmental regulation have 
generally not considered the spatial characteristics. This paper applies spatial econometrics to explore whether or not 
environmental regulation inhibits the inflow of manufacturing FDI to China. Using a dataset across China’s 29 
provinces over the period from 2010 to 2015, we examined the spatial autocorrelation pattern about manufacturing FDI. 
We then used an improved spatial econometric model to explore the effect of environmental regulation on 
manufacturing FDI, incorporating other determinants of FDI, including the level of economic development, the degree 
of industrialization and the manufacturing labor cost. Our study reveals that manufacturing FDI exhibits clear spatial 
autocorrelation and regional agglomeration characteristics. Furthermore, the inhibitory effect of environmental 
regulation on manufacturing FDI inflow is gradually increasing with the passage of two stages, which confirms the 
“pollution shelter” hypothesis in China. We also find positive effects of the level of economic development and the 
industrialization degree on the manufacturing FDI inflow while, as expected, the manufacturing labor cost is found to 
be negatively correlated with FDI inflow. 
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INTRODUCTION 
Foreign direct investment (FDI) is no doubt one 

of the important contributing factors to China’s 
rapid economic growth. Attracted by the traditional 
comparative advantages of the Chinese economy, a 
staggering amount of foreign capital has 
continuously flowed to China’s manufacturing 
sector each year. However, while China’s 
manufacturing sector has been benefitted from 
tremendous infusion of FDI, the inflows of foreign 
capital also transferred pollution manufacturing into 
China, which has profound negative impact on 
China’s ecological environment [1].  

In the 1980s, China didn’t impose essential 
environmental regulation measures to FDI. 
Consequently, the so-called “bottom competition” 
phenomenon in capital attraction resulted in 
increasingly serious environmental pollution. To 
prevent the environment from further worsening, 
Chinese central government and local governments 
have issued a series of environmental regulations 
since the 1990s, including raising the access 
threshold of FDI to manufacturing, closing down 
heavy polluting enterprises and reducing pollution 
sources. Meanwhile, heated debates and serious 
questions have been raised among researchers and 
policy makers regarding the issues surrounding 
environmental regulation and FDI, such as, whether 

or not the regional environmental regulation 
inhibits manufacturing FDI? Does the effect of 
environmental regulation on FDI exhibit regional 
differences?  

In general, there are three views concerning the 
above questions. The first view states that 
environmental regulation has a negative effect on 
the inflow of manufacturing FDI [2-4]. The second 
view is that strict environmental regulation may not 
preclude the inflow of FDI or lead to regional 
industrial reset phenomenon, but could actually 
promote more inflow of FDI [5, 6]. The third 
middle-of-the-road view holds that the impact of 
environmental regulation on FDI inflows to various 
regions is uncertain [7, 8].  

Despite the divergent views in the existing 
literatures concerning the effect of environmental 
regulation on FDI, we can still draw two common 
implications. First, environmental regulation can 
serve as a useful “filter” to screen out the “dirty” 
foreign capital, thereby improving the quality of 
FDI. So it is necessary to explore more deeply the 
broader statistical relationships among 
environmental regulation and FDI, as well as other 
determinants of FDI across regions and over years. 
Second, some spatial features that differ across 
regions may cause environmental regulations to 
exert different impacts on FDI. So it is necessary 
and more realistic to consider relevant spatial 
heterogeneity when exploring these variables’ 
interrelationships [9]. Therefore, we apply a spatial 
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econometric model to examine whether or not 
environmental regulation inhibits the manufacturing 
FDI inflow to China, hoping to provide more 
insights to the issues related to environmental 
regulation and foreign investments, and contribute 
to the literature in this field. 

EXPERIMENTAL 

Methods for spatial autocorrelation  

We began our research by conducting spatial 
autocorrelation tests of manufacturing FDI. Spatial 
autocorrelation can be analyzed by two different 
methods: global spatial autocorrelation and local 
spatial association-LISA [10]. 

Global spatial autocorrelation is most 
extensively measured by Moran’s I, which is 
defined as [11]: 
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spatial weights with zeroes on the diagonal terms, iY  
are the observed values of unit i, and n is the 
number of spatial units. Possible values of Moran’s 
I range between 1 and -1. A Moran’s I with value 
approaching 1 represents a situation in which 
similar values are clustered together, and a value 
near -1 represents a situation in which similar 
values repel one another [12]. 

