Multicomponent reactions for the synthesis of bis-heterocyclic pyrrole derivatives

Y. Stremski¹, D. Kirkova^{1, 2}, S. Statkova-Abeghe^{1*}, P. Angelov¹, I. Ivanov^{1, 3}

¹University of Plovdiv "Paisii Hilendarski", Department of Organic Chemistry, 24 Tzar Asen Str., 4000 Plovdiv, Bulgaria, ²Tobacco and Tobacco Products Institute, 4108 Markovo, 4000 Plovdiv, Bulgaria ³University of Plovdiv "Paisii Hilendarski", Branch-Smolyan, 32 Dicho Petrov Str., 4700 Smolyan, Bulgaria

Received November 11, 2018; Revised January 4, 2019

New pyrrole derivatives are synthesised in high yields (55–95%) by one-pot α -amidoalkylation reactions of various *N*-heterocycles (benzothiazole, thiazole and imidazole) and pyrrole. Further oxidation of the obtained derivatives leads to fully aromatic bis-heterocyclic products, bearing structural similarity to the natural product *Camalexin*.

Keywords: Camalexin, Pyrroles, One-pot amidoalkylation reactions

INTRODUCTION

The natural product *Camalexin* and its analogs have attracted a great deal of recent attention because of their interesting biological profile [1]. In a previous publication we reported a new and convenient synthesis of *Camalexin* and its benzoand aza-analogs [2]. The underlying concept of this synthesis can be traced back to works of Bergman *et al.* [3] and is extendable to many other structurally related heterocyclic systems with potential biological activity. In the recent literature there are some interesting examples of biologically active pyrroles containing a thiazole fragment in their structure with prospects for their use as potential antifungal and antituberculosis agents [4]. Taking this into consideration, herein we describe the application of our previously published multicomponent approach for the synthesis of new pyrrole derivatives (Scheme 1).

Scheme 1. One-pot synthesis of 2-substituted pyrroles 5

EXPERIMENTAL

General information

All reagents and solvents were obtained from commercial suppliers (Merck) and were used without further purification. Melting points were determined on a Boetius PHMKO5 hot stage apparatus and are uncorrected. IR and MS spectra were measured on VERTEX 70 FT-IR spectrometer (Bruker Optics, Germany) and HRMS "Q-Exactive Orbitrap" (Thermo Fisher Scientific, Waltham, MA, USA) spectrometer, respectively. NMR spectra were measured on Bruker Avance AV600 and DRX250 spectrometers in CDCl₃ and DMSO as solvents. Chemical shifts (δ , ppm) are downfield from TMS. To average out the rotamers observed in compounds 5 most of the NMR spectra

were taken at 80°C in DMSO. TLC was done on precoated 0.2 mm Merck silica gel 60 plates. Neutral alumina was used for column chromatographic separation.

Synthesis of amidoalkylated pyrroles **5aa-5ae**, **5ba**, **5bb**, general procedure

The corresponding acyl chloride or alkyl chloroformate (1.2 equiv.) is slowly added with magnetic stirring to a solution of benzothiazole or thiazole (1 equiv.) in dry dichloromethane (4-8 mL/mmol) at the temperature indicated in Table Immediately after that pyrrole is added 1. (1 equiv.). Then, gradually, in the course of 30 min, triethylamine (1equiv.), dissolved in dichloromethane (2 mL/mmol) is added. The reaction mixture is stirred for the time and at the temperature specified in Table 1. After completion

^{*} To whom all correspondence should be sent.

E-mail: stab@uni-plovdiv.bg

Y. Stremski et al.: Multicomponent reactions for the synthesis of bis-heterocyclic pyrrole derivatives

of the reaction, the mixture is transferred to a separatory funnel with dichloromethane (20 - 30 mL/mmol) and is consecutively extracted with equal volumes of aqueous Na₂CO₃ (3%), water and brine. The combined organic layers are dried (Na₂SO₄) and the solvent is removed under reduced pressure. Analytically pure samples were obtained by column chromatography on neutral alumina, using mixtures of diethyl ether/petroleum ether as eluents.

Ethyl 2-(1H-pyrrol-2-yl)benzo[d]thiazole-3(2H)carboxylate **5aa**

Chromatographed on neutral alumina with petroleum/diethyl ether (8:1); Yield: 55%; Oil.

