Responsible structural features for cytotoxic and other kinds of activity of *neo*clerodane diterpenes from genus *Scutellaria*

K. H. Nikolova¹, I. T. Stoykov², P. I. Bozov¹*

¹Department of Biochemistry and Microbiology, Plovdiv University, 24 Tsar Assen Str., 4000, Plovdiv, Bulgaria ²Institute of Molecular Biology, BAS, 21 Acad. G. Bonchev Str., 1113, Sofia, Bulgaria

Received July, 26, 2017; Revised October 25, 2017

Twelve natural neo-clerodane diterpenes, isolated from three *Scutellaria* (*Labiatae*) species, were tested for cytotoxicity on two cell lines, from human tumors of the lung designated as H1299 and normal cells from a navel string (HUVEC), using the MTT (3-/4,5-dimethylthiazol-2-yl/-2,5-diphenyltetrazolium bromide) method. The cytotoxic activity was evaluated as rate of IC₅₀ (such concentration of the compound in μ M by which half of the cells die). Three compounds, scutalpins A, E and F, exhibited moderate cytotoxic properties on both cell lines. Among all tested compounds the highest activity was detected for scutalpin A, with IC₅₀ values of 21.35 and 23.9. Some significant aspects of the relationship structure-activity are discussed.

Key words: Scutellaria; Diterpenes; Cytotoxic, Antifeedant, Antifungal activities.

INTRODUCTION

The natural *neo*-clerodane diterpenoids, isolated from *Scutellaria* species, draw attention because of their varied biological activities especially as potent insect antifeedants [1-4] and antifungal [5] agents against plant pathogenic fungi.

All diterpenoids isolated from the species of genus Scutellaria (Labiatae) are with neo-clerodane skeleton (1, Fig. 1) which Bruno et al. divided in two part substructures bearing different substitutes [1]. The first substructure, including the carbon atoms from C-1 to C-10, is always a trans-bound bicyclic system - decalin core. The second one covers the carbon atoms C-11- C-16 and consists of different fragments: tetra- (2a, Fig. 2) or hexahydrofurofuran system (2b); α,β -unsaturated- γ lactone (3) junked between C-13 – C-16; γ -lactone 13-spiro, bound up with cyclic ether inclusive C-8 and forming two epimers with C-13S (4) and C-13R (5) configurations. Finally, in the C-11 - C-16substructure may be formed a lactol ring that comprises carbons C-11, C-12, C-13, C-16 (6) or carbons C-13 – C-16 (7).

Clerodanes, obtained from *Scutellaria* plants, displaying the above activities, predominantly possess a decalin ring with C-4-C-18 *spiro*-epoxide and two acetate groups at C-6 and C-19 positions and **2a** or **2b** moiety in the C-11 – C-16 fragment. The compounds clerodin (**8**), jodrellin A (**9**) and jodrellin B (**10**) exhibit strong antifeedant activity. Particulary **10** was reported to be the most potent antifeedant known to date [4]. These three compounds have been assayed for antifungal activity against the plant pathogenic fungi *Fusarium oxysporum f.* sp. *lycopersici* and *Verticillium tricorpus*. Spore germination of *V. tricorpus* was delayed by clerodin and jodrellin B.

Figure 1. *Neo*-clerodane skeleton (1), clerodin (8), jodrellin A (9) and jodrellin B (10)

Growth of *F. oxysporum* and *V. tricorpus* was inhibited by the clerodanes in a dose-dependent manner [5].

To the best of our knowledge the *neo*-clerodane diterpenoids from *Scutellaria* species have not been studied for other biological properties. In continuation with our research on this topic we had examined *neo*-clerodane diterpenoids, isolated in our laboratory, for antifeedant activity against *Leptinotarsa decemlineata* (Say) [6,7] and that study confirmed results achieved in previous works. Subsequently, we tested these compounds for antioxidant effects but none of the diterpenes

^{*} To whom all correspondence should be sent:

E-mail: bozov@uni-plovdiv.bg

showed such activity. The next step was to evaluate the influence of these clerodanes on pathogenic and food spoilage microorganisms.

Figure 2. C-11 – C-16 moiety

We concluded that the compounds, containing fragment **4** or **5** in their structures, exhibit antimicrobial activity while the compounds possessing the other kind of C-11 – C-16 moiety are inactive [8].

Herein we report the results from the bioassay of natural *neo*-clerodane diterpenoids, isolated from the acetone extracts of the aerial parts of three *Scutellaria* species, for cytotoxic activity on H1299 and HUVEC cell lines.

EXPERIMENTAL

Plant material: The stems of all plants were collected during their blossoming as follows: *scutellaria alpina* in August 1991, at Pirin Mountains, near Bansko, Bulgaria; *Scutellaria galericulata* in June 2012, near Lovech and Pleven, Bulgaria; *Scutellaria altissima* in June 2011, in Bachkovo, near Assenovgrad, Bulgaria.

Structural data: ¹H NMR spectra were recorded on Bruker DRX-250, Varian Mercury-400 or Bruker Avance II+ spectrometers, operating at 250.13 MHz, 400.13 or 600.130 MHz, respectively. ¹³C NMR spectra were recorded at 100.61 and 150.903 MHz, respectively, on the corresponding spectrometers. TMS was used as internal standard and CDCl₃ as solvent. Chemical shifts (δ) are expressed in ppm and coupling constants (*J*) in Hertz. The IR spectra were registered in KBr pellets on a Perkin-Elmer 1750 FT-IR spectrometer from 4000 cm⁻¹ to 450 cm⁻¹ at resolution 4 cm⁻¹ with 9 scans. MS and HRMS spectra were registered on Accela quaternary UHPLC pump with Accela autosampler and HRMS "Q-Exative" detector (Thermo Fisher Scientific, Waltham, MA, USA) with heated electro spray (H-ESI) interphase.

