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Electrochemical impedance spectroscopy (EIS) is commonly used by electrochemists to analyze multi-step reaction 
paths occurring at electrode/electrolyte interfaces. Since the kinetics of individual reaction steps is usually a function of 
electrode potential, the impedance of the interface is measured for different but constant potential values. In most cases, 
impedance diagrams are obtained from harmonic analysis: a surimposed low amplitude (typically 5-10 mV) ac potential 
modulations or alternatively, a low amplitude (typically a few mA) ac galvanostatic modulation, is used as perturbation. 
However, according to the theory of linear and time invariant systems, harmonic analysis should be restricted to the 
analysis of linear and reversible processes. To a certain extend, the problem of linearity can be circumvented by 
reducing the amplitude of the modulation. But that does not help to solve the problem of irreversibility. For example, a 
significantly large hysteresis is observed during the electro-insertion of hydrogen into palladium or palladium alloy 
electrodes. This is a clear indication that non-linear phenomena are taking place and therefore, the use of harmonic 
analysis should be prohibited because the system does not fulfill the requirements of linearity and time invariance 
imposed by the theory of systems. There is therefore a need to use non-alternating perturbations. The purpose of this 
paper is to report on the measurement of impedance spectra from exponentially-rising voltage-step excitations. This is a 
methodology-oriented communication. In the first part of the paper, an electrical circuit containing only electrical 
resistances and capacitances is used as a model system to explain how impedance diagrams can be obtained from such 
non-harmonic perturbations. In the second part of the paper, the methodology is extended to the electro-insertion of 
hydrogen in palladium foils. 
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INTRODUCTION 

In chemical science, the term “kinetics” is 
usually making reference to the rate (expressed in 
mol.s-1 or in mol.s-1.cm-2 when the active surface is 
known) at which a given process is occurring. But 
raw kinetic data, when properly analyzed, carry 
detailed information on chemical or 
electrochemical multistep reaction mechanisms. 
From a practical viewpoint time domain analysis 
and modeling of raw data is not always trivial 
because kinetic features of individual steps are 
usually convoluted. Alternatively, frequency-
domain (Fourier) analysis offers the possibility of 
measuring transfer functions which unambiguously 
characterize reaction mechanisms and gives access 
to the rate parameter associated with each reaction 
step. Electrochemical transfer functions measured 
at electrode/electrolyte interfaces relate potential 
perturbations to associated current responses. Such 
(complex) transfer functions are thus electrical 
impedances (or conversely, admittances). Harmonic 

analysis (using sine-wave perturbations) is certainly 
the most popular way of measuring electrochemical 
impedances [1] but miscellaneous signals (such as 
white noise [2], square-waves [3] or multiple sine 
waves [4]) have also been used as input potential or 
current perturbations. Other techniques such as 
current interrupt [5] and alternating current (ac) 
voltammetry, which was invented in the 1950s [6-
9], can also be used for quantitative evaluation of 
the mechanisms of electrode processes. 
Conventionally, with the ac technique, a small 
amplitude sinusoidal potential with a frequency of 
10 Hz-100 kHz is superimposed onto the triangular 
waveform used in dc cyclic voltammetry, and either 
the total ac response or the dc, fundamental, and 
higher harmonic are then measured as a function of 
dc potential and frequency. Garland et al. used the 
technique to study the UPD adsorption of Bi3+ at 
gold electrodes [10]. The technique has also been 
extended to the combination of cyclic voltametry 
and surimposed square waves, triangles, sawtooth 
waveforms or non-harmonically related sine 
components [11]. However, according to the theory 
of linear and time invariant systems, the use of 
wave (alternating) perturbations is restricted to the 

© 2012 Bulgarian Academy of Sciences, Union of Chemists in Bulgaria 

* To whom all correspondence should be sent: 
E-mail:  pierre.millet@u-psud.fr 



 