The method outlined above provides summaries 
of global spatial pattern. However, there have been 
various adaptations to the standard approaches to 
allow assessment of local variation in spatial 
autocorrelation. Anselin defined a body of local 
indicators of spatial association (LISA) [9]. This 
study used Moran scatter plots (often mapped by 
Geoda based on each local Moran’s I) and LISA 
cluster maps as indicators of the local spatial 
association. Local Moran’s I is given as: 
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where iI >0 indicates that unit i  and its neighbors 
have strong positive spatial autocorrelation and 

agglomeration, while iI <0 indicates that they have 
a negative correlation and discretization. 

Protocols of estimating a spatial econometric model 

In the standard linear regression model, spatial 
dependence can be incorporated in two alternative 
ways: the spatial lag model (SLM) and the spatial 

error model (SEM) [13]. 
Spatial lag model (SLM) is employed when 

there is a reason to postulate a direct effect on the 
dependent variable from neighboring locations [14]. 
SLM is expressed as: 

Y WY Xρ β ε= + + , 2~ (0, )N Iε σ         (3)                                           
where Y  represents an n×1 vector of dependent 
variables, X  is an n×k matrix of explanatory 
variables, ρ  is a spatial autoregressive 
coefficient, β  is a k×1 vector of the coefficients to 
be estimated, W  is an  n×n spatial weights matrix, 
and ε  is an  n×1 vector of error terms. 

Spatial Error Model (SEM) is adopted from a 
practical application where spatial autocorrelation is 
detected in the residuals of the typical linear 
regression model. In such case, SEM is used to 
obtain unbiased and efficient estimates of the 
regression parameters, and is expressed as: 

Y X β ε= + , Wε λ ε µ= + , 2~ (0, )N Iµ σ      (4)  

where, λ is a spatial parameter similar to ρ in 
Equation (3) and all other notations are as 
previously defined. 

Conditional on the specification of the intercept 
term (and the error term), the panel data regression 
equation can be estimated by either a fixed effect or 
a random effect model [15].  

Generally, the model choice of either SLM or 
SEM is determined by Moran’s I test statistics, two 
Lagrange multipliers (LM (error) and LM (lag)), 
and robust R-LM (error) and R-LM (lag). Anselin 
(2004) [16] proposed the following criterion: if the 
LM (lag) is statistically more significant than LM 
(error), and R-LM (lag) is significant but R-LM 
(error) is not significant, then SLM is considered to 
be a more suitable estimation model. Conversely, if 
the LM (error) is more notable than LM (lag), and 
R-LM (error) is significant but R-LM (lag) is not 
significant, then SEM is more suitable than SLM. 

In addition to the above criterion for 
specification selection, other model selection 
criteria commonly used by the researchers are: Log 
Likelihood (logL), Akaike Information Criterion 
(AIC) and Schwartz Criterion (SC). In those cases, 
the larger LogL, the smaller SC and AIC test 
statistics, the better fitting the model would be. 

Implementation of a spatial panel data model 

Following the lead of Jaffe and Palmer (1997) 
[17], we measured environmental regulation 
(Eregulation) by the ratio of “three industrial 
wastes” (waste water, waste gas and solid waste) 
abatement expenditures to the total value of 
industrial output. We also added three more 
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determinants of manufacturing FDI in our model: 
the level of economic development (Elevel, 
measured by per capita GDP in each province), the 
degree of industrialization (Idegree, measured by 
the province’s total industrial output value) and the 
manufacturing labor cost (Lcost, measured by the 
average wage of manufacturing workers in this 
province). We then estimated the following 
improved spatial panel data model: 
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In this equation, i  denotes province i , t  
stands for the period or stage (1,2), 

itFDIln , itnEregulatio , itElevelln , itIdegree and 

ln itLcost  represent the manufacturing FDI, the 
extent of environmental regulation, the level of 
economic development, the degree of 
industrialization and the manufacturing labor cost 
of province i  at t  stage, respectively. 

t1β  to 
t4β are the coefficients associated with the 

respective FDI determinants, itα  and itµ  are the 
constant term and random error term. 

Raw data 

This paper collected and used annual data from 
29 provinces except Hainan, Tibet, Hong Kong, 
Taiwan, and Macao (due to the large amount of 
missing data) over the years from 2010 to 2015. 
The FDI in each province was measured by the 
actual amount of manufacturing FDI (unit: 
RMB'0000), and the data were collected from the 
2011-2016 China Statistical Yearbook and the 
CEINET. In order to reflect the temporal and spatial 
characteristics of manufacturing FDI, we divided 
the studying years into two stages: the first stage 
(2010-2012) and the second stage (2013-2015). We 
took the average value of every observation in the 
sample in each stage in the empirical analysis. 