Extraction and isolation: Dried and finely powdered aerial parts of the plants were extracted with Me₂CO threefold at room temperature for a week. After filtration, the solvent was evaporated to under reduced pressure and dryness low temperature (<40 °C) yielding a gum, which was dissolved in aq. Me₂CO (40 % H₂O, v/v, 100 mL). This solution was cooled to 4 °C for 24 h and filtered. The filtrate was extracted with CHCl₃ and the organic layer was dried (Na₂SO₄) and evaporated in vacuum to afford a residue (bitter fraction). This residue was subjected to CC (silica gel Merck n. 7734, deactivated with 10% H₂O, w/w). Pure petroleum ether, followed by a gradient of petroleum ether - EtOAc mixtures (10:1 to 4:1) and dichloromethane were used first as eluting solvents. The diterpene fractions (TLC monitoring) were eluted with 1% to 3% methanol in DCM. Rechromatography or repeated prep TLC of these fractions (2% methanol in DCM or EtOAc as eluent) afforded crude compounds. Crystallization and recrystallization from acetone yielded pure diterpenes.

Test compounds: All tested neo-clerodane diterpenoids (Fig. 3) were available from previous investigations. 14,15-dihydrojodrellin Т (10),neoajugapyrin A (11), scutegalerin A (12), scuecolumnin C (13) and scutegalin D (20) were retrieved from Scutellaria galericulata L. as described above [10, 11]. Scutecyprol A (14), scupolin H (15), clerodin (16) and scutaltisin G (21) were isolated from Scutellaria altissima L. [12, 13]. Diterpenoids scutalpin A (17), scutalpin F (18) and scutalpin E (19) were obtained from Scutellaria alpina L. [14, 15]. The molecular structures of the compounds were established by spectroscopic means: IR spectroscopy, MS, 1D (¹H, ¹³C including Dept 125) and 2D (HSQC, HMBC, ¹H-¹H COSY, NOESY) NMR experiments. Absolute configuration of scutalpin A was determined by Xray diffraction analysis.

Diterpenoids have been kept in the refrigerator at 4°C. Before doing the cytotoxicity bioassays we measured and compared with the literature the melting points and the IR spectra of the tested compounds. The purity of the compounds was checked by TLC with different solvents (diethyl ether, ethyl acetate, from 1% to 3% methanol in DCM).

Cytotoxicity bioassays. Summary. Cell lines: For the *in-vitro* cytotoxic activity screening, two cell lines were selected: from human tumors of the lung, designated as H1299, and normal cell lines HUVEC (cells from a navel string). The cell lines

were obtained from BPS Bioscience, Recombinant Cell Lines & Assay Kits. The bought cells were sustained in the artificial medium (DMEM -HUVEC; RPMI – H1299) and often resewed. Stock solutions: The working probes were prepared by dissolution of 1 mg of diterpenoides in 50 μ L of DMSO (dimethylsulfoxide). To obtain the tests solutions two or three μ L from the DMSO solutions of the compounds were diluted in 1 mL culture medium as the concentration of DMSO in the tests solutions became 0.2 - 0.3 %.. For bioassays we took so much quantity of the tests solutions that after subsequent diluting in the culture medium, to ensure a concentration in 125 μ L of 300, 150, 75, 37.5 and 19 μ M. In such conditions the diterpenoids remained well soluble and did not react with the solvent DMSO and the components of the culture medium, based on the TLC monitoring. Pure water was used for the control probe. Four repetitions of assays were made for each concentration. The influence of different concentrations of DMSO on the cytotoxic activity on the cell lines was studied. This step is important because the terpenoids have only poor water solubility and usage of compatible organic solvents such as DMSO is required. Cytotoxic effect for the cells was observed in the mixture of DMSO/water with w/w of DMSO of 1%. Concentration of DMSO in the working probes ranged between 0.1 and 0.007%.

MTT assay: Cells $(0.5 \times 10^4 - 1 \times 10^4)$ were plated in 125 μ L of medium/well in a 96-well plate. After seventy-two hours we threw the old nutritive medium together with the compound and added a new medium with the dissolved MTT. The cell mitochondrial respiratory chain should include MTT and if the cell is alive and breaths its color changes from yellow to purple. After four hours the medium + MTT was thrown and the remains, that were bottom purple crystals MTT (phurmazanic), were dissolved with 2% solutions of formic acid in *iso*-propanol. The intensity of the purple tinge was measured with the device, ELISA reader. The data were processed with the program GraphPadPrism. Activity was evaluated as rate of IC₅₀.

RESULTS AND DISCUSSIONS

Twelve natural neo-clerodane diterpenes (Fig. 3), isolated from *Scutellaria galericulata* L., *Scutellaria alpina* L. and *Scutellaria altissima* L., growing in Bulgaria, were tested for cytotoxicity on two cell lines, from human tumors of the lung designated as H1299 and normal cells from a navel string (HUVEC), using the MTT method. The cytotoxic activity was evaluated as rate of IC₅₀.