¹H-NMR (600 MHz, 20°C, CDCl₃, δ ppm, *J* Hz): 1.41 (t, *J* = 6, 3H, CO₂CH₂<u>CH₃</u>), 4.34 – 4.40 (m, 2H, CO₂<u>CH₂</u>CH₃), 6.12 (m, 1H), 6.33 (br s, 1H), 6.74 (m, 1H), 6.88 (s, 1H, *CH), 7.02 – 7.12 (m, 2H), 7.24 (m, 2H), 7.58 (br s, 1H, NH); ¹³C-NMR (150 MHz, 20°C, CDCl₃, δ ppm): 14.5, 60.6, 62.8, 107.9, 108.3, 117.8, 118.8, 122.3, 124.3, 125.5, 131.0, 132.1, 136.6, 152.5; IR (KBr, cm⁻¹): 3371, 2982, 1703, 1580, 1471, 1249, 747; HRMS *m*/*z* (ESI): calcd for C₁₄H₁₄N₂NaO₂S⁺ [M+Na]⁺ 297.0668, found 297.0660; calcd for C₁₄H₁₃N₂O₂S⁻ [M-H]⁻ 273.0703, found 273.0687.

Methyl 2-(1H-pyrrol-2-yl)benzo[d]thiazole-3(2H)carboxylate **5ab**

Chromatographed on neutral alumina with petroleum/diethyl ether (8:1); Yield: 67%; mp = $111-113^{\circ}$ C.

¹H-NMR (600 MHz, 20°C, CDCl₃, δ ppm, *J* Hz): 3.81 (s, 3H, CO₂<u>CH₃</u>), 6.02 (m, 1H), 6.22 (br s, 1H), 6.63 (m, 1H), 6.77 (s, 1H, *CH), 6.92 – 7.02 (m, 2H), 7.12 (m, 2H), 7.51 (br s, 1H, NH); ¹³C-NMR (150 MHz, 20°C, CDCl₃, δ ppm): 53.5, 60.6, 107.9, 108.2, 108.3, 117.8, 118.9, 122.3, 124.4, 125.5, 130.9, 139.2, 151.1; IR (KBr, cm⁻¹): 3372, 2957, 1686, 1580, 1515, 1472, 1241, 745; HRMS *m*/*z* (ESI): calcd for C₁₃H₁₂N₂NaO₂S⁺ [M+Na]⁺ 283.0512, found 283.0507; calcd for C₁₃H₁₁N₂O₂S⁻ [M-H]⁻ 259.0547, found 259.0549.

2,2,2-trichloroethyl 2-(2-(1H-pyrrol-2yl)benzo[d]thiazol-3(2H)-yl)-2-oxoacetate **5ac**

Chromatographed on neutral alumina with petroleum/diethyl ether (2:1 increasing polarity to 1:1); Yield: 93%; mp = $116-118^{\circ}$ C.

¹H-NMR (600 MHz, 80°C, DMSO-d₆, δ ppm, *J* Hz): 4.96 (d, 2*J* = 12, 1H, CO₂CH₂CCl₃) 5.06 (d, 2*J* = 12, 1H, CO₂CH₂CCl₃), 5.88 (m, 2H), 6.67 (m, 1H), 6.96 (s, 1H, *CH), 7.09 (t, *J* = 8.2, 1H), 7.17 (t, *J* = 8.2, 1H), 7.28 (d, *J* = 7.6, 1H), 7.78 (d, *J* = 8.2, 1H) 10.56 (br s, 1H, NH); ¹³C-NMR (150 MHz, 80°C, DMSO-d₆, δ ppm): 61.9, 75.5, 105.9, 107.8, 117.9, 119.2, 123.3, 125.4, 125.7, 127.0, 129.2, 131.2, 137.3, 151.1; IR (KBr, cm⁻¹): 3382, 2992, 1698, 1576, 1480, 1260, 746; HRMS *m*/*z* (ESI): calcd for C₁₄H₁₁C₁₃N₂NaO₂S⁺ [M+Na]⁺ 398.9499, found 398.9497.

1-(2-(1H-pyrrol-2-yl)benzo[d]thiazol-3(2H)-yl)ethan-1one 5ad

Chromatographed on neutral alumina with petroleum/diethyl ether (4:1 increasing polarity to 2:1); Yield: 58%; mp = $118-120^{\circ}$ C.

