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Kinetics of chemical reactions and phase transitions at changing temperature:  
General reconsiderations and a new approach 
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An extended analysis is given and a new approach developed on the possibilities to describe in terms of classical 
kinetic models, developed for isothermal conditions, the kinetics of chemical reactions or processes of phase transition, 
of structural relaxation and of vitrification in terms of non-isothermal kinetics. The main question investigated is to 
determine to which extent both the kinetic models involved and the activation energies, determining and limiting the 
process investigated, can be established by a single cooling or heating run, performed e.g. in a DTA or in a DSC 
calorimetric device. As a first possibility existing isoconversional methods of non-isothermal analysis are considered 
and in particular the usually disregarded method of cooling run experimentation, which, it is shown is a necessity and 
can give excellent results in analyzing processes of melt crystallization and of topochemical reaction kinetics, e.g. when 
relative activities of nucleants or catalyzers are involved. However, in the framework of isoconversional methods it is 
impossible to determine both absolute values of activation energies and unambiguously to decide upon possible 
mechanisms of reactions. 

A general method is thus developed, based on Ozawa’s concepts, in which the Avrami equation is introduced as a 
general intermediate algorithm of change, describing both homogeneous reaction kinetics (with power coefficients  
n ≤ 1) and topochemical reactions and phase transitions (at n = 1, 2, 3, 4). It is shown how analytical and geometrical 
considerations can be exploited to determine in terms of the employed Avrami algorithm both kinetic models and 
activation energies in a new and more appropriate generalized Ozawa-type analysis. 

The theoretical results obtained are illustrated with examples from nucleation and growth kinetics in polymer melt 
crystallization, in supersaturated aqueous solutions, in devitrification of glasses and in glass transition and in 
electrolytical metal deposition at galvanostatic conditions. 

Key words: Non-isothermal kinetics, isoconversional analysis, topochemical reactions, Avrami equation, Ozawa 
method, phase transitions. 

1. INTRODUCTION 

With the very beginning of thermal analysis, 
both by DTA and DSC methods, efforts were made 
to derive approaches, permitting the analysis and 
determination of both kinetic reaction models and 
the respective activation energies.  

Here first the Kissinger procedure [1], developed 
end of the 1950-ties, has to be mentioned. In 
plotting peak reaction temperatures Tmax vs. linear 
heating rates q, this author calculated activation 
energies; moreover from the form of the obtained 
transition rate/temperature curves Kissinger tried to 
determine the reaction order, i.e. the anticipated 
reaction model. Kissinger’s procedure, described in 
present-day terms, is analyzed in details in [2] in 
both its merits and shortcomings. It is essential, that 
with Kissinger’s paper the analysis of non-isother-
mal reaction kinetics was opened in terms of isocon-

versional approaches: at the peak, i.e. at the 
maximum reaction rate temperature, Tmax, a constant 
degree of conversion, α, was anticipated or proven 
to exist. 

The isoconversional methods are in principle less 
informative than methods of analysis, in which the 
whole course of the non-isothermal transition kin-
etics is used in order to determine both anticipated 
models of reaction, of phase transition or change 
and the corresponding activation energies. The first 
and very widely used method in this way was 
indicated by Ozawa beginning of the 1970-ties [3, 
4]. It was performed in the framework of the 
Kolmogorov-Avrami overall crystallization model 
(see [5, 6 and 7]).  

In the present paper an attempt is made to 
employ and further specify Ozawa’s method so as to 
develop a general approach, applicable to chemical 
reaction kinetics of any order, to topochemical reac-
tions, to phase transitions and relaxation processes 
in undercooled melts, in crystalline and amorphous 
solids, in glasses. 
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In developing our approach, we first show, that 
Avrami equation, derived originally and modified 
(see [7]) to follow the overall kinetics of 
crystallization at various phase transitions (in melt 
crystallization of compact volumes [6], in solid state 
reactions [8, 9], in the crystallization of finely 
dispersed materials like glassy semolina or powders 
[10] brought to micro-dimensions, two-dimensional 
nucleation, in thin layers [7] etc.) can also be used to 
describe with sufficient accuracy the kinetics of 
homogeneous reactions. It is especially shown here, 
that Avrami dependence can be applied to 
processes, which according to van’t Hoff’s classical 
schemes [11] of homogeneous reactions kinetics are 
classified as first, second and third order reactions. 
It is also demonstrated how reaction models, sum-
marized in Garner’s book (see [12]), and proposed 
by authors like Roginskii [13] and Erofeev (see [8]) 
for solid state decompositions and reaction kinetics 
can be described with this same dependence. Non-
isothermal relaxation kinetics in viscoelastic bodies, 
i.e. vitrification and devitrification is also analyzed 
in the present contribution employing Avrami 
equation. In Section 3 it is shown, that the broad 
applicability of Avrami equation is determined by 
the circumstance, that this dependence is the 
particular case of a very general kinetic relation, 
following directly from the so called phenome-
nological equation of the thermodynamics of irre-
versible processes (see [7]). In this way Avrami 
form of this general dependence is used here only as 
a convenient algorithm in describing isothermal 
reaction kinetics and in transforming it from 
isothermal to non-isothermal applications  

In our treatment, we consider all cases in terms 
of a non-isothermal variant of the integral form of 
Avrami equation. A simple procedure to deter-mine 
the reaction model based essentially on the value of 
Avrami power index n and an unambi-guous 
procedure to calculate also the corresponding 
activation energies is derived. It is shown here, that 
the Avrami power index n (originally expected to be 
n = 1, 2, 3, 4, see [6]) can have also non-integer, 
fractional values, corresponding to physically unex-
pected and interesting applications. 

Thus we continue efforts, initiated by Kissinger 
[1] and by other authors, like Coats and Redfern 
[14, 15] in non-isothermal chemical reaction 
kinetics, and by Henderson [16], Gutzow [17] and 
Gutzow and Dobreva [18, 19] and Colmenero et al. 
[20] in analyzing processes of overall crystallization 
and nucleation at increasing or decreasing tempera-
tures (i.e. at increasing supersaturation) in electro-
lytic phase deposition [17, 18], in polymer crystal-
lization [19, 20] or in glass transitions. This lastly 

mentioned type of processes, as they are described 
in [7, 21–23]) can be considered as a non-isothermal 
kinetic process of structural freezing. Thus we 
anticipate here in fact not only chemical reaction 
kinetics, but we are even more interested in struc-
tural changes, their relaxation and in phase tran-
sition processes, taking place in condensed matter 
(see also [7, 22, 24, 25]). 

The present contribution is organized in the 
following way: 

In Section 2 we summarize basic relations, 
necessary for our analysis. Then in Section 3 the 
properties of the Avrami kinetic equation are 
analyzed in the new general, thermodynamically 
based form necessary here. It is shown, how this 
general approach can be used to describe practically 
any known case of isothermal or non-isothermal 
change in a new way. This description is done in 
such a form as to define by the value of Avrami 
power index n the reaction type and by a gene-
ralization of Ozawa’s procedure – the temperature 
dependence of the activation energy U(T) in non-
isothermal processes. To the possible non-isother-
mal approaches with Avrami equation are destined 
Sections 4, 5 and 6. There we employ two isocon-
versional methods and derive an analytical and 
geometrical approach to enlarge in Section 7 the 
classical non-isothermal method of analysis pro-
posed by Ozawa in [3, 4]. In Section 5, the analysis 
of several examples of reaction kinetics and phase 
transitions is given in terms of U(T) dependences 
and considered in order to demonstrate both the 
possibilities and the limitations of existing and of 
the newly developed methods. Here we analyze 
crystallization process in general, chemical reactions 
and overall crystallization in polymer and simple 
melts, in glass-forming systems, in aqueous 
solutions and in electrolytic phase deposition. In 
Section 6 we describe isoconversional approxi-
mations and in Section 7 enlarge Ozawa’s method 
of analysis. In Section 8 we apply the previously 
formalism developed to the kinetics of non-
isothermal glass relaxation, i.e. to glass transitions, 
vitrification and to glass stabilization. In doing so 
we use the results and approaches of the kinetic 
theory of vitrification, initially formulated by 
Vol’kenstein and Ptizyn [21, 22] and then developed 
in a generic way by one of the present authors [23–
25] on the basis of the thermodynamics of irre-
versible processes (see [7], [23], [25] and literature 
cited here in Section 10). In Section 9 a comparison 
with experimental results is given and lastly, in 
Section 10 several necessary conclusions are drawn. 
In Appendixes 1, 2, 3 several mathematical details 
are discussed. 
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2. SEVERAL BASIC KINETIC RELATIONS 

Since van’t Hoff’s times the order of a reaction 
in chemical kinetics is determined by the way rate of 
change (at isothermal conditions) of the concen-
tration dcA/dt of one of the components (A, B, C) in 
the reaction system depends on the sum of the 
stochiometric coefficients (a + b + c + …) in the 
expression  

( )[ ] [ ] [ ] ..cbaA CBATK
dt

dC
=   (1) 

Here [A], [B], [C] … indicate the concentrations 
of the components A, B, C, … in the reaction 
mixture and K(T) is the temperature dependent reac-
tion constant [11]. In homogeneous reactions (taking 
place in gaseous or liquid phases) the coefficients a, 
b, c,…. are as a rule integer numbers. More 
generally reactions of first, second or third order in 
chemical kinetics are called chemical or physical 
changes, following a time dependence of the type 

( ) mCTK
dt
dC

= ,  with m = 1, 2, 3, ….(2) 

Here C indicates the concentration of any 
structurally significant unit of the system. The 
transition of Eqn. (2) to more general formulations 
is usually done in defining C via 

( )
( )T
T

C
e

e

ξξ
ξξ
−
−

=
0

   (3) 

as the change of a physically significant internal 
parameter [7, 24, 25] from its momentary value, ξ, 
to its equilibrium value, ξe(T). The initial value of ξ 
(at time t = 0) is indicated in Eqn. (3) with ξ0. In 
considering phase transitions or topochemical reac-
tion kinetics the rate of overall conversion (or phase 
transition), α, is defined via the provision 

( )
( ) C
TVV
TVV

i

i ≡
−
−

=
0

α ,  (4) 

when the notations of Eqns. (2), (3) are considered. 
Here Vt indicates the momentary value of the 
volume transformed (e.g. crystallized) at time t at 
the temperature T, V0 is the initial and Vi(T) its end 
value of V in the isothermal crystallization process 
investigated. This definition of α is particularly used 
in deriving and employing the Kolmogorov-Avrami 
equation [6, 7], to be discussed in the following 
Section 3 in details. 