339 

characterization of linear systems and reversible 
transformations. To a certain extend, the problem of 
linearity can be circumvented by reducing the 
amplitude of the surimposed modulation. But that 
does not help to solve the problem of irreversibility. 
For example, a significantly large hysteresis is 
observed during the electro-insertion of hydrogen 
in palladium or palladium alloys. This is a clear 
indication that non-linear phenomena are taking 
place and therefore, the use of harmonic analysis 
should be prohibited because the system does not 
fulfill the requirements of linearity and time 
invariance imposed by the theory of systems. To 
investigate the dynamic features of such systems, 
there is therefore a need to use non-alternating 
perturbations. Potential steps are appropriate 
signals for the measurement of impedances at 
electrode/electrolyte interfaces where irreversible 
processes are taking place because their first time-
derivative is strictly positive (rising up step) or 
negative (rising down step). Application of 
potential steps to such systems offers the possibility 
to study separately back and forth transformations. 
The concept has already been proposed to analyze 
the electrochemical hydriding reactions of 
palladium in two-phase domains [12] but few 
details were given concerning the methodology 
used for the measurements. A similar concept based 
on the application of “pressure steps” has also been 
used to analyze gas-phase reactions [13]. The 
purpose of this paper is to describe the 
measurement of impedance diagrams from potential 
steps. This is a methodology-oriented 
communication and we focus primarily on the 
constraints and criteria of measurements in the 
context of new data acquisition electronics that 
became available during the last few years. In the 
first part of the paper, an electrical circuit 
containing only electrical resistances and 
capacitances is used as a model system. This is a 
simple case because experiments are very brief (a 
few milliseconds long). As a result, sampling 
conditions and data treatment procedures are easy 
to manage and impedance diagrams easy to obtain. 
In the second part of the paper, the methodology is 
extended to the study of a more complicated case, 
the electro-insertion of hydrogen in palladium foils. 

EXPERIMENTAL 

Experimental setup 

A computer-controlled Radiometer Analytical 
PGZ 402 potentiostat-galvanostat has been used to 
apply voltage excitations. In addition, an Agilent 
DSO 6032 A (2 channels, 300 MHz) oscilloscope 

has been used to sample the potential and current 
transients. Short (10 cm long) electric cables were 
used to minimize parasite impedance losses. 

Electrical circuit 

The model electrical circuit used for the 
experiments is pictured in Fig 1. Two parallel RC 
circuits (R1, C1 and R2, C2) are connected in series. 
The time constants of each sub-circuit (�1 = R1.C1 = 
2.35x10-5 s and �2 = R2.C2 = 10-2 s) differ by a 
factor of �2/(�1 = 425, and each sub-circuit has quite 
different dynamic features. A third resistance R0 is 
connected in series. 

 
Fig. 1. Model electrical circuit. R0 = 12100 �; R1 = 

4990 �; C1 = 4.7x10-9 F;R2 = 10000 �; C2 = 1x10-6 F. 
E(t) = voltage excitation. I0, I1, I2, I3 and I: current 
responses. 

 
Fig. 2. Impedance diagram of the electrical circuit of 

Fig 1.(o) experimental (sine wave perturbation); (―) 
calculated from Eq. (1). 

The analytical impedance of the electrical circuit 
of Fig. 1 is given by equation (1) where � = 2�f is 
the pulsation in rad.s-1 and f is the frequency in Hz: 
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The experimental impedance diagram measured 
with the Radiometer potentiostat using sine wave 
potential perturbations is plotted in Nyquist 
coordinates in Fig. 2. The measure was made at a 
constant voltage of 0 V with a 5 mV sur-imposed 
ac perturbation. The model impedance diagram 
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obtained from Eq. (1) is also plotted for 
comparison. There is a good overall agreement over 
the entire frequency range, indicating that the 
values of R0, R1, R2, C1 and C2 given in the caption 
of figure 1 are known with a sufficiently good 
accuracy and that the signal-to-noise ratio is 
appropriately high. The time constant of the two 
RC circuits are significantly different and the 
impedance of each sub-circuit (a semi circle along 
the real axis) are well separated in frequency. The 
impedance of the first sub-circuit (R1, C1) with the 
lowest time constant appears in the high frequency 
range and the impedance of the second sub-circuit 
(R2, C2) appears in the low frequency range. The 
characteristic pulsations �c (in rad.s-1) at the top of 
each semi-circle is related to each time constant:  
�ci = 2�fci = 1/�i. where fci is the corresponding 
characteristic frequency (in Hz or s-1). Practical 
conditions required for obtaining impedance 
diagrams from potential step excitations are 
discussed in the following sections. 