¹H-NMR (600 MHz, 80°C, DMSO-d₆, δ ppm, *J* Hz): 2.23 (s, 3H, CO<u>CH₃</u>), 5.83 (m, 1H), 5.89 (m, 1H), 6.69 (m, 1H), 6.99 (s, 1H, *CH), 7.05 (t, *J* = 7.6, 1H), 7.13 (t, *J* = 7.6, 1H), 7.25 (d, *J* = 7.6, 1H), 7.88 (d, *J* = 7.6, 1H) 10.60 (br s, 1H, NH); ¹³C-NMR (150 MHz, 80°C, DMSO-d₆, δ ppm): 23.7, 62.2, 106.0, 107.9, 119.0, 119.3, 123.2, 125.3, 125.4, 129.6, 131.6, 138.8, 169.1; IR (KBr, cm⁻¹): 3394, 2987, 1705, 1560, 1475, 1272, 749; HRMS *m*/*z* (ESI): calcd for C₁₃H₁₂N₂NaOS⁺ [M+Na]⁺ 267.0563, found 267.0563; calcd for C₁₃H₁₁N₂OS⁻ [M-H]⁻ 243.0598, found 243.0599.

(2-(1H-pyrrol-2-yl)benzo[d]thiazol-3(2H)yl)(phenyl)methanone **5ae**

Chromatographed on neutral alumina with petroleum/diethyl ether (1:1); Yield: 57%; mp = $173-175^{\circ}C$.

¹H-NMR (600 MHz, 80°C, DMSO-d₆, δ ppm, *J* Hz): 5.87 (m, 2H), 6.67 (m, 1H), 6.77 (s, 1H, *CH), 7.03 (t, *J* = 7.6, 1H), 7.07 (t, *J* = 7.6, 1H), 7.29 – 7.31 (m, 2H), 7.39 – 7.43 (m, 4H), 7.50 – 7.53 (m, 1H), 10.46 (br s, 1H, NH); ¹³C-NMR (150 MHz, 80°C, DMSO-d₆, δ ppm): 64.0, 106.3, 107.8, 119.1, 119.7, 123.7, 125.1, 125.8, 127.5, 128.9, 130.4, 131.2, 131.4, 135.9, 138.8, 169.0; IR (KBr, cm⁻¹): 3362, 2966, 1625, 1572, 1468, 1282, 753; HRMS *m*/*z* (ESI): calcd for C₁₈H₁₄N₂NaOS⁺ [M+Na]⁺ 329.0719, found 329.0713; calcd for C₁₈H₁₃N₂OS⁻ [M-H]⁻ 305.0754, found 305.0748. Y. Stremski et al.: Multicomponent reactions for the synthesis of bis-heterocyclic pyrrole derivatives

Ethyl 2-(1H-pyrrol-2-yl)thiazole-3(2H)-carboxylate 5ba

Chromatographed on neutral alumina with petroleum/diethyl ether (8:1 increasing polarity to 4:1); Yield: 60%; mp = $85-87^{\circ}$ C.

¹H-NMR (250 MHz, 80°C, DMSO-d₆, δ ppm, *J* Hz): 1.19 (t, *J* = 7.1, 3H, CO₂CH₂CH₃), 4.13 (q, *J* = 7.1, 2H, CO₂CH₂CH₃), 5.85 (d, *J* = 4.7, 1H), 5.93 – 5.96 (m, 1H), 5.99 – 6.02 (m, 1H), 6.53 (d, *J* = 4.7, 1H), 6.59 (s, 1H, *CH), 6.66 – 6.69 (m, 1H), 10.49 (br s, 1H, NH);¹³C-NMR (62.5 MHz, 80°C, DMSO-d₆, δ ppm): 14.1, 59.6, 61.7, 103.3, 105.4, 107.3, 118.2, 120.9, 131.6, 152.2; IR (KBr, cm⁻¹): 3312, 3086, 2981, 1685, 1597, 1564, 1467, 1382, 1251, 733; HRMS *m*/*z* (ESI): calcd for C₁₀H₁₂N₂NaO₂S⁺ [M+Na]⁺ 247.0512, found 247.0516; calcd for C₁₀H₁₁N₂O₂S⁻ [M-H]⁻ 223.0547, found 223.0555.

Methyl 2-(1H-pyrrol-2-yl)thiazole-3(2H)-carboxylate 5bb

Chromatographed on neutral alumina with petroleum/diethyl ether (8:1 increasing polarity to 4:1); Yield: 63%; mp = $92-94^{\circ}C$.