Characteristic signals for the neo-clerodane skeleton in all tested diterpenoids were easily determined at $\delta_{\rm H}$ in the region 1.10-1.20 s (Me-20), 0.78-0.95 d (Me-17) and 1.75-2.25 d or dd (H-10β). The decalin moiety contains some constant functional features: the decalin junction is always trans; methyl groups C-17 and C-20 are always αorientated; α -hydroxy or α -acyloxy groups are always present on carbons C-6 and C-19; while carbon C-10 is never functionalized; bearing C-4-C-18 spiro-epoxide. The two doublets from the AB quartet corresponding to the C-18 two hydrogens appeared at the region of $\delta_{\rm H}$ 2.40-2.50 for H-18A and 2.95-3.05 for the H-18B, respectively. In compounds having substitute at third position the signal for 18A is replaced at $\delta_{\rm H}$ 2.85-2.92.

In accordance with the aim of this investigation the compounds were separated into four groups I-IV on the basis of the presented C-11 – C-16 substructures (Fig. 3). Members of the **I** (diterpenoids from 10 to 14) have hexahydrofurofuran moiety (2b) (1H, $\delta_{\rm H}$ 2.80-2.95 br tt, H-13; 1H, $\delta_{\rm H}$ 5.60-5.70 d, H-16) and display a 2α ,19-hemiacetal or acetal function (1H, $\delta_{\rm H}$ 3.98-4.10 ddd, H-2 β) with the exception of **14**.

 $R^1 R^2 R^3$ 14,15-Dihydrojodrellin T (10): Otig H OAc Scutecyprol A (14): R^1 , $R^2 = H$, OH Scupolin H (15) Neoajugapyrin A (11): H OH Otig (R and S form) Scutegalerin A (12): OH H Otig Scutecolumnin C (13):H OH

Separate compounds differ from one another by the substitutes at C-1, C-3 or C-19 position. In the second group (**II**) are included two clerodanes **15** and **16** which contain the fragment **2a** (1620 cm⁻² vinyl ether; 1H, $\delta_{\rm H}$ 4.81 t, H-14 / $\delta_{\rm C}$ 102.0 d; 1H, $\delta_{\rm H}$ 6.45 t, H-15 / $\delta_{\rm C}$ 146.7 d). The series **III** was constructed by three diterpenoids, scutalpins A, E and F, as the configuration of the carbon C-13 in

R R¹ R² Clerodin (16) Scutalpin A (17): MeBu Scutalpin E (19) Scutegalin D (20): Tig H Scutalpin F (18): Ac Scutaltisin G (21): H CH₃

Figure 3. Molecular structures of the tested *neo*-clerodane diterpenoids

scutalpin E (1H, 2.48 d, H-14 α ; 1H, 3.12 d, H-14 β / $\delta_{\rm C}$ 44.3 t, C-14; 1H, 4.30 d, H-16 α ; 1H, 4.10 d, H-

 $16\beta / \delta_{\rm C}$ 79.4 t, C-16 and $\delta_{\rm C}$ 173.1 s, C-15)0 is opposed to that in the scutalpins A and F (1H, 2.57 d, H-14 α ; 1H, 2.73 d, H-14 $\beta / \delta_{\rm C}$ 42.6 t, C-14; 1H, 4.13 d, H-16 α ; 1H, 4.35 d, H-16 $\beta / \delta_{\rm C}$ 79.6 t, C-16 and $\delta_{\rm C}$ 174.6 s, C-15). The representatives **20** and **21**, possessing the lactol ring **6** ($\delta_{\rm H}$ 3.86 td, 1H, H-15A; 3.93 td, 1H, H-15B; 4.64 d, 1H, H-16), form the last group **IV**.

Scutalpins A, E and F, exhibited moderate cytotoxic properties on both cell lines (Table 1), but the rest of the compounds were inactive within the studied concentration range. Based on these results, it could be concluded that the tetra- or hexahydrofurofuran substructures are not the responsible moiety for cytotoxic action, which is in discrepancy with the affirmation from Kojima and Kato, that these structural features of the molecules are accountable conditions for the significant antifeedant activity [15].

Compounds	IC ₅₀ values		Compounds	IC ₅₀ values	
	H1299	HUVEC		H1299	HUVEC
14,15-Dihydrojodrellin T (10)	242,21	244,43	Clerodin (16)	236,35	236,84
Neoajugapyrin A (11)	288,65	287,59	Scutalpin A (17)	21,35	23,89
Scutegalerin A (12)	452,01	458,00	Scutalpin F (18)	26,62	31,28
Scutecolumnin C (13)	667,44	665,79	Scutalpin E (19)	34,24	32,48
Scutecyprol A (14)	335,76	365,32	Scutegalin D (20)	888,35	883,47
Scupolin H (15)	578,71	574,55	Scutaltisin G (21)	892,02	892,22

 Table 1. Cytotoxic activity of neo-clerodane diterpenes on H1299 and HUVEC cell lines

Presumably, there is no correlation between the two kinds of biological activities, cytotoxic and antifeedant. All three compounds with cytotoxic effect, have 13-spiro connected y-lactone as the configuration of the asymmetric center C-13 is S in 17 and 18 and R in 19, respectively. Diterpenoids differ from one another by the substitute at carbon C-6. The most active among them scutalpin A contains 2-methylbutyrate, while the less active scutalpin F and scutalpin E are presented with acetyl or (E)-2-methyl-2-butenoyl ester. It is uncertain that only changing of the methylbutyrate function with the tiglate one causes the bigger decrease in the action of 19, because the C-11 - C-16 substructure is not with 13S configuration like in scutalpin A, but it is with the other possible orientation - 13R.