THEORY 

Linear and time invariant systems (LTIS) 
In the followings, the implicit variable is time (t) 

throughout. System theory analyzes the 
relationships between any given input i(t) and the 
corresponding output o(t). A system is said to be 
linear and time invariant when the following 
conditions are satisfied: 

(i) causality: 
� � � � 00, 	
� ttoti               (2) 

(ii) linearity: 
� � � � � � � �tototiti 22112211 ���� �
�  (3) 

where �1, �2, �1 and �2 are scalars. 
(iii) time invariance: 

� � � ��� �
� toti  (4) 
where � is the time shift. 
Let h(t) be the output obtained when the unit 

h(t) is called the impulse response : 
� � � �tht 
�     

     (5) 
The theory of LTIS demonstrates that for 

systems satisfying conditions (2), (3) and (4), the 
output o(t) is related to the convolution product of 
the input i(t) by h(t) : 

� � � � � � � � � �thtidthito *��� �
��

��
���

 
(6) 

Complex exponentials remain frequency 
unaltered when passing through LTIS. Only 
amplitude modulations and phase shifts occur. i(t) 
and o(t) can thus be adequately expressed on the 

basis of complex exponentials. This operation is 
called Fourier transformation: 

� � � �� � � ��
��

��

��� dtetgtgFTfG tj�   (7) 

where f is the frequency in Hz, � = 2�f is the 
pulsation in rad.s-1, and FT[g(t)] is the Fourier 
transform of g(t). 

An interesting property of the Fourier 
transformation is that the convolution product (6) in 
the time (direct) domain is simply an algebraic 
product in the Fourier (frequency) domain: 

� � � �� � � �� � � �� � � �� �toFTthFTtiFTthtiFT ���*  (8) 
The FT of the impulse response h(t) is called the 

transfer function of the system: 

� �� � � � � ��
��

��

��� dtethfHthFT tj � (9) 

Thus, for a LTIS, the general relationship 
between input i(t) and output o(t) is a convolution 
product in the time-domain and an algebraic 
product in the Fourier domain. According to Eq. 
(8), the transfer function H(f) can be obtained in 
principle by taking the ratio of the FTs of any pair 
{i(t); o(t)}, ie : H(f) = FT{o(t)}/FT{i(t)}. This is 
possible as long as the denominator is non-zero at 
the frequencies of interest. It turns out that this is 
the case for electrical and electrochemical systems 
for which the input i(t) is the electric potential E(t) 
and the response o(t) is the current I(t). The 
associated transfer function is a complex 
impedance Z(�): 

� � � �
� ��
�� I

EZ �    (10) 

E(�) is the Fourier Transform (FT) of the 
voltage excitation E(t) in Volt and I( ) is the FT of 
the current response in Amp. 

 
Voltage excitations 

Electrical potential steps E(t) generated by 
commercial potentiostats are not true Heaviside 
steps. In order to avoid dumping effects, E(t) has 
usually a finite rising-time and is, instead of a true 
step, an exponential function rising to a maximum 
value (Fig. 3), the analytical expression of which is: 

E(t) = a. [1 – exp (- b.t)] (11) 

where a is the amplitude in V and b = 1/� in s-1 (� is 
a time constant in s). This is why in this paper, such 
signals are called “exponentially-rising voltage-step 
excitations”. Results were obtained using a PGZ402 
potentiostat from Radiometer, with a mean time 
constant � = 1/b = 6.424x10-5 s (when no filter is 
used). Experimental voltage excitations generated 
by the potentiostat were found to be reproducible 
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within ± 0.05 % from one experiment to the other. 
The frequency content of such voltage excitations 
can be determined by taking the Fourier transform 
(FT) of Eq. (11). A convenient way to do that is to 
calculate the Laplace transform (LT) and then 
explicit the transformation variable s = j�: 

� �� � � �
pbp

ba
bpp

adteeatELT tptb

�
��

�

�
�
�

�
�

���� �
�� ��

20

111

   (12) 