RESULTS AND DISCUSSION 
Global spatial autocorrelation of manufacturing 

FDI  
We analyzed the global spatial correlation of 

FDI in China’s provincial manufacturing by the 
matrix W based on binary Rook contiguity weight. 
The results are shown in Table 1.  

Table 1. Global Moran’s I indices of China’s 
provincial manufacturing industry from 2010 to 2015 

Stage Moran’s I Average SE z P 
2010-2012 0.508 -0.035 0.119 4.578 0.001 
2013-2015 0.526 -0.036 0.126 4.483 0.001 

As can be seen from Table 1, the global Moran’s 
I indices in the two stages are positive and the 
P-values are all significant at 1% level. So they 
indicate that the manufacturing FDI in these 
provinces have positive spatial correlation and 
exhibit agglomeration characteristics. 

We further used the Monte Carlo simulation 
method to test the significance of Moran’s I. The 
results of 999 times simulation arrangements 
calculations are shown in Figures 1 and 2. 

 
Fig. 1. Monte Carlo simulation results of China’s 

provincial manufacturing FDI from 2010 to 2012  

 

Fig. 2. Monte Carlo simulation results of China’s 
provincial manufacturing FDI from 2013 to 2015 

Local spatial association of manufacturing FDI by 
Moran scatter plots 

Given that the local spatial correlation of 
provincial manufacturing FDI and the trend of local 
spatial agglomeration cannot be characterized by 
the global Moran’s I indices, we applied the local 
index cluster analysis method, by the Moran scatter 
plots and LISA cluster maps, to further reveal the 
local spatial characteristics of manufacturing FDI. 
The Moran scatter plots analyses of the two stages 
are shown in Figures 3 and 4. 

  
Fig. 3. Moran scatter plots of China’s provincial 

manufacturing FDI from 2010 to 2012 
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Fig. 4. Moran scatter plots of China’s provincial 
manufacturing FDI from 2013 to 2015 

As can be seen from Figures 3 and 4, most 
provinces fall in the first and third quadrants, 
rejecting the assumption that manufacturing FDI is 
spatially distributed in a random fashion, and 
indicating that there is a positive correlation of FDI 
among different geographical or spatial units. That 
is, the amount of manufacturing FDI inflows tends 
to be close to other provinces with the similar FDI 
amounts. It is interesting to note that this local 
spatial pattern of FDI is the same as the results 
presented from the global spatial autocorrelation. 

Local spatial association of manufacturing FDI by 
LISA cluster maps  

LISA cluster maps were drawn to further 
illustrate the above local spatial characteristics, as 
shown in Figures 5 and 6. 

 
Fig. 5. LISA cluster map China’s provincial 

manufacturing FDI from 2010 to 2012 

 
Fig. 6. LISA cluster map China’s provincial 

manufacturing FDI from 2013 to 2015  

We can see from the above figures that China’s 
provincial FDI manufacturing is decreasing from 
the eastern to western regions. Specifically, 

Shanghai, Fujian and Zhejiang are all located in the 
H-H cluster regions in two stages. Whereas the 
western provinces of Xinjiang, Qinghai and Gansu 
are in the L-L cluster regions, which indicates that 
the amount of manufacturing FDI flowed into these 
provinces and their neighbors is less than that of 
eastern provinces. These distinctively different 
spatial characteristics of FDI further confirmed that 
we need to use the spatial econometric model to 
investigate the relationship between manufacturing 
FDI and its influence factors. 

Baseline estimation results from Ordinary Least 
Squares (OLS) 

For comparison purpose, we first estimated 
Equation (5) based on OLS by software 
OpenGeoDa. The OLS baseline estimation results 
are displayed in Table 2. It shows that the OLS 
estimation model is significant at 1% level in both 
stages, with adjusted R square of 78.16% and 
77.30%, and F value of 26.0462 and 30.0060, 
respectively. However, the spatial correlation test 
results in the preceding section already showed that 
manufacturing FDI clearly exhibits a spatial 
correlation pattern, which will cause the simple 
OLS estimators to be bias and inconsistent. 
Therefore, we need to further estimate the 
relationship between these variables by spatial 
econometric models. 