CONCLUSION

The achieved results by the series of bioassays on antifeedant activity confirm the previously reported, by Blaney *et al.* [16]; Houghgoldstein & Whalen [17], dependence of activity on the presence in the molecule of tetra- or hexahydrofurofuran Neo-clerodane ring. diterpenoids do not display antioxidant activity. Compounds which exhibit cytotoxic and antimicrobial activity possess 13-spiro- α , β unsaturated-y-lactone. Thus, it be concluded that the higher activity depends on the characteristic features of the whole molecular structure. Responsible structural features for biological activity vary for the separate kinds of properties.

REFERENCES

- 1. M. Bruno, F. Piozzi, S. Rosselli, *Natural Product Reports*, **19** (3), 357 (2002).
- M. Bruno, F. Piozzi, A. Maggio, M. S. J. Simmonds, Biochemical Systematics and Ecology, 30 (8), 793 (2002).
- E. A. Klein-Gebbinck, B. J. M. Jansen, A. de Groot, *Phytochemistry*, **61** (7), 737 (2002).
- J. C. Anderson, W. M. Blaney, M. D. Cole, L. L. Fellows, S. V. Ley, R. N. Sheppard, M. S. J. Simmonds, *Tetrahedron Letters*, **30** (35), 4737 (1989).
- M. D. Cole, P. D. Bridge, J. E. Dellar, L. E. Fellows, N. C. Cornish, J. C. Anderson, *Phytochemistry*, **30** (4), 1125 (1991).

- P. I. Bozov, T. A. Vasileva, I.N. Iliev, Chemistry of Natural Compounds, 50 (4), 762 (2014)
- P. I. Bozov, K. H. Nikolova, V. B. Bivolarski, T. A. Vasileva, *Journal of BioScience and Biotechnology*, SE/ONLINE. (2014).
- P. I. Bozova, T. Girova, N. Prisadova, Y. Hristova, V. Gochev, *Natural Product Communications*, **10** (11), 1797 (2015).
- P. I. Bozov, P. N. Penchev, T. V. Vasileva, I. N. Iliev, *Chemistry of Natural Compounds*, **50** (3), 554 (2014).
- 10. P. I. Bozov, P. N. Penchev, J. Coll, *Natural Product Communications*, **9** (3), 347 (2014).
- 11. Y. P. Georgieva, R. D. Mladenov, P. I. Bozov, *Chemistry of Natural Compounds*, **50** (6), 1146 (2014).

- 12. P. I. Bozov, J. Coll, *Natural Product Communications*, **10** (1), 13 (2015).
- P. Bozov, P. Malakov, G. Papanov, M. de La Torre, B. Rodriguez, A. Perales, *Phytochemistry*, **34** (2), 453 (1993).
- 14. P. I. Bozov, G. Y. Papanov, P. Y. Malakov, *Phytochemistry*, **35** (5), 1285 (1994).
- 15. Y. Kojima, N. Kato, *Tetrahedron*, **37** (15), 2527 (1981).
- W. M. Blaney, M. S. Simmonds, S. V. Ley, P. S. Jones, *Entomol. Exp. Appl.*, 46, 267 (1988).
- 17. J. Houghgoldstein, J. Whalen, *Biol. Control*, **3**, 343 (1993).

НЯКОИ СТРУКТУРНИ ОСОБЕНОСТИ, ОПРЕДЕЛЯЩИ ЦИТОТОКСИЧНОСТТА И ДРУГИ ВИДОВЕ АКТИВНОСТИ НА НЕО-КЛЕРОДАНОВИ ДИТЕРПЕНИ ОТ РОДА *SCUTELLARIA*

К. Н. Николова¹, И. Т. Стойков², П. И. Бозов¹*

¹ Катедра по биохимия и микробиология, Пловдивски университет, ул. "Цар Асен" 24, 4000, Пловдив, България. ² Институт по молекулярна биология, БАН, 21 Акад. Ул. Г. Бончев, 1113, София, България

Постъпила на 26 юли, 2017 г.; коригирана на 25 октомври, 2017 г.

(Резюме)

Дванадесет природни нео-клероданови дитерпени, изолирани от три вида на рода Scutellaria (Labiatae), са тествани за цитотоксичност на две клетъчни линии, от тумори на човешки бял дроб, означени с H1299 и нормални клетки от пъпна връв (HUVEC) с помощта на МТТ (3-/4,5-диметилтиазол-2-ил/-2,5-дифенилтетразолиев бромид) метод. Цитотоксичната активност е изчислена като IC₅₀ стойност (такава концентрация на съединението в μ M, при която половината от клетките умират). Три съединения, скуталпини A, E и F проявяват умерени цитотоксични свойства за двете клетъчни линии. От всички тествани съединения най-висока активност е отчетена за скуталпин A, със стойности на IC₅₀ съответно 21,35 и 23,9.

Обсъдени са някои значими аспекти на взаимовръзката структура - активност.

SUPPLEMENTARY DATA

In this section the GraphPadPrism experimental results for the cytotoxic active compounds are shown.