� �� � � �� �
bj

jbajptELTtEFT
��

�
��
�

��� 2
0,  (13) 

Eq. (13) is the general solution except for � = 0 
for which (� (t) is the Dirac function): 

� �� � � �
2

0, attEFT �� ��         (14) 

 In conventional harmonic analysis, sine 
wave functions of similar amplitudes are used to 
measure the impedance of the system over the 
entire frequency range of interest on a frequency-
to-frequency basis. As can be seen from Eqs. (13) 
and (14), the energy content of an exponentially-
rising voltage-step excitations is inversely 
proportional to the frequency. This is a limitation of 
the technique because the energy of the signal 
decreases as the frequency increases. Therefore, the 
amplitude of the excitation must be sufficiently 
large and the apparatus used to measure the current 
response must be sufficiently sensitive to accurately 
sample the signals. 

RESULTS AND DISCUSSION 

Experimentally, the problem to solve consists in 
the measurement of the impedance of a given 
system of interest by using such smooth voltage 
excitations as perturbation. In the first part of this 
paper, the system under consideration is the 
electrical circuit of Figure 1. This is a low noise 
system and equilibrium is reached within a few tens 
of milliseconds. In the second part of the paper, the 
system will be a noisier electrode/electrolyte 
interface for which equilibrium is reached within 
only a few seconds. The same methodology is used 
to characterize both systems. In a typical 
experiment, two transient signals are sampled : the 
rising voltage excitation E(t) and the associated 
current response I(t). To determine the unknown 
impedance of the electrical circuit there are two 
options: (i) frequency-domain analysis : the Fourier 
transform of both E(t) and I(t) are calculated and 
the ratio of the two FTs is taken as shown in Eq. 
(10), yielding the impedance Z(�) of the circuit; 
this is the most straightforward method; (ii) time-

domain analysis: a model circuit impedance Z(�) is 
postulated; then, I(�), the FT of the current 
response to the voltage excitation is calculated from 
Eq. (10): I(�) = E(�) / Z(�); then, model I(t) is 
calculated from I(�) by inverse Fourier 
transformation and used to fit transient 
experimental current I(t); parameters of the model 
impedance Z(�) are iteratively adjusted to 
minimize the difference between model and 
experimental I(t) in order to determine the exact 
characteristic of circuit components. This second 
approach is more difficult to implement than the 
first one but can sometimes be more efficient and 
even more accurate. It can also be automated. The 
two approaches are detailed in the followings. The 
circuit of  Fig. 1 of known impedance is used as a 
model system to describe the methodology and to 
evaluate the role of data sampling and data filtering 
on the quality of the resulting impedance. 

Frequency-domain analysis 

Solution to the convolution equation in the 
frequency domain. The impedance diagram of the 
circuit of Fig. 1 can be obtained directly from 
frequency-domain analysis of experimental data 
using Eq. (15): 

� �
� ��
��

0I
E)(Z �   (15) 

where E is the voltage excitation in Volt, I0 is the 
current response of the cell in A, and � is the 
pulsation in rad.s-1. E(�) denotes the Fourier 
transform of the voltage excitation E(t), and I0(�) 
denotes the Fourier transform of the current 
response I(t). 

Sampling conditions and data treatment. In 
order to calculate the impedance diagram, there is a 
need to sample both transient signals : voltage 
excitation and current response. The Fourier 
transform of the discrete transients can then be 
calculated and the ratio yields the desired 
impedance diagram. The sampling rate must respect 
the Nyquist criterion which states that the signal 
must be sampled more than twice as fast as the 
highest waveform frequency (fc). If not, it turns out 
that all of the power spectral density (PSD) which 
lies outside of the frequency range -fc < f < fc is 
spuriously moved into that range and the spectrum 
is corrupted. This phenomenon is called aliasing 
[14]. According to Fig. 2, the impedance of the 
circuit reaches the real axis at a frequency value of 
≈ 500,000 Hz. Therefore, a sampling rate of one 
sample every 1 �s (or less) is required. The 
sampling rate must be maintained until the end of 
the experiment (20 millisec in the present case). As  
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Fig. 3. (o) experimental voltage excitation and (+) 

best fit using Eq. (11). 