Spatial econometric estimation based on SLM 

As can be seen from Table 2, the Moran's I 
indices and the two Lagrangian multipliers are all 
significant at the 5% level in the two stages, 
indicating the presence of spatial autocorrelation 
and the need to estimate spatial econometric 
models. Then, the question arises: which spatial 
econometric model is more suitable for our purpose 
here? Applying the criteria mentioned above, we 
can answer that the statistical properties of the SLM 
model are relatively more appropriate in analyzing 
the relationship between these variables from Table 
2. For the purpose of comparison, we estimated 
Equation (5) with both SLM and SEM 
specifications. The results are shown in Table 3. 
Comparing Tables 2 and 3, we can see that the 
goodness-of-fit statistics by SLM and SEM are 
higher than those by OLS. In addition, the logL 
values of SLM in the two stages are larger than the 
corresponding values of OLS and SEM. Thus, the 
classical linear regression model based on OLS is 
not suitable to analyze manufacturing FDI as it does 
not consider the spatial autocorrelation. 
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Table 2. OLS estimation results 

Variable 2010-2012 Variable 2013-2015 
Coefficient SE t P Coefficient SE t P 

constant 41.4198 12.8241 3.2298 0.0036 constant 32.0112 11.7263 4.0611 0.0021 
Eregulation1 -6.3448 1.2507 -5.0728 0.0000 Eregulation2 -7.0609 2.3140 -6.8126 0.0000 
lnElevel1 1.4186 0.6969 2.0357 0.0530 lnElevel2 3.5061 0.7211 2.0857 0.0482 
Idegree1 0.1613 0.0682 2.3647 0.0265 Idegree2 1.1232 0.0968 3.2323 0.0031 
lnLcost1 -3.1134 1.6496 -1.8874 0.0713 lnLcost2 -2.9266 1.2434 -2.1008 0.0496 
R2adj 0.7816    R2adj 0.7730    
F-statistic 26.0462   1.9954e-0

 
F-statistic 30.0060   2.0432e-0

 LogL -34.3096    LogL -36.4724    
AIC 78.6192    AIC 89.2938    
SC 85.4557    SC 97.5309    
Spatial test MI/DF Value P  Spatial test MI/DF Value P  
Moran’s I (error) 0.1041 1.6159 0.0361  Moran’s I 

 
0.1982 2.6202 0.0059  

LM(lag) 1 4.8934 0.0270  LM(lag) 1 7.2964 0.0043  
R- LM (lag) 1 4.4409 0.0351  R- LM (lag) 1 6.5732 0.0169  
LM (error) 1 0.6257 0.4290  LM (error) 1 0.7181 0.3962  
R-LM (error) 1 0.1731 0.6773  R-LM (error) 1 0.2023 0.5781  

Table 3.  SLM and SEM estimation results  

Stage Variable SLM SEM 
Coefficient SE Z P Coefficient SE Z P 

2010-2012 

Constant 35.5243 10.7869 3.2933 0.0010 36.1401 11.6301 3.1075 0.0019 
Eregulation1 -5.5910 1.0765 -5.1935 0.0000 -5.6231 1.1252 -4.9972 0.0000 
lnElevel1 1.1978 0.5879 2.0376 0.0416 1.3243 0.6539 2.0254 0.0428 
Idegree1 0.1416 0.0582 2.4352 0.0149 0.1663 0.0609 2.7303 0.0063 
lnLcost1 -2.9103 1.3748 -2.1168 0.0343 -2.5353 1.4878 -1.7041 0.0884 
ρ /λ  0.2608 0.1215 2.1461 0.0319 0.3086 0.1345 1.3746 0.1693 
Statistical 

 
DF Value P  DF Value P  

R-squared  0.8429    0.8235   
LogL  -32.0044    -33.8028   
LR 1 4.6105 0.0008  1 1.0136 0.3140  
AIC  76.0087    77.6056   
SC  84.2125    84.4421   

2013-2015 

Constant 42.3928 12.6731 4.0911 0.0007 37.3831 11.9029 3.9820 0.0009 
Eregulation2 -5.6256 1.9033 -3.5009 0.0012 -3.5476 1.5324 -4.7620 0.0001 
lnElevel2 1.0197 0.4709 2.5866 0.0173 1.9831 0.5839 2.9304 0.0078 
Idegree2 0.1307 0.1223 3.1034 0.0038 0.1243 0.1128 2.6677 0.0120 
lnLcost2 -3.8671 1.6685 -1.1056 0.0264 -3.3229 1.4661 -1.6252 0.1082 
ρ /λ  0.3719 0.1469 3.1231 0.0025 0.4165 0.1672 3.5328 0.0014 
Statistical 

 
DF Value P  DF Value P  

R-squared  0.7834    0.7529   
LogL  -37.0623    -39.2788   
LR 1 4.9238 0.0018  1 2.6707 0.0105  
AIC  79.4313    87.0269   
SC  80.8226    89.5217   

Furthermore, comparing the values of logL, LR, 
AIC and SC statistics, SLM clearly performs better 
than SEM, hence most of the discussion and 
interpretation of the estimation results in the 
following section are based on SLM results. 