¹H-NMR (250 MHz, 80°C, DMSO-d₆, δ ppm, *J* Hz): 3.69 (s, 3H, CO₂<u>CH₃</u>), 5.87 (d, *J* = 4.7, 1H), 5.93 – 5.96 (m, 1H), 5.99 – 6.02 (m, 1H), 6.53 (d, *J* = 4.7, 1H), 6.60 (s, 1H, *CH), 6.67 – 6.69 (m, 1H), 10.53 (br s, 1H, NH); ¹³C-NMR (62.5 MHz, 80°C, DMSO-d₆, δ ppm): 52.9, 59.6, 103.6, 105.4, 107.4, 118.3, 120.9, 131.5, 152.7; IR (KBr, cm⁻¹): 3332, 3093, 2957, 1691, 1597, 1561, 1449, 1366, 1250, 742; HRMS *m*/*z* (ESI): calcd for C₉H₁₀N₂NaO₂S⁺ [M+Na]⁺ 233.0355, found 233.0358; calcd for C₉H₉N₂O₂S⁻ [M-H]⁻ 209.0390, found 209.0396.

Synthesis of amidoalkylated pyrroles **5ca-5cd**, general procedure

The corresponding acyl chloride or alkyl chloroformate (4.4 mmol) is slowly added to a cooled (0°C) and magnetically stirred solution of imidazole (2 mmol, 0.136 mg) and Et₃N (2 mmol, 0.28 mL) in dry 1,2-dichloroethane (10 mL). Immediately after that, pyrrole (2 mmol, 0.139 mL) is added. In the course of the next 30 minutes Et₃N (2 mmol) in 1,2-dichloroethane (4 mL) is gradually added. After completion of the reaction (Table 1), the mixture is transferred to a separatory funnel with dichloromethane (50 mL) and is successively extracted with equal volumes of aqueous HCl (1:4), Na₂CO₃ (3%), water and brine. The combined organic layers are dried (Na₂SO₄) and the solvent is removed under reduced pressure. The solid residue

is then triturated and washed with small amount of hexane and petrol/diethyl ether (4:1) to remove any unreacted pyrrole. This sequence induces crystallization of the products. The material obtained in this way is usually sufficiently clean to be taken to the next stage without further purification. Analytically pure samples of **5cc** and **5cd** were obtained by column chromatography on neutral alumina, using mixtures of diethyl ether/petroleum ether as eluents.

Diethyl 2-(1H-pyrrol-2-yl)-1H-imidazole-1,3(2H)dicarboxylate **5ca**

Yield: 81%; mp = 104-106°C.

¹H-NMR (600 MHz, 80°C, DMSO-d₆, δ ppm, *J* Hz): 1.16 (t, *J* = 7.0, 6H, 2×CO₂CH₂CH₃), 4.06 – 4.11 (m, 4H, 2×CO₂CH₂CH₃), 5.95 – 5.97 (m, 1H), 6.02 – 6.03 (m, 1H), 6.35 (s, 2H), 6.61 (s, 1H, *CH), 6.65 (m, 1H), 10.60 (br s, 1H, NH); ¹³C-NMR (150 MHz, 80°C, DMSO-d₆, δ ppm): 14.7, 61.9, 69.4, 106.3, 107.8, 112.8, 118.4, 129.2, 150.8; IR (KBr, cm⁻¹): 3385, 3154, 2988, 1706, 1627, 1561, 1463, 1410, 1383, 1265; HRMS *m/z* (ESI): calcd for C₁₃H₁₇N₃NaO₄⁺ [M+Na]⁺ 302.1111, found 302.1101; calcd for C₁₃H₁₆N₃O₄⁻ [M-H]⁻ 278.1146, found 278.1147.

Dimethyl 2-(1H-pyrrol-2-yl)-1H-imidazole-1,3(2H)dicarboxylate **5cb**

Yield: 95%; mp = 123-125°C.