In terms of the still non-reacted, non-changed 
molar part (1–α) of the reaction participants van’t 
Hoff’s equation (2) can be written as  

dα/dt = K(T)(1–α)F(α)  (5) 

For first, second and third order homogeneous 
reaction kinetics the reaction model function F(α) in 
Eqn. (5) has the values 

F(α) = (1–α)p,    with p = 0, 1, 2      (6) 

In considering solid state reactions as a case of 
heterogeneous, topochemical reaction kinetics, 
Roginskii and Shultz [13] (see also further similar 
proposals summarized in [8, 9, 12]) indicated as a 
realistic general possibility of reaction rate equa-
tions these to which F(α) in Eqn. (5) is defined in 
the form 

F(α) = α2/3         (7) 

This indicates, that in topochemical reactions not 
the volume V, but the surface area S ≈ V2/3of the 
products formed is reaction determining. 

To similar F(α)-values in Eqn. (5) leads also 
Erofeev’s topochemical reaction kinetics [8, 9, 26], 
which he formulated also in terms of the already 
mentioned Avrami equation. In its integral form, 
this equation gives the time dependence of α at 
constant temperature, T, as 

α = 1–exp[–KA(T)tn]             (8) 

Here, according to Erofeev [8, 9, 26] the value of 
the integer power index n = 1, 2, 3, 4 depends (in 
analogy with Avrami’s initial formulations, see [6, 
7]) on the way in which the new interface, S, is 
formed via nucleation and growth processes in the 
reacting volume. This same Eqn. (8), as one of us 
has earlier shown [10, 27], describes also fairly well 
with values of n = 1 to 3 the overall crystallization 
process in an ensemble of equal spheres of radius R, 
each one of them crystallizing from the surface to its 
own volume. This model of crystallization of more 
or less finely dispersed materials was initially 
formulated by Mampel [28] in a way, leading to 
complicated, non-soluble integral dependences. 
They are, however, as also the results in [10, 27], of 
particular significance in DTA and DSC thermo-
analysis, where usually fine-grained samples have to 
be investigated. This is one of the possibilities 
which the Avrami equation gives as a convenient 
algorithm in reaction kinetics. Further possibilities 
in this respect are indicated in Section 3. 

According to Eqn. (8) the rate of change and 
conversion is given by  

( ) ( )[ ]1 exp− =−= n
A

n
A tTKtTnK

dt
dα  

( )( ) 11 −−= n
A tTnK α               (9a) 

I. Gutzow et al.: Kinetics of chemical reactions and phase transitions at changing temperature 



 82 

Thus we arrive at a simple relation, which is of 
general significance in the following analysis in 
Section 4: we can write Eqn. (9a) also as  

( ) ( )[ ] ( )[ ]TKn
dt
d

nAn
n

ln α1α1α 11
=−−−=

−
 

( ) ( ) ( )TKF *1 αα−=   (9b) 

Observing that with Eqn. (8) we have 

( )[ ] ( )TKt An
n

n 3/2
1

1 1ln
−

− −−= α  we can write Eqn. 
(9) also in the general form of Eqn. (5) with 

( ) ( )[ ] n
A TKnTK /1=∗  and with a reaction model 

function, which for any power index n in Eqn. (8) is 
to be written as 

( ) ( ) ( )[ ] n
n

nFF
1

1ln
−

−−=≡ ααα          (10) 

As far as in our notations always the coefficient 
of conversion has values 0 ≤ α ≤ 1, it is evident that 
for n = 3, Eqn. (10) gives by a simple expansion of 
the logarithm in a good approximation the F(α) value 
indicated with Eqn. (7) for the Roginskii-Schultz 
topochemical kinetics. More general and more 
precise, it can be shown (see [8, 26] and the mathe-
matical procedure described there) that the Avrami 
Eqn. (8) leads to rate dependences of the type 

( )( ) srTK
dt
d ααα

−= 1*  (11) 

They can be also represented in the form of our 
Eqn. (5), however, with 

( ) ( ) ( ) srE
nFF αααα 11 −−==        (12) 

and with r and s values, corresponding to concrete 
n-values [8, 26] in Avrami equation, as this is given 
on Table 1, taken from [8]. 
Table 1. Avrami and Erofeev power indeces in Eqns. (8), 
(11) and (12). 

Erofeev power index Avrami power index,  
n in Eqn. (8) Eqn. (11) Eqn. (12) 

 r s (r–1) s 
1 1 0 0 0 
2 0.774 1/2 –0.226 1/2 
3 0.700 2/3 –0.300 2/3 
4 0.665 3/4 –0.335 3/4 

The essential point, to be mentioned here is, that 
the kinetic Eqn. (5) is in fact one of the possible 
forms of a general growth and development 
dependences (see [29, 30]), determining the rate of 
change by the present status (here indicated by the 
value of (1–α)) of the system and by an additional 

correction function, F(α), determined by the con-
crete model or mechanism of the expected change. 
This model approach considered initially for iso-
thermal regimes and conditions is to be transformed 
here to non-isothermal kinetics of reaction and 
change. 

For the particular forms of the F(α)-function 
different integral forms of Eqn. (5) follow. Thus for 
first, second and third order homogeneous reactions 
after integration of Eqn. (5) with the indicated 
values of p in Eqn. (6) and the additional condition 
α = 0 at t = 0 it follows 

α = 1–exp[–KA(T)t]    (13) 

α = 1– [1+K(T)t]–1   (14) 

α = 1–[1+2K(T)t–1/2]                (15) 

Thus for first order reaction kinetics follows 
directly Avrami Eqn. (8) with n = 1. 

The integration of the kinetic rate equations of 
the type (5) with fractional values of the power 
index, as given by Eqn. (7), leads to mathema-
tically implicit dependences. Thus for α1/2 we obtain 
the complicated expression (see [31] p. 32) 

( ) ( )[ ]{ }22/1exp11 tTK−+−= αα  (16) 

which, as it is obvious from Fig. 1, can be con-
veniently and with sufficient accuracy approximated 
by an Avrami-type dependence with n = 2. The 
integration of Eqn. (9) leads directly to the corres-
ponding Avrami Eqn. (8). In Section 3 it is shown, 
that Eqns. (14), (15) can be also written in the form 
of the Avrami equation, however, with fractional 
values of the power index n. 

Thus it is turns out, that quite differing kinetic 
dependences, corresponding to the general kinetic 
relation Eqn. (5) having various F(α)-values, can be 
represented in their integral form by Avrami 
equation simply by varying the value of the power 
index n. In this way seemingly different depend-
ences can be, as discussed in the following Section 
3, represented in a relatively uniform way and 
characterized by a distinct number: the value of the 
power index n. These properties of Avrami equation 
give, according to the main idea of the present 
contribution, also a more easy way to analyze 
kinetic changes at different mechanisms (i.e. at 
differing F(α)-values in Eqns. (5) and (6)) at non-
isothermal conditions, and especially at increasing 
or decreasing cooling (heating) rates q 

qdtdT =      (17) 

taking place with a constant value of q. As far as 
Eqn. (17) is fulfilled, it is easy to change the argu-
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ment from time, t, to temperature, T, in both the 
differential and the integral kinetic dependences, so 
far introduced above. 

 
Fig. 1. Approxination of the implicit α(t)-dependence, 
Eqn. (16) with an Avrami-type dependence (Eqn. (8)) 

with n = 2. On the ordinate is plotted 
)(1 TK

t
=θ  vs. 

α(t) on the ordinate for Eqn. (16) as (1) and 









=

2
1

)(

)2ln(
2

tK

tθ  for Eqn. (8) as (2). According to Eqns. 

(22) and (16) in Section 3, θ1 and θ2 are reduced times in 
respect to the corresponding half transition times, τ0.5, for 

both dependences. 

From a more general point of view Eqn. (5) with 
the additional specifications, provided by F(α) 
(Eqns. (6), (7), (12)) is a general form of one of 
possible equations of steady growth and develop-
ment [29, 30]. 

When additional structural specifications are 
connected with the process investigated, F(α) 
indicates the way this specifications are trans-
formed, either steadily decreasing the rate of general 
change (Eqn. (6) or determining a maximum (Eqn. 
(7)) as seen on Fig. 2. At F(α) = 1 as this is for first 
order kinetics of change we consider unrestricted 
growth proper, dependent only on the depletion of 
the concentration of the initial components, (1–α). 
In Eqns. (7) and (9) the build-up of a new interphase 
surface determines a maximum value in the dα/dt-
course. In nucleation and growth processes the 
nature of both the F(α) and the K(T)-functions are 
determined by the interplay of the activation 
energies of these two processes (see Section 4). 

In describing relaxation processes in glasses 
(Section 8) we have to discuss cases, when the 
change of K(T) is dependent on the depletion of the 
active constituents of the system. Thus there K(T) 
has in fact the significance of a time dependent 
resistance, changing with the advancement of the 

process of structural relaxation [30] and with the 
alteration of activation energies it causes. 

 
Fig. 2. Rate of transition dependences for various kinetic 

mechanisms.    
a. Homogenous reaction kinetics (Eqns. (5) and (6)).  

1 - first order; 2 - second order; 3 - third order reaction;    
b. Topochemical reaction mechanisms: 1 - first order;  

4, 5 - Roginskii type dependences: according to Eqn. (7) 
with α2/3 and α3/4;   c. Avrami-type rate dependences,  

Eqn. (9): 1 - with F(α) = 1; 6 - with n = 3 and  
dα/dt, according to Eqn. (9). 

3. PROPERTIES OF THE AVRAMI EQUATION 
AS A GENERAL KINETIC DEPENDENCE 

The general reaction and crystallization depend-
ence given here as Eqn. (8), usually attributed to 
Avrami is initially derived by Kolmogorov [5] (for 
the special case n = 3) and than by Avrami [6] more 
generally in the framework of a crystallization 
model and as the result of a long history of 
development of ideas, summarized in [7]. Also on 
crystallization models are based the already men-
tioned derivations of Mampel [28] and Gutzow et al. 
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[10] and even Erofeev’s applications of this equa-
tion to solid state reactions [32], summarized in [8]. 

