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Experimental impedance spectrum (IS), or, more generally, a transfer functions spectrum (TFS) of a system, and 
especially sets of spectra measured at various values of the system variables provides a wealth of information about the 
system and the processes taking place there. However, the knowledge of this information in concepts of physical 
chemistry requires the application of special procedures in the spectra analysis.  

In this paper, selected major issues associated with the reliability of TFSs and of their analysis procedures, mainly 
based on personal experience of the author of this article, are reminded. Mainly, these issues are: problems arising from 
the fact that actual systems imperfectly meet the requirements for the measurement of TFS (e.g. linearity), the initial 
visual analysis of TFS, the principles of modelling and the discussion of different types of models (the latter for ISs), 
and know-how of the fitting of a selected model to the given TFS and criteria of the fit goodness. 
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INTRODUCTION 

The transfer functions (TFs), H’s, are ratios of a 
chosen response of a linear system being close to 
steady state to the perturbing signal (more 
generally, ratio of generalised force and resulting 
displacement) or vice versa, or else ratios of two 
chosen responses of such a system. H’s are vector 
quantities, and they are dependent on the frequency 
of the signal [1–3]. In a frequency range, Hk is 
described by its spectrum (TFS), which can be 
presented as a 3-column matrix where in the first 
and next columns the successive frequencies and 
quantities describing the corresponding vector (e.g. 
in rectangular coordinates, its real and imaginary 
components) are given, respectively.  

Hk is immittance, Xk, in a specific case when: 1/ 
the signal and response are electric potential, E, and 
current, I, and 2/ the system is one-port. Main 
forms of X are impedance, Z, and admittance, Y, 
defined as follows, respectively:  

Z = δE / δI                       (1) 
 Y =Z–1= δI/ δE                    (2) 

where δ denotes small-amplitude function; its 
presence in these definition is necessary for the 
general case of nonlinear systems, in order to allow 
their linearization. For simplicity, below it will be 
assumed that δ E is the signal. In such a case: 

δE =ΔEsin(ωt)                        (3) 
 δI =ΔIsin(ωt+ φ)             (4) 

where Δ, ω, t and φ denote amplitude functions, 
angular frequency (ω = 2πf, f being frequency in 
Hz), time and phase shift (angular delay of the 
response), respectively. In the above equations, Δ’s 
are real functions.  

The last two equations can be presented in a 
more convenient notation: 
                               δE = ΔE exp(st)                (5) 

δI =ΔI exp(st)                     (6) 

where ΔE and ΔI are complex quantities, and s 
denotes imaginary angular frequency (s = iω, i 
being the imaginary unit: i = √–1). For instance, 
from Eqs. 1, 5 and 6 it follows that: 

I
EZ
�
�

�
                              (7) 

Formally, it is unimportant whether IS is 
measured under control of E or I. However, from 
the physico-chemical point of view it can be of real 
importance. For instance, for passivating metal 
electrodes the dependence of I on E is univocal, but 
the opposite dependence is multi-valued (in fact, 
the passive state is not a steady state in the 
thermodynamic sense). However, the most 
important argument for using the E signals is that, 
in general, E directly controls the chemical 
potentials of main reactants.  
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An experimental immittance spectrum (IS), and 
especially a set of ISs measured at various values of 
system variables (e.g. composition of specimen or 
surroundings, E, temperature etc.), can provide a 
wealth of information on the system under study 
and the processes taking place there [4, 5]. 
However, the knowledge of this information in 
physico-chemical concepts requires the application 
in spectra analysis of special procedures [6]. The 
above applies to TFSs, too.  

Recently, several monographs on immittance 
spectroscopy (traditionally called “impedance 
spectroscopy”), including to some extend also the 
transfer function spectroscopy, have been published 
[7–9]. However, the practical problems of applying 
this method and the know-know of the spectra 
analysis are treated there a little cursorily.  

The aim of the present paper is to remind some 
important issues related with the reliability of 
experimental TFSs and procedures of their analysis, 
mainly basing on the personal experience of the 
author of the paper. That will be performed for the 
most part on the example of ISs, as being best 
recognised.  