¹H-NMR (600 MHz, 80°C, DMSO-d₆, δ ppm, *J* Hz): 3.65 (s, 6H, 2×CO₂CH₃), 5.95 – 5.97 (m, 1H), 6.02 – 6.03 (m, 1H), 6.35 (s, 2H), 6.63 (s, 1H, *CH), 6.65 (m, 1H), 10.56 (br s, 1H, NH); ¹³C-NMR (150 MHz, 80°C, DMSO-d₆, δ ppm): 53.1, 69.4, 106.3, 107.9, 112.9, 118.5, 129.0, 151.2; IR (KBr, cm⁻¹): 3331, 3133, 2958, 1689, 1626, 1562, 1450, 1402, 1392, 1272; HRMS *m*/*z* (ESI): calcd for C₁₁H₁₃N₃NaO₄⁺ [M+Na]⁺ 274.0798, found 274.0797; calcd for C₁₁H₁₂N₃O₄⁻ [M-H]⁻ 250.0833, found 250.0829.

1,1'-(2-(1H-pyrrol-2-yl)-1H-imidazole-1,3(2H)diyl)bis(ethan-1-one) 5cc

Chromatographed on neutral alumina with petroleum/diethyl ether (1:1 increasing polarity to diethyl ether); Yield: 66%; mp = 141–143°C.

¹H-NMR (600 MHz, 80°C, DMSO-d₆, δ ppm, *J* Hz): 2.07 (s, 6H, 2×CO<u>CH₃</u>), 5.93 – 5.95 (m, 1H), 6.01 (br s, 1H), 6.33 (s, 2H), 6.63 (m, 1H), 6.94 (s, 1H, *CH), 10.34 (br s, 1H, NH); ¹³C-NMR (150 MHz, 80°C, DMSO-d₆, δ ppm): 24.2, 70.1, 106.8, 108.0, 112.8, 117.5, 128.8, 152.5; IR (KBr, cm⁻¹): 3406, 3119, 1646, 1612, 1551, 1442, 1399, 1260; HRMS *m*/*z* (ESI): calcd for C₁₁H₁₃N₃NaO₂⁺ [M+Na]⁺ 242.0900, found 242.0890; calcd for C₁₁H₁₂N₃O₂⁻ [M-H]⁻ 218.0935, found 218.0927.

(2-(1H-pyrrol-2-yl)-1H-imidazole-1,3(2H)diyl)bis(phenylmethanone) **5cd**

Chromatographed on neutral alumina with petroleum/diethyl ether (1:1); Yield: 65%; mp = 153-155°C.

¹H-NMR (600 MHz, 80°C, DMSO-d₆, δ ppm, *J* Hz): 5.96 (s, 1H), 6.06 (br s, 1H), 6.45 (s, 2H), 6.68 (s, 1H, *CH), 7.29 – 7.55 (m, 11H), 10.59 (br s, 1H, NH); ¹³C-NMR (150 MHz, 80°C, DMSO-d₆, δ ppm): 70.5, 106.9, 107.8, 115.2, 118.8, 127.0, 128.5, 129.0, 131.2, 134.9, 165.0; IR (KBr, cm⁻¹): 3372, 3137, 1653, 1615, 1577, 1447, 1392, 1281; HRMS *m*/*z* (ESI): calcd for C₂₁H₁₇N₃NaO₂⁺ [M+Na]⁺ 366.1213, found 366.1212; calcd for C₂₁H₁₆N₃O₂⁻ [M-H]⁻ 342.1248, found 342.1257.

Oxidation of amidoalkylated pyrroles **5aa**, **5ab**, **5ba**, **5bb** to 2-(1H-pyrrol-2-yl)benzo[d]thiazole 6a and 2-(1H-pyrrol-2-yl)thiazole **6b**

The corresponding compound **5** (0.5 mmol) is dissolved in CH₃CN (8 mL), then the oxidant (*o*-chloranil) (2 equiv. for the benzothiazole derivatives **5a** or 1 equiv. for thiazole derivatives **5b**) is added and the reaction mixture is magnetically stirred under the conditions specified in Table 2. After completion of the reaction the solvent is evaporated under reduced pressure and the mixture is then dry-loaded onto neutral alumina. Chromatography on a short alumina column with diethyl ether/petroleum as the eluent gave 2-(1Hpyrrol-2-yl)benzo[d]thiazole **6a** or 2-(1H-pyrrol-2yl)thiazole **6b** in yields indicated in Table 2.

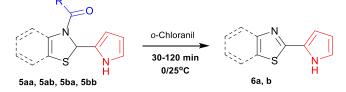
2-(1H-pyrrol-2-yl)benzo[d]thiazole 6a

Chromatographed on neutral alumina with petroleum/diethyl ether (8:1 increasing polarity to 4:1); Yield: 91%, 86%; $mp = 158-159^{\circ}C$; lit. 151–154°C [5^a], 155–156°C [5^b].