 
Fig. 4. Experimental voltage excitation (bottom) and 

current response (top) of the electrical circuit of  Fig. 1. 

a result, 20,000 datapoints will be collected for 
each signal, corresponding to a file of only ca. 4 
Mbytes of floats. The signals displayed on the 
screen of the oscilloscope at the onset of the step 
during a typical experiment are shown in Fig. 4 
(time scale 0-500 �sec). 

Raw data cannot always be used directly. 
Electronic or numerical filtering using low-pass 
filters is required prior to Fourier transformation in 
order to get rid of the polluted high frequency 
content of raw data [14]. Different filters (available 
on most potentiostats) can be used for that purpose 
although they also change the time constant of the 
step functions. In order to improve the signal-to-
noise ratio, a first approach is to use the analytical 
expression of E(�) (taken from Eq. (13)) in Eq. 
(15) instead of sampling the true experimental 
voltage step. This is justified by the fact that 
exponentially-rising voltage steps delivered by 
potentiostat are highly reproducible. Thus, the 
sampled current response is the only source of 
noise for the impedance diagram. It should also be 
noted that, according to Eq. (13), the PSD =  

 

 
Fig. 5. Impedance diagrams of the circuit of Fig. 1; (o) 

calculated from Eq. (1); (+) experimental from 
exponentially-rising voltage-step excitations: (a) �t = 50 
�s; (b) �t = 20 �s; (c) �t = 10 �s; (d) �t = 5 �s. 

 
� �� � � �� ��� EE 22 ImRe �  of the exponentially- 

rising voltage steps decreases exponentially with 
frequency. Therefore, a highly sensitive 
amperemeter and low-pass filtering should be used 
to obtain well-defined impedance diagrams in the 
potentially noisiest high-frequency region where 
widely scattered data-points are obtained otherwise 
[5]. 

Comparison of model and experimental 
impedance values.Impedance diagrams obtained 
from exponentially-rising voltage-step excitations 
are plotted in Fig. 5. The theoretical impedance 
diagram obtained from Eq. (1) is also plotted for 
comparison. There is a good agreement between 
both techniques, both in terms of impedance values 
and frequency content. However, the sampling rate 
of current responses plays a critical role. A 
sampling rate of at least one data-point every 5 �s 
is required to obtain a satisfactory fit (curve d). At 5 
�s, a data file of 400 kbytes is obtained and the 
impedance is calculated within only a few seconds. 
Therefore, this is achievable using conventional 
personal computers. If lower sampling rates are 
used (curves a, b, c), then significant distortions 
appear in the high frequency range. 

Time-domain analysis 

Solution to the convolution equation in the time 
domain. Circuit impedance parameters can also be 
determined from a time-domain analysis of 
experimental data. In a typical experiment, the 
electrical circuit of Fig. 1 is excited by a voltage 
transient E(t) of any shape. ER0(t) (the voltage of 
the resistance R0), ER1(t) (the voltage of the 
resistance R1), EC1(t) (the voltage of the capacitance 
C1), ER2(t) (the voltage of the resistance R2), and 
EC2(t) (the voltage of the capacitance C2) are the 
five unknown transient voltages. I0(t) (the main 
transient current across the circuit), I1(t) (the current 
across capacitance C1), I3(t) (the current across 
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resistance R1), I2(t) (the current across capacitance 
C2) and I4(t) (the current across resistance R2) are 
the five unknown transient currents. By applying 
Kirchhoff’s laws (conservation of charge and) to 
the circuit of Fig. 1, the following set of five 
equations is obtained: 

� � � � � �� �tItIRdttI
C

t

1010 1
1

1
���  (16) 

� � � � � �� �tItIRdttI
C

t

1020 2
2

1
���  (17) 

� � � � � � � ��� ���
tt

dttI
C

dttI
C

tIRtE
0 2

2
0 1

1
00

11

 
(18) 

� � � � � �tItItI 310 ��                (19) 

� � � � � �tItItI 420 ��   (20) 
The system can be solved by use of Laplace 

transformation. Solutions for the five voltage transients 
are: 