We also obtained four empirical results based on 
SLM model as follows: First, environmental 
regulation has a significant negative impact on FDI 
in both two stages. From Table 3, we can see that 
the impacts in the two stages are statistically 
significant at a 1% level. Also, the values of the 
coefficient estimates for this variable imply that a 
1% rise in environmental regulation intensity can 
inhibit FDI inflow by around 5.5910% and 
5.6256%, respectively. The inhibitory effect of 

environmental regulation on the inflow of 
manufacturing FDI is increasing over the two 
stages. This could be because more stringent 
environmental regulations were implemented from 
2012 to 2015 in China, especially those against 
foreign capital investments in some pollution 
intensive manufacturing industries. As a result, 
environmental regulation gradually became an 
important negative determinant (inhibitor) of FDI 
inflows. Meanwhile, compared with the results of 
OLS in Table 2, the inhibiting effects estimated by 
the SLM model are weakened. This suggests that 
when considering the spatial lag effect, the 
environmental regulation of neighboring provinces 
can dilute the inhibitory effects of environmental 
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regulation on manufacturing FDI in the provinces 
under study. 

Second, the economic development level and 
industrialization degree variables have positive 
significant impacts on the manufacturing FDI 
inflow. From Table 3 we can see that the positive 
effect of economic development level on 
manufacturing FDI is statistically significant at 5% 
in two stages, and that a 1% increase in economic 
development level significantly promotes the FDI 
inflow by around 1.1978% and 1.0197%. The 
provincial degree of industrialization also has a 
positive effect at the 5% and 1% significance level 
respectively, and the FDI inflow increases by 
0.1416% and 0.1307% following a 1% increase in 
industrialization level. Comparing the magnitude of 
the coefficient estimates for the two stages, we can 
also find that the impacts of these two factors on 
manufacturing FDI showed a downward trend, 
indicating that foreign investment in China’s 
manufacturing is less and less impacted over time 
by the level of economic development and the 
degree of industrialization. This finding 
corroborates with the recent phenomenon that many 
foreign capitals are transferred (relocated) from the 
more developed and industrialized eastern 
provinces of China to the central and western 
provinces.  

Finally, turning to the manufacturing labor cost 
variable, it appears that labor cost has a statistically 
significant negative impact on manufacturing FDI 
inflow at the 5% significance level in both stages. 
The value of the coefficient estimates indicates that 
a 1% increase in the labor cost significantly inhibits 
the FDI inflow by around 2.9103% and 3.8671% 
respectively. Evidently, China’s main comparative 
advantage in attracting FDI still lies in the low labor 
cost in these two stages. As a result, most FDI is 
still concentrated in China’s labor-intensive 
industries, which are at the lower end of the global 
industrial chain.  

CONCLUSIONS 
This study investigates the relationship between 

manufacturing FDI and environmental regulation, 
along with other relevant FDI determinants, using 
the spatial econometric models over the period from 
2010 to 2015. Overall, we found that manufacturing 
FDI exhibits clear spatial autocorrelation and 
regional agglomeration characteristics. We also 
found a statistically significant negative relationship 
between environmental regulation and 
manufacturing FDI in China’s 29 provinces. This 
finding implies that imposing more stringent 
environmental regulations would inhibit the 

manufacturing FDI. It was also found that the 
inhibitory effect is gradually increasing during the 
2010-2015 study period. Furthermore, the level of 
economic development and degree of 
industrialization in a province are positively related 
to the inflow of manufacturing FDI when we 
consider the spatial correlations. But the positive 
effect is decreasing in the two stages. Finally, there 
is a statistically significant negative correlation 
between labor costs and manufacturing FDI 
inflows.  

In summary, the foreign direct investment is 
inhibited by the environmental regulation in China 
in this six-year period. Other factors, such as factor 
prices, regional climate, and available market, have 
also be proved to be key determinants in the foreign 
capital inflowing decisions[4]. So we anticipate 
inducing these factors into our further research 
about this issue. 
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