		X				T	an	Nonlin fit	A
Table	format:	N	A						h1299 2
5	۲Y	concentration	h1299.2				1		Y
		concentration	II IZJJ Z				2	Bast ft values	va
13	Y	Y	Λ.V1	A-V2	V-X3	A.V.	3	LOGIC50	1 329
		Λ	Aitt	AIL	AIJ	A.14	4	HILLSLOPE	-1 144
1	Title	0.01	0.240	300.0	0.000	0.970	5	1C50	21.35
1	nue	0.01	0.510	0.290	0.290	0.270	6	Std. Error	
2	Title	40.00	0.442	0.400	0.444	0.440	7	LOGIC50	0.04359
2	nue	19.00	0.115	0.160	0.144	0.149	8	HILLSLOPE	0.1406
1	TH	27.50	0.407	0 400	0.400	0.447	9	95% Confidence Intervals	
2	little	37.50	0.107	0.133	0.139	Q.117	10	LOGIC50	1.239 to 1.420
-	771	75.00	0.000	0.077	0.077	0.000	11	HILLSLOPE	-1.436 to -0.8527
4	litle	75.00	0.030	0.077	0.077	0.063	12	1C50	17.33 to 26.29
1000							13	Goodness of Fit	
5	Title	150.00	0.006	0.007	0.006	0.005	14	Degrees of Freedom	22
							15	R?	0.9604
6	Title	300.00	0.008	0.009	0 008	0.011	16	Absolute Sum of Squares	1089
9.488	Second 1		0.000.00	100000	1000000	535553 A		Syx	1.035
T 11		A A			Nonlin fit		~		
	hormot	<u>n</u>		n				rionan nic	huvec 2
I able	e format:	^		А					huvec 2
l able	e format: XY	concentration		huve	c 2				huvec 2
Table	e format: <mark>XY</mark>	concentration		huve	c 2		1	log(inhibitor) vs. normalized response	huvec 2 Y Va
Table	e tormat: XY	concentration	Δ.V1	huve	c 2	A.V4	1 2	log(inhibitor) vs. normalized response Best-fit values	Va
	e format: XY	concentration X	A:Y1	huved A:Y2	c 2 A:Y3	A:Y4	1 2 3	log(inhibitor) vs. normalized response Best-fit values LOGIC50	+uvec 2 Y Va 1.378
	e format: XY	concentration X	A:Y1	huve A:Y2	c 2 A:Y3	A:Y4	1 2 3 4	log(inhibitor) vs. normalized response Best-fit values LOGIC50 HILLSLOPE	huvec 2 Y Va 1.378 -1 275
	e format: XY Title	concentration X 0.01	A:Y1	huved A:Y2 0.232	c 2 A:Y3 0.229	A:Y4 0.241	1 2 3 4 5	log(inhibitor) vs. normalized response Best-fit values LOGIC50 HILLSLOPE IC50	huvec 2 Y Va 1.378 -1.275 (23.89)
	e format: XY Title	concentration X 0.01	A:Y1 0.243	huved A:Y2 0.232	c 2 A:Y3 0.229	A:Y4 0.241	1 2 3 4 5 6	log(inhibitor) vs. normalized response Best-fit values LOGIC50 HILLSLOPE IC50 Std. Error	huvec 2 Y Va 1.378 -1 275 23.89
1 abk	e format: XY Title	Concentration X 0.01	A:Y1 0.243	A:Y2 0.232	c 2 A:Y3 0.229 0.104	A:Y4 0.241	1 2 3 4 5 6 7	l log(inhibitor) vs. normalized response Best-fit values LOGIC50 HILLSLOPE IC50 Std. Error LOGIC50	huvec 2 Y Va 1.378 -1 275 23.89 0.04098
1 able	e format: XY Title Title	Concentration X 0.01 19.00	A:Y1 0.243 0.109	A:Y2 0.232 0.117	c 2 A:Y3 0.229 0.104	A:Y4 0.241 0.153	1 2 3 4 5 6 7 8	log(inhibitor) vs. normalized response Best-fit values LOGIC50 HILLSLOPE IC50 Std. Error LOGIC50 HILLSLOPE	huvec 2 Y Va 1.378 -1.275 23.89 0.04098 0.1669
1 able	e format: XY Title Title	X concentration X 0.01 19.00 27.00	A:Y1 0.243 0.109	A:Y2 0.232 0.117	c 2 A:Y3 0.229 0.104	A:Y4 0.241 0.153	1 2 3 4 5 6 7 8 9	Iog(inhibitor) vs. normalized response Best-fit values LOGIC50 HILLSLOPE IC50 Std. Error LOGIC50 HILLSLOPE 95% Confidence Intervals	huvec 2 Y Va 1.378 1.275 23.89 0.04098 0.1669