There are, however, also other ways of deriving 
and analyzing Eqn. (8), which we are still denoting 
here as Avrami dependence, which are based on 
broader premises. Here first has to be mentioned an 
attempt by Kazeev [33] to postulate dependences 
equivalent to Eqn. (8) as following from the theory 
of physicochemical similarity for reaction kinetics 
and change, taking place under distinct constraints. 
In a more recent series of papers by Gutzow et al. 
[30, 34, 35] it was shown, that rate dependences of 
the type, given here with Eqn.(5) with time 
dependent F(α)-values follow in cases, when the 
rate of change (dα/dt, or dξ/dt, see Eqn. (3)) of the 
process is determined by a time-changing activation 
energy U(T,t). In this sense as a result of the 
analysis in [34, 35] Eqns. (5), (6) having values of 
the Avrami power index n < 1, can be also written as 

( ) ( )ξ1
τ

1ξ

0
−= bt

n
Tdt

d   (18) 

i.e. as changes, determined by a time dependent 
relaxation time ( ) btT /0ττ =∗ . To Eqn. (18) cor-
respond integral forms of the type 

( ) ( )


























−−=−

−b

in
t

1

0
00

τ
ξξξξ *exp  (19) 

usually referred to as fractional or stretched-expo-
nent relaxation dependences (see the historic back-
ground given in [34] and the original publications of 
R. Kohlrausch [36], F. Kohlrausch, [37] and Boltz-
mann [38] for this formula). According to these 
general considerations a value n > 1 in Eqn. (8) 
corresponds to kinetic barriers, U(T, t) decreasing 
with time, while n < 1 suits models with time 
increasing values of the barrier. In terms of Eqn. 
(18) the relaxation time bt0ττ =*  gives at n = 1, a 
constant value of the activation energy 
( ) ( ) constUTUtTU === 0, . At b = 0 Eqn. (19) 

thus gives dependences, corresponding to first order 
reactions and to Maxwell’s classical solution of the 
kinetics of relaxation (see [7, 39]) 

( ) ( )
( )










−−=−

T
t

in #exp
τ

ξξξ 00ξ
 (20) 

According to the initial derivations of Avrami, 
the power index n in Eqns. (8), (9) has to have only 
integer values n ≥ 1 (1 to 4 in three dimensional 
value growth and n = 2–3 for surface growth in thin 

layers [7], [40], see Table 2). In considering growth 
of more or less finely dispersed samples according 
to the already mentioned model considerations and 
experimental results in [10, 27] also fractional 
values of n in the range 1 to 1/3 have to be expected 
in both Eqns. (8) and (9). It becomes thus evident, 
that with fractional values n < 1 of the power index 
in Avrami Eqn. (8) not only first, second and third 
order reaction dependences, but also Kohlrausch-
type stretched exponent relaxation relations can be 
described. In fact, the Kohlrausch formula (Eqn. 
(18)) is a typical case of a second order reaction 
kinetics dependence. Its integral form (Eqn. (19)) 
corresponds to the mentioned particular cases of the 
Avrami dependence with n < 1 (usually in glass-
forming melts (1–b) ≈ (0.30–0.35), i.e. b = (0.70–
0.65) ≈ 2/3, see [7, 22].  
Table 2. Avrami power indeces, n in Eqn. (8), see [6, 7] 
in dependence of mechanism and morphology. 

Mechanism 
of nucleation

Growth 
morphology Formula for kn n Author 

sporadic spherical Jv
n

n 3ω
 4 Avrami 

[6] 

athermal spherical *3Nv
n

nω  3 Avrami 
[6] 

sporadic disk-like hJv
n

n 2ω  3 Avrami 
[6] 

athermal disk-like *2hNv
n

nω  2 Avrami 
[6] 

sporadic needle-like Jvh
n

n 2ω  2 Avrami 
[6] 

athermal needle-like *2 Nvh
n

nω  1 Avrami 
[6] 

surface 
sporadic 

Surface 
growth 2

2 Jv
n

nω  3 Vetter 
[40] 

surface 
athermal 

surface radial 
growth 

*
2

2 Nv
n

nω  2 Vetter 
[40] 

In considering the discussion of Avrami Eqn. (8), 
let us further on observe, that in reduced coordinates 

( )#/τθ t= , where 

( )[ ] n
A TK /1# /1=τ    (21) 

the value ( ) 1/ # =τt  determines an iso-conversion 

constant 11 





 −=

eisoα  = 0.63 for any n-value (Fig. 

3). Moreover, because of –ln(1–α) ≈ 1 for the same 
value of α, the product (1–α)[–ln(1–α)](n–1)/n = Fn(α) 
is also a constant as also evident from Fig. 3. Both 
properties of the Avrami dependence (Eqn. (8) 
apply for n ≥ 1 as well as for n < 1 and are essential 
in analyzing non-isothermal reaction kinetics and 
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change. They define in a natural way the iso-con-
versional methods of non-isothermal determination 
of the parameters of Avrami type dependences, 
discussed here in details in Section 5. 

 
Fig. 3. Properties of the Avrami equation.    

a. Avrami curves according to Eqn. (8) in coordinates α(t) 
vs. θ = t/ τ*, where the time τ* is given with Eqn. (21). 

Note that at θ = 1 all curves (for both n ≥ 1 and for n < 1) 
have the same ordinate, ( ) 6301α 1 .=−= e . With 2, 3, 4 
are denoted the Avrami power index values of n > 1 and 

with 4, 5, 6, n = 1, n = 2/3 and n = 2/5, respectively;    
b. The course of the function )()](1[ αα Ft−  with F(α) 

given according to Eqn. (10). With numbers are again 
indicated the n-values in Eqn. (8) as given above. Note 
that all F(α)-curves have at α = 0.63 approximately the 

same value, α = 1/e. 

An essential parameter to be also used in this 
connection is the time τ0.5 of half transition (or half 
conversion) in any process of change investigated: it 
is the time for α (or any other change coordinate 
defined with Eqs. (3) or (4)) to become equal to 0.5. 
Using either Eqn. (8) or Eqn. (13), (14), (15) this 
time is given by 

τ0.5 = ln2/K(T)1/n            (22) 

according to Eqn. (8) (i.e. also with τ0.5 = [ln2/K(T)] 
for first order reaction kinetics according to Eqn. 
(13) and with 

τ0.5 = 1/K(T)          (23) 

and 

τ0.5 = 3/2.K(T)           (24) 

for second and third order reaction kinetics (see 
Eqns. (14), (15) respectively). 

Further on it is of essence to be mentioned, that 
the maximal value of the rate of conversion 

max








dt
dα  determined by the Avrami-type equations 

are given with 

( ) ( )[ ] 





 −
−−= −

n
nTKn

dt
d nn 1exp1

/11
max ωα   (25) 

The time, at which this maximum is reached, is 
given with 

( )

n

TK
n

/1

max
1







 −
=τ    (26) 

It is evident, that at n > 1 both values correspond 
at to the inflexion point of the respective α(t)-curve, 
determined by Eqn. (21). 

From the α(t) vs. τ0.5-representation given on Fig. 
4 it is evident that first, second and third order 
reaction kinetics, originally described by Eqns. (13), 
(14) and (15) with three seemingly quite differing 
dependences can be represented with sufficient 
accuracy by the Avrami Eqn. (8) respectively with  
n = 1, 2/3, 2/5. As seen the coincidence of the 
corresponding curves goes from t/τ0.5 = 0 (i.e. at  
α(t) = 0) through t/τ0.5 = 1 to t → ∝. On Fig. 5 the 
(dα/dt)-curves, following with both Eqns. (9) and 
(25) are also illustrated for both n ≥ 1 and for n < 1. 

From Fig. 1 it was also seen that the Roginskii-
type dependences Eqns. (6), (7) (for both F(α) = α2/3 
and F(α) = α1/2) are sufficiently well represented 
with α(t)-curves according to Eqn. (8) with n = 3 
and 2, respectively (c.f. also Fig. 3). 

Equations (18) and (19) show moreover, that the 
mentioned formal resemblance in the α(t)-depend-
ence is illustrated by the relative closeness of the 
respective differential relations – by the course of 
the dα/dt-function in both cases. 
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Fig. 4. The specification of first, second and third order 
reaction kinetics in terms of the Avrami equation, Eqn. 

(8), as an intermediate algorithm. With bold lines and text 
are indicated, beginning from below third, second and 
first order homogeneous reaction kinetics, respectively 
(c.f. Eqns. (13), (14) and (15)). With thinner lines are 
indicated the respective Avrami-curves, Eqn. (8) with  
n = 1, 2/3, 2/5, 1/5; on top is drawn the Avrami-curve 
with n = 3. In this way n = 1, 2/3 and 2/5 are chosen to 
represent the above indicated reaction kinetic curves.  

 
Fig. 5. Transition rate curves dα/dt vs. θ, Eqn. (21), 

according to first, second and third reaction kinetics, 
Eqns. (13), (14), (15) expressed as reaction rates, 

following from the Avrami equation, Eqn. (8), with n = 1, 
2, 3 and n = 2/3. Note first that n = 1 is equal with first 

order kinetics and that for any n > 1 a maximum is 
displayed by the Avrami rate curves. Here are indicated 

the following rate dependences 1 – dα/dt = exp(–θ);  
2 - dα/dt = 2θexp(–θ2); 3 - dα/dt = 3x2exp(–θ3);  

4 - dα/dt = 2/3.x–1/3exp(–x2/3). 

The classical derivation of the Avrami equation 
in its isothermal formulation treated up to now can 
be simply made either in terms of the probabilistic 
models, stemming from Kolmogorov [5, 7], or more 
appropriate for our further developments via the 
remarkable notion of the extended volume Yn(t) and 
the so called Avrami theorem [6, 7]. According to 
this theorem, because of the interaction of growing 
crystallites, we have to write 

dα(t) = (1–α)d[Yn(t)]   (27) 

where Yn(t) is given in general as 

( ) ( ) ( )
nt

t

t

n dtTtvdtTtItY 







= ∫∫

'0

'',''','  

Thus Yn(t) is the virtual volume, formed by 
nucleation and growth, if no interaction should take 
place between growing crystallites. 

Assuming time-constant values of both nuclea-
tion rate I(t,T) ≡ I(T) and of growth rate ν(t,T) ≡ ν(T) 
the extend volume becomes  

( ) ( ) ( )∫ −= −
t

n
nn dtttvTItY

0

1ω ''         (28) 

Here and in Eqns. (25), (29) ωn is a steric coeffi-
cient (ω = 4π/3 at spherical drowth). Thus, in a 
known way of integration ([6, 7, 8], see Eqn. (28) 
follows directly the Avrami Eqn. (8) and KA(T) is 
thus defined via nucleation rate I(T) and growth rate 
v(T) as 

( ) ( ) ( )[ ] 1−= n
A TvTITK ω  (29) 

This approach is used here in order to derive in 
the next Section 4 more easily the Avrami kinetics 
also in the non-isothermal case of the nucleation and 
growth models. We have also to mention, that the 
usual way to analyze isothermal results in terms of 
Eqn. (8) by putting the experimental isotherm in 
log[–log(1–α)] vs. logt coordinates and thus to 
determine both n and K(T) will be also applied in a 
generalized Ozawa modification to analyze the non-
isothermal case in the next Sections. 