� � � �sIRsER 000 �  (21) 

� � � � � �� �sIsIRsER 1011 ��  (22) 

� � � �
1

1
1 Cs

sIsEC �   (23) 

� � � � � �� �sIsIRsER 2022 ��  (24) 

� � � �
2

2
2 Cs

sIsEC �  (25) 

Solutions for the five current transients are: 
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�
�
�
�

�

�

�
�
�
�

�

�

�
�

1
1

1
01 1

Cs
R

RsIsI     (27) 

� � � �
�
�
�
�

�

�

�
�
�
�

�

�

�
�

2
2

2
02 1

Cs
R

RsIsI     (28) 

� � � � � �sIsIsI 103 ��  (29) 

� � � � � �sIsIsI 204 ��  (30) 
Time domain solutions to Eqs. (20-29) can be 

obtained analytically (this is not always possible, 
especially as the complexity of the circuit 
increases) by choosing the shape of the perturbation 
E(t). Alternatively, solutions can also be 
conveniently obtained numerically by computing 

the inverse discrete Fourier transform (IDFT) of 
Eq. (20-29) for s = j�. The IDFT h(t) of a signal 
with a frequency content H(f) is given by: 

� � � ��
��

��
� dfefHth tfj�2          (31) 

The discrete expression of Eq. (31) is : 

� � � � � � � �� � ftfjtffHth ����
��

��

�� 2sin2cos    (32) 

Transient voltage values.  Numerical voltage 
responses of circuit components (Fig. 1) to E(t) = 
exponentially-rising voltage-step excitation are 
plotted in Fig. 6. Data have been obtained 
numerically by solving Eqs. (21-25) using the 
circuit impedance of Eq. (1).  

The time axis is in logarithmic scale to facilitate 
the differentiation of the different voltages. The 
rising voltage excitation E(t) has an amplitude of 
0.1 V and reaches its plateau value in less than 0.5 
milliseconds. Stationary signals are obtained after 
ca. 2x10-2 seconds. At that time, capacitances C1 
and C2 are charged and their impedance is infinite. 
A stationary current flows across the series-
connected resistances: 210 RRRR

i
i ����  = 

16200 �. Therefore, the stationary current for t > 
10-2 s is 

�
�

i
iR

AI0
=0.1/16200 = 6.17 �A. 

Individual stationary voltages are: 

� � mVaeatE
t

t
1001lim ��  

!

"
##
$

%
��

�

�


�  

000 IRER � =7.5mV; 0111 IREE CR �� = 30.8 mV; 

0222 IREE CR �� = 61.7 mV. 
According to Kirchhoff’s law: E(t) = ER0(t) + 

ER1(t) + ER2(t).  
Therefore, experimental transient voltages of 

individual circuit components can be fitted with 
model values. The difference between experimental 
and model values can be minimized by iteration 
and the impedance of each circuit component can 
be adjusted until a complete agreement is obtained 
between both sets of data. 

Transient current values. Numerical current 
responses of the electrical circuit of Fig. 1 to a 
exponentially-rising voltage-step excitation E(t) are 
plotted in Fig. 7. Data have been obtained by 
solving Eqs. (26-30). Again, the time axis is in 
logarithmic scale to facilitate the differentiation of 
the different signals. 

For t > 10-2 s, the stationary currents are: 
� � � � � ��
��
��
 tItItI 430  = 6.17 �A 

and � � � � 021 ��
��
 tItI . 
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Fig. 6. Transient voltages responses of the electrical 

circuit of figure 1 when E(t) = a [1 – exp (-t/�)]. a= 100 
mV. � = 1/b = 6.424x10-5 s. 

 
Fig. 8. Experimental (o) and model (―) current 

responses I0(t) of the circuit of Fig. 1 when a smooth 
voltage excitation is applied 

Model current responses can be used to fit 
experimental current values, as discussed in the 
next section. 