1 1 2 3	e format: XY Title Title Title	Concentration X 0.01 19.00 37.50	A:Y1 0.243 0.109 0.085	A:Y2 0.232 0.117 0.116	c 2 A:Y3 0.229 0.104 0.120	A:Y4 0.241 0.153 0.120	1 2 3 4 5 6 7 8 9 9 10	Indiana Indian	huvec 2 Y Va 1.378 1.275 23.89 0.04098 0.1669 1.293 to 1.463
1 1 2 3	e format: XY Title Title Title	X Concentration X 0.01 19.00 37.50 75.00	A:Y1 0.243 0.109 0.085	A:Y2 0.232 0.117 0.116	c 2 A:Y3 0.229 0.104 0.120	A:Y4 0.241 0.153 0.120	1 2 3 4 5 6 7 8 9 10 11	Indiana Indian	huvec 2 Y Va 1.378 -1.275 23.89 0.04098 0.1669 1.293 to 1.463 -1.621 to -0.9285
1 1 2 3 4	e format: XY Title Title Title Title Title	X Concentration X 0.01 19.00 37.50 75.00	A:Y1 0.243 0.109 0.085 0.018	A:Y2 0.232 0.117 0.116 0.033	c 2 A:Y3 0.229 0.104 0.120 0.042	A:Y4 0.241 0.153 0.120 0.055	1 2 3 4 5 6 6 7 8 9 10 11 11 12	Indiana Indian	huvec 2 Y Y Va 1.378 -1.275 23.89 0.04098 0.1669 1.293 to 1.463 -1.621 to -0.9285 19.64 to 29.06
1 1 2 3 4	e format: XY Title Title Title Title	X Concentration X 0.01 19.00 37.50 75.00	A:Y1 0.243 0.109 0.085 0.018	A:Y2 0.232 0.117 0.116 0.033	c 2 A:Y3 0.229 0.104 0.120 0.042	A:Y4 0.241 0.153 0.120 0.055	Image: 1 2 3 4 5 6 7 8 9 10 11 12 13	Indiana Indian	huvec 2 Y Va 1.378 -1.275 23.89 0.04098 0.1669 1.293 to 1.463 -1.621 to -0.9285 19.64 to 29.06
1 1 2 3 4 5	e format: XY Title Title Title Title Title	X concentration X 0.01 19.00 37.50 75.00 150.00	A:Y1 0.243 0.109 0.085 0.018 0.018 0.006	A:Y2 0.232 0.117 0.116 0.033 0.006	c 2 A:Y3 0.229 0.104 0.120 0.042 0.007	A:Y4 0.241 0.153 0.120 0.055 0.006	I 2 3 4 5 6 7 8 9 10 11 12 13 14	Iog(inhibitor) vs. normalized response Best-fit values LOGIC50 HILLSLOPE IC50 Std. Error LOGIC50 HILLSLOPE 95% Confidence Intervals LOGIC50 HILLSLOPE IC50 Goodness of Fit Degrees of Freedom	huvec 2 Y Va 1.378 -1 275 23.89 0.04098 0.1669 1.293 to 1.463 -1.621 to -0.9285 19.64 to 29.06 22
1 able	e format: XY Title Title Title Title Title	X concentration X 0.01 19.00 37.50 75.00 150.00	A:Y1 0.243 0.109 0.085 0.018 0.006	A:Y2 0.232 0.117 0.116 0.033 0.006	c 2 A:Y3 0.229 0.104 0.120 0.042 0.007	A:Y4 0.241 0.153 0.120 0.055 0.006	1 2 3 4 5 6 6 7 7 8 9 9 10 11 12 13 14 15	Iog(inhibitor) vs. normalized response Best-fit values LOGIC50 HILLSLOPE IC50 Std. Error LOGIC50 HILLSLOPE 95% Confidence Intervals LOGIC50 HILLSLOPE IC50 Goodness of Fit Degrees of Freedom R?	huvec 2 Y Va 1.378 1.275 23.89 0.04098 0.1669 1.293 to 1.463 -1.621 to -0.9285 19.64 to 29.06 22 0.9520
1 able	ritle	X concentration X 0.01 19.00 37.50 75.00 150.00 300.00	A:Y1 0.243 0.109 0.085 0.018 0.006 0.009	A:Y2 0.232 0.117 0.116 0.033 0.006 0.010	c 2 A:Y3 0.229 0.104 0.120 0.042 0.007 0.010	A:Y4 0.241 0.153 0.120 0.055 0.006 0.008	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Iog(inhibitor) vs. normalized response Best-fit values LOGIC50 HILLSLOPE IC50 Std. Error LOGIC50 HILLSLOPE 95% Confidence Intervals LOGIC50 HILLSLOPE IC50 Goodness of Fit Degrees of Freedom R? Absolute Sum of Squares	huvec 2 Y Va 1.378 1.275 23.89 0.04098 0.1669 1.293 to 1.463 -1.621 to -0.9285 19.64 to 29.06 22 0.9520 1372