PROBLEMS RELATED WITH THE LINEARITY 
AND NUMBER OF PORTS OF AN ACTUAL 

SYSTEM 

As X is a quantity characterising a linear system, 
the ratio of the two � functions in Eqs. 3 and 4 
cannot depend on � of the signal. Otherwise, the 
measured IS will be distorted by systematic errors 
[6]. Obviously, for TFS a similar requirement is in 
force.  

In electrodics, typically the 3-electrode 
measurement cell is used. In such a case, the system 
under study consists of the working electrode (WE) 
plus the counter and reference electrodes, and 
electrolytic solution in between; hence, actually it is 
not a one-port system. In order to fulfil the 
respective requirement, the cell must be designed in 
a way allowing for ascribing the measured X only 
to WE itself. Otherwise, the measured IS will be 
distorted by systematic errors [6].  

INITIAL INSPECTION OF INDIVIDUAL 
EXPERIMENTAL IMMITTANCE SPECTRA 

Prior to beginning the first step of analysis of an 
experimental IS, i.e. a trial of modelling of the 
system characterized by this IS, the so-called „wild 
points”, where at individual f’s IS is contaminated 
by exceptionally large noise, should be eliminated. 
These points can be noticed when IS in question is  

 

 
Fig. 1. Example of plots of a set of immittance spectra 

measured for the same system at several values of some 
system variable, in various coordinates: (a) and (b) in Z 
and ωZ complex plane, respectively. Values close to 
solid points indicate the respective frequencies in Hz, 
and lf and hf denote low and high frequency regions, 
respectively [4] 

inspected simultaneously in plots of several 
different coordinates, e.g. Z and ωZ (so-called 
elastance) complex planes (–Im(Xk) vs. Re(Xk)), 
Bode coordinates (log |Z| and φ vs. log f) etc., 
because particular coordinates are characterised by 
differentiated sensitivity or zooming in various 
frequency ranges. For instance, Z and ωZ complex 
planes are especially sensitive in the low (lf) and 
high frequency (hf) regions, respectively (see Fig. 
1). In some coordinates, the wild points will be 
visible as points breaking the smoothness of the 
experimental IS curve [4, 6]. By the way, any plot 
of IS should not be confused with IS itself. For TFS 
an analogous approach is advisable. 

The visual inspection of IS in various plots can 
help also in the elimination of the frequency range 
where the given IS seems to be obviously 
unreliable [4].  
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MODELS AND THEIR FEATURES 

The simplest goal of modelling of an 
experimental IS is its synthetic description in the 
whole range of frequencies where it is supposed to 
be reliable. In other words, the model should 
provide a computed (theoretical) IS as close to the 
modelled experimental one as possible, both 
qualitatively and quantitatively. The model should 
be possibly simple and of minimal number of 
parameters, these being independent of frequency. 
Finally, it should be of a form suitable for 
estimation of kinetics of processes taking place in 
the system under study, in further steps of analysis, 
e.g. a simultaneous analysis of a set of ISs 
measured at several values of a system variable.  

The starting information for formulating a 
hypothetical model of a selected experimental IS 
should be drown out from the inspection of its plots 
in various coordinates. For instance, the plots 
presented in Fig. 1a (probably two overlapped 
semicircles in the 1st quadrant a conventional 
complex plane, i.e. –ImHk vs. ReHk) suggest that in 
the system in question two RC time constants (τ’s) 
are involved, whilst, in turn, these in Fig. 1b 
suggest a larger number of time constants, the hf � 
resulting from a presence of a constant phase 
element (CPE) (at hf’s apparently straight-line 
section of a none-zero slope) [4]. It is noteworthy 
that in ωZ or Y/ω complex planes the curve shapes 
are richer than in the Z or Y planes, as in the former 
cases an apparently straight-line section 
supplements the semicircles or shorter arc sections 
characteristic for RC electrical circuits (please 
notice the hf section in Fig. 1b).  