4. AVRAMI EQUATION AT NON-
ISOTHERMAL CONDITIONS 

To this point we summarized only results of the 
isothermal formulation of reaction phenomenology. 
Now we have to apply these results to the non-
isothermal case. In doing so, we have first to specify 
additionally both the conversion function α, which 
is now dependent on both time, t, and temperature, 
T, as α(T,t) and to introduce temperature as a new 
argument into the formalism derived. 

Anticipating in the following with Eqn. (17) only 
constant rates of temperature change, we have to 
write in heating run experimentation 

T = qt + Tin ≈ qt   (30a) 

and to employ the right hand side approximation, 
when the initial temperature, Tin, is sufficiently low, 
when compared with the temperature, T, where the 
reaction can be actually observed. 
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In cooling run experimentation, e.g. in melt 
crystallization at constantly increasing undercooling 
with Eqn. (17) 

∆T = (Tm – T) ≈ qt           (31) 

Thus, we have to write for the time-dependent 
increase of the thermodynamic driving force (the 
supersaturation ∆µ(T)) of crystallization that 

∆µ(T) = ∆Smqt          (30b) 

because of  

∆µ(T) = ∆Sm∆T            (32) 

The supersaturation is estimated here via the 
respective melting temperature, Tm, and the entropy 
of melting, ∆Sm, (see [7] for this approximation and 
for more precise solutions). In deriving the α(T,t) vs. 
α(t)T connection (where α(t) ≡ α, employed up to 
now) we have to consider, that in fact the α(T,t) 
function, because of Eqn. (30), is in fact a composite 
function of t, i.e. we have to write α(T,t) = φ[f(t)]. 
With the f(t) function given by the right hand side of 
Eqn. (30) and employing the chain rule of dif-
ferentiation of composite functions (see [31], p. 32) 
we obtain with Eqn. (17) 

( ) ( )[ ]
( )

( ) ( )
Tdt

td
qdt

tdf
tdf
tfd

dT
tTd αϕα 1,

==     (33) 

Thus we have specified beside the dT vs. dt 
dependence also the α(T,t) vs. α(t) and the dα(T,t) 
vs. dα(t) connections. These connections should 
make no problem for q = const. in Eqn. (17): in 
every differential equation such as Eqns. (9), (11), 
the argument can be directly replaced by another 
one, linearly connected with the initial argument. 
Nevertheless, as mentioned in [41] and elsewhere, 
this simple procedure still gives rise to questions in 
thermoanalytical literature, and made necessary the 
derivation indicated with Eqn. (33). 

In order to analyze the kinetics of non-isothermal 
processes of phase transitions and chemical change 
we have, accounting for the properties of the 
Avrami equation, two ways open. 

First we can use the circumstance, that (Figs. 3 
and 4) both isoconversion points (α = 0.63 or α = 0.5) 
are reached at the reduced time ( ) 1/ == n TKtθ  
or θ = t/τ0.5 = 1 for any value of the Avrami index n. 
For n > 1 (i.e. for phase change and solid state 
reaction) this isoconversion value corresponds to the 
inflexion point of the respective α(t) or α(T,t) 
dependences and thus also to the respective 
maximum in the (dα/dt) or d[α(T,t)/dT)]-rate rela-
tions. 

It is obvious, recollecting Eqns. (17), (30), (33), 

that because of the constant value of the cooling/ 
heating rate, q, we can write for the maximal value 
of the rate of change or conversion 

( ) ( ) 0,1,
=






=





dT
tTd

qdT
d

dt
tTd

dT
d αα   (34) 

For n > 1, this maximum in the (dα/dt) or 
[dα(T,t)/dT]-dependence corresponds to the in-
flexion point, seen on Figs. 3 and 4. For n < 1 the 
same conversion value α(t) or α(T,t) is also observed 
when for n > 1 the inflection point is reached. 

Returning to Eqns.(5) or (9) it thus turns out, 
than when always the same α-value is reached, the 
maximum in the (dα(T,t)/dT)-dependences is deter-
mined for any q value by the maximum of the K(T) 
vs. T dependence via  

( )[ ]{ } 0/1 =nTK
dT
dnq      (35) 

In changing the argument from t to T and inte-
grating the left-hand side of Eqn. (9a) in limits from 
0 to αmax or from 0 to α0.5 according to  

( ) ( )∫∫ −≅
−

maxmax

0

1

0 1

T
n

n dTTTK
q
ndα

α
α  (36a) 

it turns out, that by using for α(t) an Avrami 
dependence for any n value the left hand integral in 
Eqn. (36) has the same constant value for both 
αinflexion or α0.5. 

In this way the maximal value of any theoreti-
cally constructed or experimentally obtained 
dα(T,t)/dT vs. T-rate curve is determined by the 
subintegral function in the right hand integral of 
Eqn. (36a), i.e. by the course of the K(T) subintegral 
functions corresponding to the Eqns. (8), (13), (14), 
(15), (16).  

Even more conveniently, using the Avrami-
equation (8) is to employ Eqn. (9) in the form (9b); 
than we have to write 

( ) ( ) ( )∫∫ ≅
−

max

0

/1

0

1
1

T
n dTTK

qF
dxα

αα
α       (36b) 

where F(α) is given by Eqn. (10). As far as 
according to Fig. 3 both αin and F(α)in are constants 
for any n-value we have at this representation not 
only a constant value at the right hand side of Eqn. 
(36b), but the left hand integral is now considerably 
simplified and determined only by the temperature 
function of K(T). 

In this way the analysis of non-isothermal reac-
tion and transition kinetics according to above so 
called isoconversional method of analysis is trans-
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formed into a problem of the integration of the right 
hand integrals in Eqn. (36b). At the possible K(T) 
dependences discussed in the next Section this 
problem is reduced to a transformation of the res-
pective integrals to two higher transcendent func-
tion: to the Integral Exponent function Ei(Z) or to 
the Gauss Error Function erf(Z) with. The details of 
this transformation depend on the nature of K(T), 
i.e. on the temperature function, of the expected 
kinetic coefficients, as given in Section 5 and in 
Appendixes 1 and 2. 

5. TEMPERATURE DEPENDENCE OF THE 
KINETIC COEFFICIENTS 

Thus we know, that the whole course of the 
(dα/dT)-function at differing cooling or heating runs 
e.g. in DTA or DSC-arrangements is determined by 
the temperature function of K(T) or of K(T)Tn–1 in 
Eqns. (5, 9) i.e. of the value KA(T) in the Avrami 
equation, using the present approach. 

In the differing relations, underling above men-
tioned dependences, the K*(T) function (K*(T) = 
nKA(A)1/n, etc.) can be written in general as 

( ) ( )




−=

RT
TUKTK exp0

*        (37) 

where the particular form of the activation energy 
function U(T) has to be determined in every case. In 
homogeneous reaction kinetics an Arrhenian type 
dependence with U(T) = U0 = const is usually 
assumed [11]. A similar approximation is also made 
sometimes in most cases of solid state reactions [8, 
12]. However in general for topochemical reaction 
kinetics using appropriate models, based most 
conveniently on the Avrami theorem (see below 
Eqns. (41–43) leading to more complicated 
temperature relations are expected. Thus, KA(T) 
depends in such cases on the kinetic and thermo-
dynamic barriers of crystal nucleation I0(T) and 
growth rates v(T). In processes of relaxation and 
vitrification kinetics U(T) in Eqn. (37) is dependent 
on the concrete mechanism of structural flow and on 
the change of the ξ-function in Eqn. (3) (see [7, 23, 
24, 25] and literature cited there ).  

In cases of relaxation in glass-forming liquids the 
U(T)-function in Eqn. (37) is determined e.g. by the 
Vogel-Fulcher-Tammann equation [7] in terms of 
free volume concepts of liquids flow as 

U(T) = RT/(T–T0)               (38) 

Here T0 ≈ 0.5Tm is a constant, connected with the 
respective melting or liquidus temperature, Tm or 
Tliq. In the framework of configurational entropy 
considerations [7, 42, 43] similar or even more 

appropriate U(T) – dependences can be derived and 
used in considering relaxation phenomena in glass-
forming melts (see Section 8). 

In processes of phase transition the particular 
structure of Eqn. (29) determines the temperature 
dependence of KA(T) according to existing models 
on nucleation rate and crystal growth kinetics as 
being defined by both a kinetic barrier of the type 
given with Eqns. (37), (38) and by second, thermo-
dynamic barrier, determined by the work, Wc(T), 
necessary to form a crystalline nucleus. According 
to the classical nucleation theory (see [7, 44, 45]), 

( )
( )TRT

B
RT

W
RT

TW cc
2

0
0

µ∆
Φ

=
Φ

≈        (39) 

Here B0, Wc
0 are determined, according to Gibbs’ 

capillary approximation (see [7, 45]) for a spherical 
nucleus as  

23
0 3

4~ mVB πσ            (40) 

by the interphase energy, σ, at the nucleus/ambient 
phase interface by the molar volume Vm of the 
crystal and by the thermodynamic driving force, 
∆µ(T), of the crystallization process. The value of 

0
cW  refers to non-catalyzed (homogeneous) nuclea-

tion and the factor Ф (0 ≤ Ф ≤ 1) accounts in 
heterogeneously induced nucleation for the nuclea-
ting activity of foreign nucleation cores [7, 45]. In a 
good approximation (see [7]) for melt crystallization 
the value of ∆µ is determined by Eqn. (32) via 
undercooling, ∆T, and the respective melting 
entropy, ∆Sm, of the crystallizing substance. 

Thus, the temperature dependence of the 
dominant factor in Eqn. (29), the rate of nucleation, 
I0(T), can be written as  

( ) ( )









∆
Φ

−



−≈ 2

#
0

10 expexp
TRT

B
RT

TUconstTI  (41) 

where at temperatures mTT ≈  the value of B0 is to 

be replaced by ( )mm RTSBB 2
0

#
0 / ∆= . 

In considering the Avrami-equation (8) as a 
particular dependence in describing models of 
crystal growth (by two-dimensional nucleation, via 
screw dislocations or by the continuous incorpo-
ration of ambient phase molecules on the roughened 
surface of the crystal (see [7], [44]), the rate of 
crystal growth in Eqn. (29) has to be written as 

( ) ( ) ( )T
RT

TUconstTv Ω



−≅ exp2  (42) 
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where Ω(T) depends on the concrete mechanism of 
growth. It is essential to note , that two-dimensional 
nucleation growth is of significance only in polymer 
melt crystallization (see [7,19, 44, 45]) and even 
there the work of two-dimensional nucleation rate, 
W2(T), is considerably lower than Wc(T),  
    ( )[ ] [ ] ( ) RTTWRTBRTTW c /// 0

22 <<∆≅ µ  

Here 0
cW  indicates, as given with Eqn. (39) the 

value of the respective work for homogeneous 
formation of tri-dimensional nuclei (i.e. at Ф = 1) 
and W2(T) ~ σ2Vm is the respective thermodynamic 
work to form a two-dimensional nuclei at the 
growing crystal face . 