¹H-NMR (600 MHz, 80°C, DMSO-d₆, δ ppm, *J* Hz): 6.24 (m, 1H), 6.84 (m, 1H), 7.02 (m, 1H), 7.35 (t, *J* = 7.6, 1H), 7.47 (t, *J* = 7.6, 1H), 7.88 (d, *J* = 8, 1H), 7.99 (d, *J* = 8, 1H), 11.82 (br s, 1H, NH); ¹³C-NMR (150 MHz, 80°C, DMSO-d₆, δ ppm): 110.5, 112.7, 122.0, 122.3, 123.6, 124.9, 126.2, 126.7, 134.1, 154.1, 160.3; IR (KBr, cm⁻¹): 3125, 2854, 1572, 1559, 1113, 742; HRMS *m*/*z* (ESI): calcd for C₁₁H₇N₂S⁻ [M-H]⁻ 199.0335, found 199.0330.

2-(1H-pyrrol-2-yl)thiazole 6b

Chromatographed on neutral alumina with petroleum/diethyl ether (4:1); Yield: 89%, 82%; mp = $74-76^{\circ}$ C; lit. mp = 75° C [4^a].


¹H-NMR (250 MHz, 80°C, DMSO-d₆, δ ppm, *J* Hz): 6.18 (t, *J* = 3.1, 1H), 6.64 – 6.66 (m, 1H), 6.90 – 6.91 (m, 1H), 7.47 (d, *J* = 3.4, 1H), 7.72 (d, *J* = 3.4, 1H), 11.46 (br s, 1H, NH); ¹³C-NMR (62.5 MHz, 80°C, DMSO-d₆, δ ppm): 109.3, 109.4, 116.8, 121.2, 126.2, 142.5, 165.3; IR (KBr, cm⁻¹): 3108, 2964, 1572, 1487, 1098, 738; HRMS *m*/*z* (ESI): calcd for C₇H₅N₂S⁻ [M-H]⁻ 149.0179, found 149.0170.

RESULTS AND DISCUSSION

Our primary aim was to develop an efficient multicomponent one-pot procedure for the synthesis pyrrole derivatives through the reaction of benzothiazole, thiazole or imidazole 1a-c, acid chlorides 2 and pyrrole 4. The aforementioned azoles react with acyl chlorides or alkyl chloroformates to give acyliminium reagents 3 which further react with pyrrole in the presence of triethylamine as HCl scavenger. In this way a range of 2-substituted pyrroles 5 were obtained in good yields (55-95%, Table 1). The reaction conditions were optimized by varying the solvent, temperature and time. Low temperature (-10 to +4 °C) was beneficial in all cases. At higher temperature there were competing reactions which led to complicated mixtures of products and lowered the yields of the targeted monosubstituted pyrrole derivatives. Although in principle the amidoalkylation of aromatic rings can take place in the absence of base, the presence of Et₃N was of crucial importance in all of the examples studied here, because both pyrrole and its amydoalkylated products 5 were adversely affected by the HCl released in the course of the reaction. Dichloromethane was found to be the optimal solvent for the reactions with thiazoles, while in the case of imidazole dichloroethane performed better.

Y. Stremski et al.: Multicomponent reactions for the synthesis of bis-heterocyclic pyrrole derivatives
Table 1. Reaction conditions and yields of amidoalkylated pyrroles 5

N-heterocycle	Product	R	Conditions	Yield, %
Benzothiazole 1a	5aa	CH ₃ CH ₂ O	$0 - 4^{\circ}C, 1.5h$	55
	5ab	CH ₃ O	$0 - 4^{\circ}$ C, 1.5h	67
	5ac	CCl ₃ CH ₂ O	$0 - 4^{\circ}$ C, 1.5h	93
	5ad	CH ₃	$0 - 4^{\circ}$ C, 1.5h	58
	5ae	C_6H_5	$0 - 4^{\circ}$ C, 1.5h	57
Thiazole	Thiazole 5ba		-10 – -5°C, 1h	60
1b	5bb	CH ₃ O	-10 – -5°C, 1h	63
Imidazole 1c	5ca	CH ₃ CH ₂ O	$0 - 4^{\circ}C, 1.5h$	81
	5cb	CH ₃ O	$0 - 4^{\circ}C, 1.5h$	95
	5cc	CH ₃	$0 - 4^{\circ}$ C, 1.5h	66
	5cd	C_6H_5	$0 - 4^{\circ}C, 1.5h$	65