Scutalpin A (17)

K. H. Nikolova et al.: Responsible structural features for cytotoxic, and other kinds of activity of neo-clerodane ... Scutalpin F (18)

Tabl	le format: X		A							
XY		concentration	huve <mark>c</mark> 1							
	X	Х	A:Y1	A:Y2	A:Y3	A:Y4				
1	Title	0.01	0.243	0.232	0.229	0.241				
2	Title	19.00	0.112	0.151	0.142	0.141				
3	Title	37.50	0.064	0.136	0.124	0.120				
4	Title	75.00	0.073	0.101	0.099	0.110				
5	Title	150.00	0.004	0.005	0.008	0.008				
6	Title	300.00	0.004	0.006	0.006	0.006				
		Y		٨						

le format:	X		A						
XY	concentration	h1299 1							
X	X	A:Y1	A:Y2	A:Y3	A:Y4				
Title	0.01	0.316	0.295	0.290	0.276				
Title	19.00	0.160	0.158	0.154	0.137				
Title	37.50	0.129	0.133	0.134	0.157				
Title	75.00	0.064	0.124	0.117	0.110				
Title	150.00	0.007	0.016	0.018	0.016				
Title	300.00	0.009	0.014	0.008	0.013				
	e format: XY Title Title Title Title Title Title Title	X X concentration concentration X X Title 0.01 Title 19.00 Title 37.50 Title 75.00 Title 150.00 Title 300.00	X X concentration concentration X A:Y1 Title 0.01 0.316 Title 19.00 0.160 Title 37.50 0.129 Title 75.00 0.064 Title 150.00 0.007 Title 300.00 0.009	X A concentration h1299 X A:Y1 A:Y2 Title 0.01 0.316 0.295 Title 19.00 0.160 0.158 Title 37.50 0.129 0.133 Title 75.00 0.064 0.124 Title 150.00 0.007 0.016 Title 300.00 0.009 0.014	X A concentration h1299 1 X A:Y1 A:Y2 A:Y3 Title 0.01 0.316 0.295 0.290 Title 19.00 0.160 0.158 0.154 Title 37.50 0.129 0.133 0.134 Title 75.00 0.064 0.124 0.117 Title 150.00 0.007 0.016 0.018 Title 300.00 0.009 0.014 0.008				

34.00	N E- 64	A		
IIII	Noniin rit	huvec 1		
		Y		
1	log(inhibitor) vs. normalized response Va			
2	Best-fit values			
3	LOGIC50	1.495		
4	HILLSLOPE	-1.127		
5	IC50	31.28		
6	Std. Error			
7	LOGIC50	0.05258		
8	HILLSLOPE	0.1742		
9	95% Confidence Intervals			
10	LOGIC50	1.386 to 1.604		
11	HILLSLOPE	-1.488 to -0.7654		
12	IC50	24.34 to 40.21		
13	Goodness of Fit			
14	Degrees of Freedom	22		
15	R?	0.9138		
16	Absolute Sum of Squares	2413		
17	Sy.x	10.47		
14m	N E- G	A		
1	Nonlin fit	A h1299 1		
1	Nonlin fit	A h1299 1 Y		
1	Nonlin fit log(inhibitor) vs. normalized response Va	A h1299 1 Y		
1 2	Nonlin fit log(inhibitor) vs. normalized response Va Best-fit values	A h1299 1 Y		
1 2 3	Nonlin fit log(inhibitor) vs. normalized response – Va Best-fit values LOGIC50	A h1299 1 Y 1.425		
1 2 3 4	Nonlin fit log(inhibitor) vs. normalized response Va Best-fit values LOGIC50 HILLSLOPE	A h1299 1 Y 1.425 -1.015		
1 2 3 4 5	Nonlin fit log(inhibitor) vs. normalized response Va Best-fit values LOGIC50 HILLSLOPE IC50	A h1299 1 Y 1.425 -1.015 26.62		
1 2 3 4 5 6	Nonlin fit log(inhibitor) vs. normalized response Va Best-fit values LOGIC50 HILLSLOPE IC50 Std. Error	A h1299 1 Y 1.425 -1.015 26.62		
1 2 3 4 5 6 7	Nonlin fit log(inhibitor) vs. normalized response Va Best-fit values LOGIC50 HILLSLOPE IC50 Std. Error LOGIC50	A h1299 1 Y 1.425 -1.015 26.62 0.05046		
1 2 3 4 5 6 7 8	Nonlin fit log(inhibitor) vs. normalized response Va Best-fit values LOGIC50 HILLSLOPE IC50 Std. Error LOGIC50 HILLSLOPE	A h1299 1 Y 1.425 -1.015 26.62 0.05046 0.1364		
1 2 3 4 5 6 7 8 9 9	Nonlin fit log(inhibitor) vs. normalized response – Va Best-fit values LOGIC50 HILLSLOPE IC50 Std. Error LOGIC50 HILLSLOPE 95% Confidence Intervals	A h1299 1 Y 1.425 -1.015 26.62 0.05046 0.1364		
1 2 3 4 5 6 7 8 9 9 10	Nonlin fit log(inhibitor) vs. normalized response Va Best-fit values LOGIC50 HILLSLOPE IC50 Std. Error LOGIC50 HILLSLOPE 95% Confidence Intervals LOGIC50	A h1299 1 Y 1.425 -1.015 26.62 0.05046 0.1364 1.320 to 1.530		
1 2 3 4 5 6 7 8 9 10 11	Nonlin fit	A h1299 1 Y 1.425 -1.015 26.62 0.05046 0.1364 1.320 to 1.530 -1.297 to -0.7319		
1 2 3 4 5 6 6 7 8 9 10 11 11 12	Nonlin fit	A h1299 1 Y 1.425 -1.015 26.62 0.05046 0.1364 1.320 to 1.530 -1.297 to -0.7319 20.92 to 33.87		
1 2 3 4 5 6 6 7 8 9 9 10 11 11 12 13	Nonlin fit	A h1299 1 Y 1.425 -1.015 26.62 0.05046 0.1364 1.320 to 1.530 -1.297 to -0.7319 20.92 to 33.87		
1 2 3 4 5 6 7 8 9 10 11 12 13 14	Nonlin fit Iog(inhibitor) vs. normalized response – Va Best-fit values LOGIC50 HILLSLOPE IC50 Std. Error LOGIC50 HILLSLOPE 95% Confidence Intervals LOGIC50 HILLSLOPE IC50 Goodness of Fit Degrees of Freedom P0	A h1299 1 Y 1.425 -1.015 26.62 0.05046 0.1364 1.320 to 1.530 -1.297 to -0.7319 20.92 to 33.87 22 0.0202		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Nonlin fit log(inhibitor) vs. normalized response – Va Best-fit values LOGIC50 HILLSLOPE IC50 Std. Error LOGIC50 HILLSLOPE 95% Confidence Intervals LOGIC50 HILLSLOPE 55% Confidence Intervals LOGIC50 HILLSLOPE 95% Confidence Intervals LOGIC50 HILLSLOPE 050 Goodness of Fit Degrees of Freedom R? Absolute Sum of Saurase	A h1299 1 Y 1.425 -1.015 26.62 0.05046 0.1364 1.320 to 1.630 -1.297 to -0.7319 20.92 to 33.87 22 0.9393 1675		
1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17	Nonlin fit log(inhibitor) vs. normalized response Va Best-fit values LOGIC50 HILLSLOPE IC50 Std. Error LOGIC50 HILLSLOPE 95% Confidence Intervals LOGIC50 HILLSLOPE IC50 Goodness of Fit Degrees of Freedom R? Absolute Sum of Squares	A h1299 1 Y 1.425 -1.015 26.62 0.05046 0.1364 1.320 to 1.530 -1.297 to -0.7319 20.92 to 33.87 22 0.9393 1575 2.461		
1 2 3 4 5 6 6 7 7 8 9 10 11 11 12 13 14 15 16 17 18	Nonlin fit log(inhibitor) vs. normalized response Va Best-fit values LOGIC50 HILLSLOPE IC50 Std. Error LOGIC50 HILLSLOPE IC50 Std. Error LOGIC50 HILLSLOPE 95% Confidence Intervals LOGIC50 HILLSLOPE IC50 Goodness of Fit Degrees of Freedom R? Absolute Sum of Squares Sy.× Number of agints	A h1299 1 Y 1.425 -1.015 26.62 0.05046 0.1364 1.320 to 1.530 -1.297 to -0.7319 20.92 to 33.87 22 0.9393 1575 8.461		