In both growth via screw dislocations 
( ( ) ( )TconstT 2

3~ µ∆Ω ) and at continuous growth 
( ( ) ( )TconstT µ∆Ω 4~ ) the temperature depend-
ence of ( )TΩ ) in Eqn. (42) can be neglected when 
compared with the exponents in Eqns. (41), (42). 
Thus, it follows that even in polymer melt 
nucleation (see [7], [44]) with  

( ) ( ) ≈







∆
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


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  (43) 

it can be taken, that at small undercoolings the 
temperature dependence of KA(T) in Eqn. (29) is 
determined (at medium Ф values) as 

( ) ( )








∆
Φ

−





−≈ 20 expexp

µ
ω

RT
W

RT
TUconstTK c

A
(44) 

i.e. by the thermodynamics and kinetics of the three 
dimentional nucleation process only. 

On the other side, at preexisting populations of 
very active crystallization cores with Φ ≈ 0 (ather-
mal nucleation in Avrami terminology [6]) also the 
possibility I0(T) = const has to be considered. This 
leads to dominant growth determined overall 
crystallization kinetics (see [7], [27]). 

Taking moreover into account that in the vicinity 
of Tm the value of Wc(T) dramatically increases (at  
T → Tm, 0

cW → ∞, U(T) → U0 = const so that there 
Wc(T) >> U(T)) (see experimental evidence sum-
marized in this respect in [46, 47] for the crys-
tallization of (NaPO3)x-glasses and of pure H2O). On 
the other side at temperatures, approaching on the 
contrary the glass transition temperature Tg (where 
usually Tg ≈ 2/3Tm, see [7]) we have to expect there 

( ) ( )TUTW c << . Thus, two possible approxima-
tions are to be considered in general as determining 
the temperature dependence of KA(T) in melt crystal-
lization: 

i.) in the vicinity of melting temperature, Tm:  

( ) 








∆
Φ

−≈ 2

*
0exp
T

B
constTK A       (45) 

with mRTBB /#
0

*
0 =  given with Eqn. (41) and  

ii.) at great undercoolings (especially at tempera-
tures in the vicinity of Tg) 

( ) 



−≈

RT
U

constTK A
0exp     (46) 

as this is discussed in more details in [46, 47]. It is 
to be also noted, that in writing Eqn. (46) in fact it is 
assumed, that the two barriers [U(T) + Wc(T)] in 
above equations are replaced by a mean constant 
value, 0U . The subintegral function in Eqn. (36b) 
determined by Eqn. (44) or by growth only in 
athermal nucleation are illustrated on Fig. 6. 

 
Fig. 6. The form of the subintegral functions in the right-
hand integral of Eqn. (36b) at phase transition reactions 
for different mechanisms of nucleation and growth: 1 – 

3D nucleation, according to Eqn. (44); 2 – crystal growth 
at continuous mechanism of incorporation; 3 – crystal 
growth at screw dislocations (both with Eqn. (42) and 
with Ω(T) = (1–x) and with Ω(T) = (1–x)2. The three 

K(T) curves are drawn with the same kinetic activation 
energies U(T) =(2/x) and with A0 = 105, 50 and 80, 

respectively. With x is indicated the reduced temperature, 
x = T/Tm. 

These two approximations are used in the most 
often applied method of analysis of non-isothermal 
crystallization processes given in the next Section, 
and Eqn. (46) – also for the analysis of all cases of 
non-isothermal chemical reaction kinetics and 
especially in polymer crystallization (see [7, 19] and  
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in the crystallization of undercooled aqueous solu-
tions [47]). An interesting case of nucleation, as 
pointed out in [17, 18], is the electrolytic crystal-
lization of melts on the cathode under galvanostatic 
conditions. There a steadily increasing overvoltage 
∆ε = q0t, determines the supersaturation ∆µ(t) and 
thus a formalism similar to Eqn. (45) has to be 
applied. 

6. ISOCONVERSIONAL APPROXIMATIONS 

According to these approximations the integra-
tion of the right-hand side of Eqn. (36b) is per-
formed introducing for the subintegral function 
either Eqn. (45) (as first done in [17, 19, 20] for 
cooling run crystallization at relatively small under 
coolings, i.e. when in Eqn. (44) mTT ≅ ) or – in 
most cases (beginning with [1, 14–16]) – by using 
Eqn. (46).  

With the substitutions z
RT
U

=






 0  and z
RT
B

=2
0  

in both cases (Eqns. (45), (46)) the right hand 
integrals in Eqn. (36b) are brought (see Appendix 1) 
to two well known higher transcend-ental functions: 
the Exponential Integral Function Ei(Z) and the 
Gauss Error Function erf(Z) [48]. Introducing 
further on [49] the well known asymp-totic 
expansions of both transcendental functions two 
simple solutions 

nRT
Uconstq −=log   (47) 

and  

2log
Tn

Bconstq
∆
Φ

−=   (48) 

are easily obtained (see [1, 14–16, 19, 49] and 
Appendix 1). Thus, in coordinates logq vs. 1/T, the 
value of (U0/n) can be determined, as first shown by 
Henderson [16]. In a similar way, as initially 
demonstrated in [17, 19, 20] for cooling run 
experiments in nucleation controlled processes with 
K(T) according to Eqn. (29) leads to the Gaussian 
Error Function erf(x) and solutions (see [49]) of the 
type of Eqn. (48). This plot as demonstrated by 
Dobreva et al. in a series of publication is especially 
helpful in determining the nucleating activity Φ of 
substrates (crystallization cores) or other additives 
(eventually surfactants [50, 51, 52, 53]) in 
nucleation kinetics experiments (see Section 9), 
comparing plain (where Φ = 1) and doped (Φ < 1) 
melts [44, 53]. Thus especially significant 
technological problems can be solved [51–53] con-
nected with synthesis of glass ceramics [51, 52] and 

of polymer materials [16, 53]. 
Strictly speaking, the right hand integral in Eqn. 

(36a) can be also brought to simple expressions, 
containing either the Gauss Error Function (with 
Eqn. (45), or to the Ei(Z)-function (at n > 1), and 
with Eqn. (37) (at n < 1) to the Incomplete Gamma 
Functions Γ(n–1, Z), as also indicated in Appendix 1. 

In Appendix 2 it is also shown, that even 
integrals, containing KA(T)-subintegral functions of 
the type determined with Eqn. (44) can be also 
geometrically estimated with sufficient accuracy. 

The main problems as they are discussed also by 
other well known authors [2, 41, 54] with the iso-
conversional methods is, however, not integration, 
but the unknown n-value. Only a full analysis of the 
α(T)-curves, as first performed by Ozawa [3, 4] can 
determine both n and U0 and thus also the type of 
the kinetic model equation in Eqn. (36) and in F(α) 
of Eqn. (9). 

7. GENERALIZED OZAWA APPROACH 

In 1971 Ozawa [3, 4] indicated a remarkable way 
out of the restrictions of the isoconversional 
approximations, which we employ here and enlarge 
to a more general procedure. This enlargement gives 
both an analytical and a graphical method to 
determine in one experiment both n (i.e. in our 
Avrami-function approach: the nature of the kinetic 
reaction model function F(α)) and the respective 
U(T) – function as real, experimentally accessible 
temperature dependences. To do this we begin our 
derivations again with Eqn. (9), using the form, 
indicated with Eqn. (9a). We have first, to redefine 
the extended volume Yn(t,T) employed in Eqn. (28) 
for constant temperatures in order to satisfy the 
requirements of Avrami theorem also in the non-
isothermal case. For time independent nucleation 
and growth rates I(T) and v(T) we have now to write 
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where ωn, I, v have the same significance as in Eqns. 
(27–29). 

The continuation possible, following Ozawa’s 
idea, is to replace at constant heating/cooling rates 
in above integrals via Eqns. (17) and (30) dt and t by 
dT and T, and thus we obtain directly 
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nn
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n ∫ −==
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   (50) 

After integration according to Avrami theorem 
(c.f. Eqn. (27)) we have now in analogy to Eqn. (36) 
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and to Ozawa’s procedure (see [3]) to write 

( )[ ] ( ) dTTTK
q
nT n

T

n
1

0

1log −∫=−− α    (51) 

Here we have to integrate from α = 0 to any α(T)-
value of the α(T,t)-dependence, corresponding to the 
temperature T. In employing again Eqn. (17) we 
obtain in similarity to the isothermal Avrami 
process that 

lg{–lg[1–α(T)]} = 

= – ∫
0

1
T

n edTTTKqn lglg)(lglg ++  (52) 

In this way (c.f. Eqn. (50)) only the value of  
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can be determined in coordinates lg{–lg[1–α(T)]} 
vs. lgq as lgYn(T). The slope of the respective 
straight line gives only the value of n and after 
integration of the sublogarithmic function could 
reveal also the value of K(T). 

The direct result of DTA or DSC-measurements 
is usually obtained in terms of dα(T,t)/dT vs. T plots. 
After a numerical integration we obtain the 
respective α(T) vs. T curves from which we can 
determine the values of α(T) corresponding to the 
respective q value, as prescribed by Ozawa in his 
lg{–lg[1–α(T)]} vs. lgq coordinates. This is an 
approach similar to the isothermal Avrami plot. 
According to the original derivation of Ozawa, it is 
assumed that a process of overall crystallization 
kinetics is investigated in terms of Avrami model. 
Here it becomes evident, that this procedure is 
applicable to any process, e.g. a chemical reaction, 
when we can assume that it is described by Avrami 
Eqn. (8), considered as a general dependence of 
change. 

Now, following Ozawa, we have determined n; 
however, we have obtained following his method 
K(T) and U(T) only in the form of a logarithm of a 
relatively complicated integral, which can be 
brought approximately to well known transcend-
ental functions (see Appendix 1, 2) in a similar way 
as done in the isoconversional case (Section 6).  

In order to illustrate this task on Fig. 7 is shown 
the probable course of the subintegral functions and 
their change in dependence of cooling/heating rates 
q for various K(T) dependences. On Fig. 8 the 
graphical way of integration of these dependences 
mentioned here and in Section 5 is illustrated. 