Comparison of experimental and model values. 
The experimental current response I0(t) has been 
fitted as follows. First, I(�) has been calculated 
from Eq. (10): I(�) = Z(�) / E(�). Z(�) was taken 
from Eq. (1) and E(�) was taken from Eq. (13). 
Second, I(t) was calculated from I(�) by discrete 
inverse Fourier transformation. Results obtained for 
the first millisecond of the experiment are plotted in 
Fig. 8. There is a good agreement between 
experimental and calculated transients. Therefore, 
time-domain analysis of the current response of the 
interface to a smooth voltage excitation can also be 
used to determine the impedance of an unknown 
circuit. 

CONCLUSIONS 

The work reported here describes a 
methodology used to determine the impedance of  

 
Fig. 7. Transient current responses of the electrical 

circuit of figure 1 when E(t) = a [1 – exp (-t/�)]. a= 100 
mV. � = 1/b = 6.424x10-5 s. 

electrical circuits from exponentially-rising 
voltage-step excitations. When such experiment is 
carried out, two transient signals are synchronously 
sampled: the potential excitation E(t) and the 
current response I(t). To determine the unknown 
impedance of the electrical circuit there are two 
options: (i) frequency-domain analysis : the Fourier 
transform of both E(t) and I(t) are calculated and 
the ratio of the two FTs is taken using Eq. � (10), 
yielding the impedance Z(�) of the circuit; this is 
the most straightforward method; (ii) time-domain 
analysis: a model circuit impedance Z(�) is 
postulated; then, the FT I(w) of the current response 
to a exponentially-rising voltage-step excitation is  

calculated from Eq. (10) : I(�) = E(�) / Z(�); then, 
model I(t) is calculated from I(�) by inverse 
Fourier transformation and used to fit transient 
experimental current I(t); parameters of the model 
impedance Z(�) are iteratively adjusted to 
minimize the difference between model and 
experimental I(t) in order to determine the exact 
characteristic of circuit components. There are two 
critical problems. First, an appropriate sampling 
rate must be used. Second, data filtering is required. 
When these problems are appropriately handled, 
then correct impedance diagrams are obtained. 
Therefore, it can be concluded that exponentially-
rising voltage-step excitations can be used to 
measure impedance diagrams of electrical circuits. 
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НАРАСТВАЩИ СТЪПКИ НА НАПРЕЖЕНИЕТО 

(I) АНАЛИЗ НА МОДЕЛНА ЕЛЕКТРИЧЕСКА СХЕМА 
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(Резюме) 

Електрохимичната импедансна спектроскопия (IES) обикновено се използва от електрохимиците за 
анализиране на многостепенни реакции, протичащи на фазовата граница електрод/електролит. Понеже 
кинетиката на отделните стъпки на реакцията обикновено е функция на електродния потенциал, импедансът на 
фазовата граница се измерва при различни, но постоянни стойности на потенциала. В повечето случаи 
импедансните диаграми се получават чрез хармоничен анализ: за възбуждане се използва наложена 
променливотокова модулация на потенциала с ниска амплитуда (типично 5-10 мВ) или галваностатична 
променливотокова модулация с ниска амплитуда (типично няколко мА). Според теорията на линейните и 
непроменливи във времето системи обаче, хармоничният анализ следва да бъде ограничен до анализа на 
линейни и обратими процеси. Проблемът с линейността може да бъде преодолян до известна степен чрез 
намаляване амплитудата на модулацията. Но това не помага да се разреши проблема с необратимостта. 
Например, при електро-интеркалацията на водород в електроди от паладий или паладиеви сплави, се наблюдава 
значителен хистерезис. Това е ясно указание, че протичат нелинейни процеси и следователно хармоничният 
анализ не може да се използва, защото системата не изпълнява изискванията за линейност и неизменност във 
времето, наложени от системната теория. Значи трябва да се използва непроменливо възбуждане. Целта на 
настоящата работа е да се докладва за измерването на импедансни спектри при възбуждане с експоненциално 
нарастващи стъпки по напрежение. Това съобщение е ориентирано към методологията. В първата част на 
работата, електрическа схема съдържаща само електрическо съпротивление и капацитет се използва като 
моделна система, за да се обясни как от такова нехармонично възбуждане може да се получи импедансна 
диаграма. Във втората част на работата, методологията се разширява до електро-интеркалацията на водород в 
паладиево фолио. 
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