Scheme 2. Oxidation of 5aa, 5ab, 5ba, 5bb to products 6a, 6b

Table 2. Reaction conditions and yields of **6a**, **6b**,obtained according to Scheme 2

Starting material		o-Chloranil oxidation		
	Product	T, °C	Time,	Yield 6,
			h	%
5aa	6a	25	2	91
5ab	6a	25	2	86
5ba	6b	0 - 4	0.5	89
5bb	6b	0 - 4	0.5	82

After the optimization of the conditions for the coupling of the heterocyclic rings we proceeded with experiments to remove the alkoxycabonyl groups and rearomatize the thiazole moiety in the obtained products **5a**, **5b**. This was successfully accomplished by oxidation with *o*-chloranil (Scheme 2, Table 2).

All products were purified by column chromatography and characterized by IR, ¹H-NMR, ¹³C-NMR and ESI-MS analysis.

CONCLUSIONS

An efficient one-pot method for the synthesis of bis-heterocyclic pyrrole derivatives has been developed. Thirteen new derivatives bearing structural similarity to the natural product *Camalexin* were successfully synthesized.

Acknowledgement: We gratefully acknowledge funding from the scientific research fund of the Bulgarian Ministry of Education and Science (Grant DN09/15-2016) and the University of Plovdiv (Grant SP17-HF018). The work was supported by the Bulgarian Ministry of Education and Sciences, Grant DKOF7RP02/20. The authors are thankful to Dr. M. Naydenov, University of Plovdiv, Faculty of Biology, Department of Plant Physiology and Molecular Biology, too, for the technical support in the mass spectral characterization.

REFERENCES

- (a) M. S. C. Pedras, A. Abdoli, *Bioorganic Med. Chem.*, **26**, 4461, (2018); (b) M. S. C. Pedras, E. E. Yaya, E. Glawischnig, *Nat. Prod. Rep.*, **28**, 1381, (2011); (c) R. Mezencev, T. Updegrove, P. Kutschy, M. Repovská, J. F. McDonald, *J. Nat. Med.*, **65**, 488, (2011); (d) V. Odero-Marah, B. Smith, *US Patent 0* 096 166 A1, (2013); (e) M. Pilatova, L. Ivanova, P. Kutschy, L. Varinska, L. Saxunova, M. Repovska, M. Sarissky, R. Seliga, L. Mirossay, J. Mojzis, *Toxicol. Vitr.*, **27**, 939, (2013); (f) M. Chripkova, F. Zigo, J. Mojzis, *Molecules*, **21**, 1, (2016).
- Y. Stremski, S. Statkova-Abeghe, P. Angelov, I. Ivanov, J. Heterocycl. Chem., 55, 1589, (2018).
- 3. (a) J. Bergman, *Tetrahedron Lett.*, 46, 4723, (1972);
 (b) J. Bergman, L. Renstrom, B. Sjoberg, *Tetrahedron*, 36, 2505, (1980).
- (a) T. Nußbaumer, C. Krieger, R. Neidlein, J. Org. Chem., 2449, (2000); (b) H. Kobayashi, T. Honda, Y. Matsui, M. Konishi, T. Matsufuji, K. Ueda, EU Patent 2 239 253 A1, (2009); (c) W. Guba, W. Haap, H. P. Marty, R. Narquizian, US Patent 0 147 572 A1, (2004); (d) G. Camaggi, L. Filippini, M. Gusmeroli, R. Riva, G. Zanardi, V. Garavaglia, L. Mirenna, EU Patent 0 554 956 A1, (1993); (e) S. D. Joshi, U. A. More, S. R. Dixit, H. H. Korat, T. M. Aminabhavi, A. M. Badiger, Med. Chem. Res., 23, 1123, (2014).
- (a) A. Arora, J. D. Weaver, Org. Lett., 18, 3996, (2016); (b) Y. M. Poronik, V. P. Yakubovskyi, M. P. Shandura, Y. G. Vlasenko, A. N. Chernega, Y. P. Kovtun, European J. Org. Chem., 14, 2746, (2010).