 
Fig. 7. Influence of cooling/heating rate, q, on the course 
of the subintegral functions in Eqn. (36b), when the tem-
perature is expressed as T = qt, according to Eqn. (30a).   
a. At an Arrhenian kinetic barrier given with Eqn. (37);   
b. At a thermodynamic nucleation barrier approximately 
expressed via Eqn. (45);   c. At a nucleation rate depend-
ence, according to Eqn. (44). At picture a. the value of q 

is changed in relative units as q1,2,3 = 1, 2 ,5;   b. q4,5,6 = 1, 
3, 5; and at c. q1,2,3 = 1, 2, 5. In calculating all three cases 

in the respective dependences, U0/R = 5, B/RTm = 16,  
Tm = 30, A0 = 1.  

A more general approach is, however, possible to 
determine directly both U(T) and n in the framework 
of Ozawa’s approach. 

Suppose we have analyzed, using the already 
described Ozawa plot, the value of n in Avrami 
equation: thus we know the kinetic model, under-
lining the considered non-isothermal α(T)-course. 
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Now we have to determine also the functional 
dependence and the value of U(T), corresponding to 
the analyzed model. 

 

Fig. 8. Geometric interpretation of the determination of 
the integral, given with the right – hand side of Eqn. 

(36b). The curve 1, representing the subintegral function 
K(T) at Eqn. (45) with T = qt is approximated by the 
shaded triangular area of the rectangle. The double 

shaded area left of the tangent straight line 1 is the part 
neglected by the approximation of the Gauss Error 

Function used (see Appendix 2). 

 
Fig. 9. Effect of mean radius, R0 on the kinetics of 

crystallization of samples, constituted of an array of equal 
spheres (schematically):   a. At a population of smallest 
spheres the nucleation event determines to a great extent 

the crystallization process: Thus, n = 3 in the Avrami 
equation is expected and found experimentally;   b. An 
intermediate case: relatively great spheres allow both 

nucleation and growth and the formation of a 
crystallizing front at the end of the process;   c. The 

change of the way of crystallization, induced by surface 
nucleation at relatively great spheres: a crystallization 
front is formed at the very beginning, proceeding (at a 
value n = 1 in the Avrami index in Eqn. (8)) into the 

volume of the sphere. For details and subsequent 
theoretical derivations, see [10]. 

From the Ozawa plots, we obtain in  
lg[–[1–α(T)]] vs. lgq coordinates beside n also the 

value (for the temperatures and cooling rates q 
studied) of a function, which we call the Ozawa 
function, defined according to Eqns. (50–53) as  
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Here U(T) stands for any of the already discussed 
models of activation energies of K(T), given with 
Eqns. (37–39). Taking the logarithmic derivative 
from above expression and accounting for the rules of 
differentiation of definite integrals we have to write 

( )[ ] ( )

( )

( )
( )[ ]TOz
TKT

dTTKT

TKT
dT

TOzd n

T
n

n

exp
'

1

0

1 −−

==

∫
  (55) 

Thus, we obtain the subintegral function of Oz(T) 
and K(T) as 
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Thus, with Eqn. (37) it follows, that K(T) can be 
obtained from the Ozawa plot as the product of the 
antilogarithm of the Ozawa function (Eqn. (54)) and 
the value of its temperature differential at tempe-
rature T (see Appendix 3 and Fig. 14 given there). 
After taking the logarithm from above expression 
we determine U(T)/(RT) as  
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Thus, we can analyze the nature of the K(T)-
function according to anticipated temperature 
dependences, compatible with the kinetic model 
function F(α) expected. It is evident, that a standard 
computer programme connected with the DSC 
Ozawa plot results can thus directly reveal both the 
K(T) and the U(T) function. In doing so in a good 
approximation Tn–1 in Eqns. (54), (55), (57) can be 
taken as a constant (e.g. 11 −− = n

m
n TT ), when com-

pared with the value of the corresponding expo-
nential functions.  

In analyzing cases of phase transition kinetics, 
e.g. in cooling run experimentation the U(T) 
dependence as depicted with Eqn. (40) has to be 
anticipated, while in heating run experimentation 
Eqn. (37) should prevail as a rule. The above given 
derivation is graphically illustrated in Appendix 3. 
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Fig. 10. Experimental verification of the influence of mean radius, R0 of crystallizing glass semolina samples on the 
Avrami kinetics.   a. Kinetics of overall growth of NaPO3-glass: typical α(t)-curves at constant temperature in the 

temperature range T = 575 to 605 K. Curve 1 - R0 < 0.04 mm, T = 575 K; curve 2 - R0 = 0.05–0.08 mm, T = 579 K; 
curve 3 - R0 = 0.2–0.25 mm, T = 598 K; curve 4 - R0 = 0.25–0.375 mm, T = 605 K.   b. Kinetics of overall 

crystallization of diopside glass at 1333 K, R0 = 1.25 mm with R0 ≈ 1.0 mm.   c., d. The same results in Avrami 
coordinates lg[–lg(1–α)] vs. lg(t) coordinates, giving in dependence of R0, a change of the Avrami coefficient n from 1 

to 3.   e. Proof of a reciprocal dependence n ~ 1/R0 for NaPO3 samples, crystallized at 575 K as a function of grain 
radius, R0; f. – the same data in coordinates α vs. 1/R0.  Experimental results from [10] where additionally experimental 

details are given. 

 
8. KINETICS OF GLASS TRANSITIONS 

Long years of investigations have revealed two 
essential points in the kinetics of glass transition 
(see [7, 21, 22, 23, 24]): 

i) Both isothermal and non isothermal relaxation 
in glass-forming systems can not be described in 
terms of Maxwell’s linear kinetics (Eqn. (20)), 
which corresponds to a first order dependence of 
structural change. This becomes evident in com-
paring Eqns. (20) and (13) in assuming, that K(T) 
from Eqn. (13) is the reciprocal of a time inde-
pendent Maxwellian time of relaxation (i.e. that 
[1/K(T)] ≡ τ#(T)). On the contrary, it is well known 
(see [7, 39]) that only relaxational behaviour of the 
Kohlrausch-type (Eqns. (18), (19)) with a stretched 
exponent (ξ–ξ0)-course satisfy experiment. As far as 
from such experiments as mentioned the stretched 
exponent index turns ut to be in the vicinity of (1–b) 
= 0.33 [7, 22] this gives in terms of Section 3 an 
indication that the relaxation in glass as a kinetic 

process is to be considered as of second order (i.e 
within Eqn. (6) (with p = 2) and by Eqn. (14) or 
with Eqn. (8) with n = 2/3). In fact, there were well 
founded proposals (see [39]) to treat relaxation in 
glasses according to the so called Adams-
Williamson equation: 

( ) ( )T
t

T *
0

11
τξξ

=−    (58) 

which is only another form of Eqn. (14) obtained 
from Eqn. (6) with the additional condition, that  
ξ–ξ0 at t = 0. 

ii) In both empirical approximations and kinetic 
models (see [7, 21, 22]) as well as in the framework 
of a generic thermodynamic approach (see [7, 23, 
24, 25]) it has been shown that the general kinetic 
condition for glass transition to take place is that 

( ) constqT
gTT ≈=

∗τ   (59) 
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Here τ*(T) in the case of Maxwell’s relaxation 
kinetics is given as τ*(T) = [1/K(T)] and in more 
correct contemporary treatments this is according to 
Eqns. (18), (19) the value of the time dependent 
time of relaxation  

( ) ( )
bt
T

T 0ττ ≅∗           (60) 

With Eqns. (18), (19) the Frenkel-Kobeko-Rainer 
formula Eqn. (59) indicates, that at every cooling 
rate a distinct q-dependent part ξ(Tg) of active 
structural entities ξ is frozen-in to form a glass. 

In considering the expected temperature depend-
ence of τ0(T) as the reciprocal of the K(T)-function 
(e.g. Eqn. (37)) dependences, similar to the 
Bartenev-Ritland formula (see [7]) are obtained e.g. 

qconstconst
Tg

log1
21 −≅       (61) 

where the const1,2 both are proportional to the 
respective activation energy. 

A more detailed treatment of the consequences 
from the Bartenev’s formula we have given else-
where [7] (see also [54–57]. Here we would like only 
to show the analogy of Eqn. (61) with Eqn. (47), 
which could be directly written in the way as Eqn. 
(61). This analogy stems from the fact, that in vitri-
fication it also turns out, that an isotransitional 
approach can be applied in order to derive Eqn. (61) 
and to treat vitrification as a non-isothermal relaxa-
tion process, in which second order type reactions 
bring about the freeze – i.e. the fixation of a distinct 
part of the systems building units into a vitreous 
state. 

9. ILLUSTRATIVE COMPARISON WITH 
EXPERIMENTAL EVIDENCE 

In current literature there is abundant experi-
mental evidence confirming the main ideas and 
results, developed in the present contribution. Ther-
mal analysis in its various possible forms is of great 
importance, and according to [58] only in a two 
years period 2002–2003 there have been well over 
6000 citations of this method in articles covered by 
Web of Science. 

Here we would like only to mention several 
results out of our own laboratory, which according 
to our feeling may illustrate in a significant way the 
significance of some of the approaches, developed 
here. 

In a series of experiments, represented here by 
only two of our publications [10, 27] we investi-
gated the applicability of Avrami-type equations 

(c.f. Eqn. (8)) to describe the isothermal kinetics of 
crystallization of simple inorganic glass-forming 
systems. We developed a model, similar to Mampel’s 
one [28] to analyze in terms of Avrami theorem the 
dependence of the extended volume Yn(t) on the 
dispersity of the samples analyzed. Surface nuclea-
tion of every grain of the granulated glass consti-
tuting the DTA-samples was assumed and in fact 
microscopically confirmed. The theoretical analysis 
per-formed showed, that Avrami power coefficient n 
has in this case is a function of the mean radius d0 of 
the glass semolina employed in every experiment. 
Thus in variance with the original Avrami model [6, 
7], in which an infinitively large volume of the 
crystallizing sample is assumed, here a distinct 
dependence n = f(1/R0) was derived and confirmed 
experimentally (Fig. 10 and further results in [10]). 
Witness in this respect are crystallization 
experiments with both NaPO3-glass semolina and 
with other inorganic glasses, as this is discussed in 
details in [10]. In this way, the Avrami power 
coefficient looses in most cases of DTA and DSC 
experiments its original significance, when semolina 
or powder-like samples are analyzed and discussed 
in terms of Eqn. (8). These experimental evidence 
summarized in [10, 27] gave one of the starting 
points of the present analysis. 