Scutalpin E (19)

Table format:		X		A			1	Nonlin fit	A bures 3
I duic	TUIIIIdi.			74	-		100 TT		Y
)	(Y	concentration	huvec 3				1	log(inhibitor) vs. normalized response Va	
				2	Best-fit values				
	X	X	A:Y1	A:Y2	A:Y3	A:Y4	3	L OGICER	1 512
		<u> </u>					4	HILLSLOPE	1 130
1	Titla	0.01	0.2430	0 222	0 220	0.241	5		20.40
	Tine	0.01	0.2400	0.2.32	0.225	V.241	5	Stat Error	32.40
2	Titla	10.00	0 1460	0 122	0.454	0.105	7		0.04314
2	nue	19.00	0.1400	V. IJZ	U. 151	0.125	8	HUISLOPE	0.1438
2	TH.	27.0	0 4040	0.447	0.404	0.004	9	95% Confidence Intervals	0.1400
Э	Title	37.50	0.1240	0.117	U. 1Z I	0.094	10	LOGIC50	1.422 to 1.601
1	TU	75.00	0 4070	0.000	0.000	0.007	11	HILLSLOPE	-1.428 to -0.8313
4	TILLE	75.00	0.10/0	0.092	0.099	0.087	12	IC50	26.43 to 39.91
						0.007	13	Goodness of Fit	
3	litle	150.00	0.0090	0.010	0.009	0.007	14	Degrees of Freedom	22
							15	R?	0.9380
6	Title	300.00	0.0070	0.006	0.005	0.007	16	Absolute Sum of Squares	1680
	States and States	20 Sec. 1. 1. 1.			1.0000/10/01-01		17	Sy.x	8.738
		X					111	Noplin fit	Α
Table	e format:			h					h1299 3
	XY	concentration	oncentration h1299 3		93	I log(inhibitor) vs. normalized response		log(inhibitor) up, normalized recommon	Ŷ
							2	Best-fit values	3
	X	X	Δ.Υ1	Δ.Υ2	Δ.Υ3	Δ·ΥΔ	3	LOGIC50	1.535
		^	8.011	A114	Ally	0.11	4	HILLSLOPE	-1.336
1	Title	0.01	0 316	0 295	0 290	0 276	5	IC50	34.24
	THUC	0.01	0.010	0.200	0.200	0.210	6	Std. Error	
2	Title	19.00	0 185	0 182	0 183	0 183	7	LOGIC50	0.02905
-	THUS	10.00	0.100	V. 102	0.100	0.100	8	HILLSLOPE	0.1294
3	Title	37.50	0 145	0 168	0 189	0 139	9	95% Confidence Intervals	4 474 4 505
•	THUS	51.50	0.145	0.100	0.105	0.100	10	LOGIC50	1.4/4 to 1.595
4	Title	75.00	0.092	0.095	0.088	0.045	12	HILLSLOPE	-1.604 to -1.067
	THUS	10.00	0.002	0.000	0.000	0.040	13	Goodness of Fit	23.00 10 33.33
5	Title	150.00	0.020	0.020	0.021	0.011	14	Degrees of Freedom	22
	nuc	130.00	0.020	0.020	0.021	0.011	15	R?	0.9633
6	Title	300.00	0.010	0.010	0.011	0.008	16	Absolute Sum of Squares	1037
U	THE	500.00	0.010	0.010	0.011	0.000	17	Sy.x	6.864