On the other hand in polymer crystallization [44] 
in DTA or DSC arrangements, when to a great 
extent sufficiently large samples are employed so 
that Avrami model premises are fulfilled, the value 
of n has to depend in both isothermal and non-
isothermal experiments on the interplay of I(T) and 
v(T) in accordance with Eqn. (29). Moreover, the 
values of n and ( )TU  determined isothermally and 
in cooling/heating run experimentation for the same 
case have to coincide. 

Polyethilene terephtalate (PET) is a very con-
venient crystallization model [44, 50]. We deter-
mined in a series of preliminary experiments both 
the thermodynamic and the kinetic properties of our 
PET-melts (mainly temperature dependence of 
specific heats Cp(T) and of viscosity η(T) measure-
ments were performed in this respect, see [44] and 
Fig. 11). In isothermal experiments we determined 
both n and ( )TU  of our PET-samples (see [19, 50]) 
and compared them with the U(T) and Wc(T) values, 
following for these melts from our Cp(T) and η(T) 
measurements. A good coincidence was found in 
this respect for both PET and several other polymers 
[19, 53]. Moreover, employing Eqns. (39), (41) we 
determined the nucleating activity, Ф, of various 
substrates in both PET [53] and in the already 
mentioned NaPO3-glass (see [51, 52] and here Fig. 12  
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Fig. 11. Crystallization significant properties of polyethylene terephtalate (PET): necessary thermodynamic and kinetic 
data: specific heats, Cp(T) and viscosity, η(T).   a. Results of Cp(T) vs. T measurements; from there ∆Sm and ∆µ(T) were 

determined. Open squares: Cp(T) of undecooled PET melts; open circles: Cp(T) of crystallized PET samples; open 
triangles: Cp(T) of crystalline PET samples.   b. η(T) course of molten PET (open circles: experimental data) according 

to free volume model Vogel-Fulcher-Tammann formula, Eqn. (38).   c. The same data in Vogel-Fulcher-Tammann 
coordinates, according to Eqn. (38).   d. The influence of temperature on U(T) of PET, demonstrating the steep decrease 
of U(T) at approaching T = Tm = 542 K,  where the thermodynamic barrier is more significant [46, 47]. From the η(T) 

data U(T) was determined. Experimental data from [50]. 

 
Fig. 12. Experimental evidence on the crystallization of polymer melts.    

a. Non-isothermal cooling run curves with a typical crystallization peak of PET at different cooling rates: 1 - 1 K·min–1;  
2 - 2 K·min–1; 3 - 10 K·min–1; 4 - 30 K·min–1; 5 - 40 K·min–1 (from [19]).   b. Non-isothermal crystallization of  
several polymers in lgq vs. 1/∆T2 coordinates in accordance with Eqn. (48). From above: polyamide; polydeca-

methylene tereftalate; polyethylene tereftalate; isotactic polypropylene (from[19]).   c. Results from the non-isothermal 
crystallization kinetics of PET thin films (Ozawa [3]) in coordinates – Ozawa function Oz(T) vs. 1/∆T 2. Ozawa function 

expanded in terms of the Error Function series (see Appendix 1.). Comparison of the results on the crystallization of 
PET obtained by Dobreva and Gutzow [19], open squares – with the results of Ozawa [3] for the same polymer.    

d. The results from non-isothermal crystallization of PET by Dobreva et al. [53] and by Ozawa [3], according to the 
isoconversional approximation formula Eqn. (45).   e. The results for the lg(Oz(T)) – function in coordinates lg(K) vs. 

1/∆T 2 for plain PET. Results for PET doped with active insoluble substrates in coordinates, corresponding to Eqn. (48): 
top most line – plain PET; second from above – PET nucleated with Al2O3 particles; third line – PET nucleated with 

TiO2 paricles; fourth line – PET nucleated with ZnO particles. Note the change of Φ from 1 to 0.6.  
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for the organic polymers). The results thus obtained 
we used in developing by induced crystallization 
both glass ceramics (see [7]) and organic polymer–
inorganic composite materials [53]. Of more signi-
ficance for the present analysis was, that in com-
paring our isothermal results with PET with those 
obtained by Ozawa [3] with the same object, similar 
values of both the Avrami coefficient n and of U(T) 
were found (see Fig. 12). 

The isothermal results with one of the crys-
tallization models the NaPO3-glass we employed in 
performing in 1999 on the “MIR” orbital station 
experiments on the effect of microgravity conditions 
on the induced crystallization of the same NaPO3-
model glass [46]. In doing so, we used at both 
cosmic conditions and in the reference experiments 
in the MUSC Laboratory in Cologne (Germany) 
non-isothermal simultaneous DTA-analysis of the 
induced crystallization experiments of the (NaPO3)x-
glass. In both cases a good correspondence between 
isothermal and non-isothermal conditions was con-
firmed in the framework of the classical nucleation 
theory, summarized here in Section 4. 

Lastly, we would like also to mention, that in 
[47] we developed an isoconversion experimental 
method to follow the non-isothermal crystallization 
of pure water and of various aqueous solutions in a 
LINKAM heating (cooling) stage microscope. The 
obtained results gave, using Eqns. (47), (48) quite 
similar results in both isothermal and in cooling run 
experiments. An electrochemical variant of Eqn. 
(48), in which ∆µ was represented by overvoltage 
∆ε(t) we used in [17, 18] in order to investigate the 
galvanostatic electrodeposition of Cd on Pt elec-
trodes in CdSO4 electrolytes. 

10. CONCLUSIONS 

It turns out, that it is possible using as a general 
algorithm Eqn. (8), corresponding to the Avrami 
model of overall crystallization kinetics, to describe 
quantitatively both phase transitions and topoche-
mical reactions and structural changes corres-
ponding to first, second or even third order non-
isothermal reaction kinetics. Moreover, even glass 
transition and the Kohlrausch kinetics of isothermal 
and non-isothermal relaxation (i.e. kinetics of vitri-
fication and glass stabilization) can be described, 
using the simple mathematics of the Avrami equa-
tion, as an intermediate mathematical algorithm. 

It is shown, that the Avrami power index n 
indicates the nature of the F(α) function in Eqns. 
(5), (6), which indicates at n ≥ 1 the kinetics of build 
up of interfaces in both topochemical reactions and 
Avrami-like phase transitions. With n ≤ 1 structural 

changes, vitrification and homogeneous reactions 
can be described. This broad applicability of Avrami 
Eqn. (8) is by no means accidental or purely 
mathematical. On the contrary, in Section 3 it is 
shown, that Avrami-like dependences are in fact the 
particular case of very general relations, describing 
in a relatively simple way continuous change, taking 
place either at time – constant (at n = 1) values of 
the activation energy in Avrami-like coefficients 
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RT
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or (at n > 1, or n < 1) at time dependent, e.g. 
increasing U(T, t)-values. 

The broad possibilities of Avrami equation have 
been already exploited in various applications, e.g. 
in the already cited ancient monography of Kazeev 
[33] in describing various metallurgical processes. 
In recent cosmological literature [59] efforts are 
summarized to use Avrami equation even as an 
algorithm, representing the history of the 
development of the Universe as a whole [59, 60]. In 
fact, such an analysis, if possible should require a 
non-isothermal formulation, may be in the form as it 
is discussed here, or as indicated in [60], accounting 
for the change of volume V of the Universe as a 
whole. Various models have been proposed in lite-
rature to use Avrami equation for different appli-
cations: both in its classical Kolmogorov-Avrami 
variant in melt crystallization, in Mampel’s model 
for the crystallization of grained more or less finely 
dispersed solid samples [28], in chemical reaction 
models [7, 8, 32, 33] with special applications to 
DTA and DSC analysis [10, 27]. It is a really con-
venient model and this we hope is demonstrated also 
in the foregoing analysis. It is pointed out in Sec-
tions 3 and 8 that this broad applicability of Avrami-
like dependences stems from the circumstance that it 
is based in fact on non-linear formulations of the 
phenomenological law of ireversible thermodyna-
mics. Those who are interested in this problem are 
advised both to classical literature on this subject 
[61–63] and to the already cited publications [23, 
24, 30].  

In the present contribution on one side the clas-
sical isoconversional models, developed and em-
ployed many years ago for both heating [1, 16] and 
cooling runs [17, 19, 20] experimentation are 
described and unified and the possibilities and limi-
tations of existing solutions are summarized. Parti-
cular attention, however, is given to Ozawa’s method 
[3] of non-isothermal kinetic analysis. An attempt is 
made these methods to be enlarged and brought to 
more general applications in both chemical non 
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isothermal kinetics and in non isothermal phase 
transitions and new analytical and geometrical solu-
tions are proposed in this respect.  

Many attempts have been made, beginning with 
the already cited classical authors, like Kisinger [1] 
and Coats and Redfern [14] to develop methods of 
analysis of non-isothermally obtained kinetic results 
to determine both the nature of the process (in 
present terms we used here in this respect the F(α)- 
function in the summaric (1–α)F(α)-dependence) 
and the value of the process significant activation 
energy U(T). In doing so, most researchers prefer to 
use various variants of trial and error methods as 
optimization programs, in which out of 30 to 40 
different kinetic possibilities to determine the F(α) 
in a more or less systematic manner as a best fit 
value [54, 64]. Out of number of recent analyses in 
this respect we would like to cite the efforts of 
Vlaev et al. [64, 65] and also [66]. In these investi-
gations the most appropriate selection of optimum is 
attempted, based on possible maximal values of 

generalized R2 factors. However, the critical recon-
siderations of such efforts, made in [65] shows, that 
in reality it is very difficult, or even impossible to 
discern in between such a great variety of kinetic 
possibilities even in such standard cases as the 
thermal decomposition of CaC2O2.2H2O. 

Kissinger tried to resolve the same problem by 
introducing an analysis of the form (dα/dt) depend-
ence. This form, as seen also by one of our mathe-
matical models (Fig. 13), really changes, when the 
Avrami model with different n-values is used. 
However, in our opinion too much hope has been 
invested in such efforts of geometric form analysis 
of rate dependences. Moreover, beginning with 
Kissinger [1] and by most further authors, only 
Arrhenian type kinetic barriers have been consi-
dered at changing F(α)-function. However, the ana-
lysis in Section 5 shows how differing the kinetic 
barrier can be even for the same F(α)-function and 
that in phase transitions a complicated, non-Arrhe-
nian thermodynamic barrier has to be expected. 

 

 
Fig. 13. Influence of the Avrami power index, n, on the form of the dα/dt vs. T-curves (in logarithmic scale on the 

ordinate). In all six cases [ ]ntTKTnK
dt
d n )(exp)(lnln

1
−=



 α  is plotted against T = qt for the same value of q, but 

for n, changing from n = 4 through n = 1 to n = 2/5. Curve 1 is constructed with n = 4; curve2 – with n = 3; curve 3 – 
with n = 2; curve 4 – with n = 1; curve 5 – with n = 2/3; curve 6 – with n = 2/5. In constructing the figures it was taken 
that in the expression ;)(;);exp()( 51 00

00 ==−= T
U

T
U AATK  in all figures the temperature is defined as T = qt. 

Note the change in the appearance of the 







dt
dαln  vs. 








q
T -curves. It is seen that an unambiguous distinction of the 

curve form from n (as anticipated by Kissinger) is very difficult; nevertheless a change from symmetric curves (at n >1) 
to asymmetric curves for n ≤ 1 is clearly observable. 
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This is why, in terms of present analysis it is 
assumed, that first a generalization, a standardiza-
tion of all possible kinetics is necessary in the form 
of an intermediate Avrami-type equation. Than 
Ozawa’s analysis determines the factor n and thus 
(out of not more than 10 possibilities n = 2/5, 2/3, 1, 
2, 3, 4, or fractional values between 1 and 3) the 
general type of the kinetic process can be deter-
mined, independent of the value and nature of the 
activation energy U(T). The method, described in 
Section 7 gives after that a method to determine at 
an already known n the real nature of U(T) out of 
the analysis of the term we called here the Ozawa 
number Oz. 

In doing this way, both new possibilities and also 
the necessary limitations are clearer visible. 

In this way we hope, that with the present 
investigation we have indicated an alternative way 
of thermal analysis, which in its development an 
application could lead to more distinct results, 
which can be more straight word obtained. 
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APPENDIX 1 

With the mentioned substitutions 
2

0

RT
B

z =  for 

the subintegral functions in Eqn. (36b) we arrive 
with Eqn. (45) at  

( )dz
z

z
q
B Z

∫
−

0
2

2
0 exp   (a1) 

After successive integration in parts it follows 

( ) ( )







−=

−
∫ Zerfc

Z
Zdz

z
zZ

π2

2

0
2

2 expexp    (b1) 

where ( ) ( )ZerfZerfc −=1  and  

( ) ( )∫ −=
Z

dzzZerf
0

2exp2
π

        (c1) 

is the Gauss Integral form of the Probability 
function [48]. 

In a similar way and with the substitution z = 
(U0/RT) in the subintegral function (46), Eqn. (36) 
leads to an expressions of the type  

( ) ( )







−=

−
∫ ZEi

Z
Zdz

z
zZ

2

2

0
2

expexp     (d1) 

where  

( ) ( )dz
z

zZEi
Z
∫
∞ −

=−
exp   (e1) 

is the Exponential Integral Function [48]. 
In employing the already mentioned well known 

asymptotic expansions of both the Exponential 
Integral Function 

( ) ( )




 +−+−

−
=− ...!3!2!11exp

32 ZZZZ
ZZEi   (f1) 

and of Gauss’ Error Function ( )Zerf   

( ) ( ) =−=1 ZerfZerfc  

( )
( ) 











−+−

−
= ...

2

1.3.3.1
2

1.3.11exp1
222

2

ZZZ
Z

π
  (g1) 

and using only the first members of both expansions 
Eqns. (47) and (48) are readily obtained. In deriving 
them via Eqn. (36a) (1/T) or (1/∆T2) are neglected 
when compared with the same arguments in the 
exponent. 

In a similar way also the integrals can be treated, 
in which (c.f. Eqn. (36a)) expressions of the type 
( ) 1−nTTK  appear. With the same substitution made 

to obtain Eqn. (d1) and integration by parts we arrive 
e.g. for n = 2/3 to the integral  

( ) 





Γ=−−∫ Zdzz

z
,

3
1

3
2exp

2
3

3/2  (h1) 

where ( )Zn,Γ  is the so called Incomplete Gamma 
function [48]. With the asymptotic expansion 

( ) ( ) ( )( )




 +

−−
+

−
+−≅Γ − ...2111exp, 2

1

Z
nn

Z
nZZZn n  

similar to those indicated with Eqns. (f1), (g1) for the 
already mentioned transcendent functions results, 
similar to Eqns. (47), (48) can be obtained.  

APPENDIX 2 

In considering Figs. 7 it is evident, that for all the 
considered subintegral functions (cf. Eqns. (38), (41), 
(44–46) the value of the right hand integrals in Eqn. 
(36) can be approximated with the shade area deter-
mined by the rectangular triangle seen on Fig. 8. 
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( ) ( ) ( ) ( ) ( )τττ
τ

KtdTTK
q

dttKJ
T

0
00 2

11 max

−=== ∫∫ (a2) 

Here with 2 is indicated the subintegral function 
K(t), and with 1 – the tangent at qt = qτ. It is 
obvious, that in approximating the unknown integral 
via Eq.(a2) we have neglected from a geometrical 
point of view the double shaded area on Fig. 8. For 
subintegral functions of the discussed exponential 
type this approximation is quite acceptable. 
Accounting for the linear T vs. t heating/cooling 
course (cf. Eqn. (17)) the slope of the mentioned 
tangent straight line is 

( ) ( )
( )0

tan
t

K
dt

tdKg
−

==
τ

τα       (b2) 

Thus, it follows that our integral is given simply 
as 

( ) ( )[ ] ( ) 1
2

2
1 −





=

dt
tdKK

q
J ττ         (c2) 

Discussing a cooling run in terms of Eqn. (41) 
we can write that 

( ) ( ) ( ) 1

2

−





=

dt
TdWconstK

q
J τωτ  (d2) 

According to Eqns. (39, 41) W(T) has the 
structure 

( ) ( )
2

*
0

TRT
B

RT
TUTW

∆
+=        (e2) 

In all above expressions T = qt and in the vicinity 
of melting point RT ≈ RTm in the right hand member 
of Eqn. (e2). In this way via Eqns.(c2), (e2) the 
integral J(τ), necessary for any isoconversional 
solution and also in the generalized Ozawa solution, 
discussed in Section 7 can be safely approximated 
geometrically in the indicated way, e.g. via Eqn. (2). 
With above approximations we have for the 
discussed case 








 Φ
+−= 43

0

*
0

2
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0 11
tRq

B
tqR
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In this way we may also write 

( ) ( ) 






 Φ
+= 43

0

*
0

2
0

0
0

0

11
2 tRq

B
tqR

U
qK

q
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Thus the approximations, obtained analytically in 
Appendix 1 via the Gauss Error Function, follows 
directly from Eqn. (g2) at U(T)/RT = const. Here, 

however, approximations are geometrically indicated, 
which may be used both at heating and cooling run 
experimentation from both “sides” of the K(T)-
function, as this shown with both shaded areas of 
the small insert on Fig. 8. 

APPENDIX 3 

From the Ozawa plot, constructed out of several 
cooling rates (when a cooling run experiment is 
considered) we obtain directly the already discussed 
Ozawa function (Eq. (54)) in which desired U(T)-
function is part of the subintegral function and the 
integral itself is under the logarithmus sign. 

We have two way open to determine U(T): first 
we can follow the analytical procedure given in 
Appendix 1, i.e. being the subintegral to the Gauss 
Error Function, expand this transcendent function as 
discussed there and thus obtain expressions, in 
which 

( ) ( ) [ ]scorrection
RT

TUTOz lg+=   (a3) 

where the expression in square brackets depends on 
the desired accuracy (i.e. on the members used of 
the asymptotic expansion). The second, geometric 
approach is more easily performed. 

On the construction of Fig. 14 with 1 is indicated 
the possible temperature course of the Ozawa 
function Oz(T), given with Eqn. (54). This course is 
the result of experimental finding, obtained as 
described from the respective (dα/dT) vs. T 
experimental curves after integration. 

As far as 

( ) ( )

( )∫
∫ =





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
T

T

dTTK

TKdTTK
dT
d

0
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we obtain the subintegral function as 

( ) ( ) ( )





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
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TT

dTTK
dT
ddTTKF
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as already indicated. Accounting for the experi-
mental course of the possible subintegral functions, 
we have another already discussed dependence 

( ) ( ) 







= ∫∫

TT

dTTKdTTK
00

lnexp   

From Fig. 14 it is evident, that thus the slope 

( )
( )TOz

TT
dT

TdOzg
−

== 0tan α  
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or 

( ) ( )[ ] ( )TOz
dT

TOzdTT =−0  

Thus, it follows that: 

( ) ( )
( )TOz

TT
TF

−
≅ 0  

 
Fig. 14. The graphical determination of the subintegral 
K(T) function from a plot of Ozawa function Ω(T) vs. 

temperature, T. Note that according to Eqn. (56), K(T) is 

given directly by the value of dtTKTT
T

n )()(lg)( ∫ −=
0

1αΩ  - 

function (curve 1), multiplied by the slope 
TdT

Td )(Ω of 

the tangent 2 to the Ω(T) curve – 1 at temperature T, 

when 11 −− ≈ n
m

n TT . 
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(Резюме) 

Даден е задълбочен анализ и е развит един нов подход на възможностите за описване на кинетиката на 
химичните реакции и на процесите на фозообразуване при изотермични условия, също така на процеси на 
структурна релаксация и на стъклообразуване, от гледна точка на неизотермичната кинетика. Основният 
проблем на изследване е установяването и на кинетичните модели и на активиращите енергии, определящи и 
ограничаващи процесите, които се изследват чрез едно единствено измерване при нагряване или охлаждане с 
ДТА или ДС калориметрия. Една възможност е да се използват съществуващите изоконверсионни методи на 
неизотермичен анализ и по-специално методът на анализ при охлаждане, който може да даде отлични резултати 
при процесите на кристализация на стопилки и при топохимичната реакционна кинетика. Въпреки това, в 
рамките на изоконверсионните методи не е възможно да се определят, както абсолютните стойности на 
активиращите енергии, така и механизмите на реакциите. 

Основният метод се основава на подхода на Озава, където като алгоритъм на промяната се въвежда 
уравнението на Аврами, описващо, както хомогенна реакционна кинетика със степенни коефициенти n ≤ 1, така 
и топохимични реакции и фазови преходи при n = 1, 2, 3, 4. Демонстрирано е как аналитични и геометрични 
подходи могат да се използват при определянето на кинетични модели и активационни енергии, чрез един нов и 
по-подходящ обобщен метод на Озава. 

Получените теоретични резултати са онагледени с примери от кинетиката на зародишообразуване и растеж 
при кристализацията на полимерни стопилки, при преситени водни разтвори, при девитрификацията на стъкла 
и при стъклообразуването и електролитното отлагане на метали при галваностатични условия. 