R1A 

R0A C1A 

(a) 

R1B 

R0B C1B 

(b) 
Fig. 2. One time constant RC electrical equivalent circuits used 

in modelling of an IS characterised in Z conventional complex 
plane by a one semicircle in the first quadrant. 

As models, the so-called electrical equivalent 
circuits are most frequently used. If in the Z 
complex plane a given IS is represented by a simple 
semicircle in the first quadrant, one of the circuits 
presented in Fig. 2, differing by their topology, can 
by alternatively applied, as both of them result in an 
identical IS under condition of proper 
recalculations of their elements [6,10]. If the system 
under study is an electrode||electrolytic solution 

interface, in the case of choice of circuit of Fig. 2a 
its elements R0A, C1A, and R1A will model the ohmic 
resistance (mainly of the solution), the interfacial 
double layer capacitance and the resistance of a 
simple redox reaction (e.g. Fe+2 ↔ Fe+3 + e). 
However, if one will tray to apply this circuit as 
subcircuit modelling only a Faradaic process with 
ad-/desorption (e.g. H2 ↔ 2Had ↔ 2H+ +2e) taking 
place at this interface, the physical meaning of its 
elements will be not so simple [5, 10, 11].  

Hence, if the system under study is considered 
as a “black box” and one know solely its IS, there is 
no criterion for making the choice of the circuit 
topology. Accordingly, the topological ambiguity is 
one of the features of the equivalent circuit models. 
It results from the fact that the X functions of both 
above circuits can be transformed to an identical 
mathematical formula (for further details see 
below).  

Similarly, if in the Z complex plane a given IS is 
represented by two simple semicircles in the first 
quadrant, for instance any of the circuits presented 
in Fig. 3, all of them involving two RC τ‘s, can be 
applied, as all of them result in an identical IS 
under condition of proper recalculations of their 
elements [4, 6, 10]. 

The topological ambiguity results from the fact 
that all equations in Fig. 3 can be transformed to a 
common formula (for Y it would be quite similar) 
[4, 6, 8]: 

01
2

012
2

bsbs
asaasZ

��
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�
   (11) 

where only the definitions of coefficients in 
particular terms depend on the circuit topology. 

However, in spite of the topological ambiguity, 
in the case of two (or n, n ≥ 2) RC τ ‘s circuits 
another ambiguity appears. It is the solution 
ambiguity. Namely, for the circuit of a given 
topology there are n sets of values of its elements 
resulting in an identical IS [4, 10, 11].  

The solution ambiguity results from the fact 
that, in contrast to the transformation of any 
formula of the type presented in Fig. 3 (simple 
reduction to a common denominator) to Eq. 11, the 
opposite transformation needs the solution of a set 
of five equations, one of them being a square one. It 
is similar as the case of solution of a typical square 
equation, x2a + xb + c = 0. The sole exception is for 
the circuit of LADDER structure (Fig. 3A), because 
it corresponds to the case of square equation when 
the two solutions are identical. In turn, in the case  
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(A) - LADDER structure (B) - Voigt structure (C) - two subcircuits in parallel 
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Fig. 3. Two time constant RC electrical equivalent circuits used in modelling of ISs characterised in Z complex 
plane by two semicircles in the first quadrant, and the respective equations for Z in forms closest related with these 

circuits topology (ZR = R, YC = sC) [4, 6, 11] 

of Voigt structure the two solutions differ only by 
the subscripts of the two RjCj couples in parallel. 
However, but the case of circuits of LADDER or 
Voigt structure, the two solutions can result in sets 
of drastically different values for particular circuit 
elements [4].  

Both above types of ambiguities are important 
disadvantages of equivalent circuit models. In the 
literature the topological ambiguity is seldom taken 
into consideration, whilst the solution ambiguity is 
quite neglected, in spite that its existence is crucial 
for the conclusions on the system under study in 
physico-chemical terms [4, 5, 10, 11].  

Free of the above disadvantage is “the 
generalised mathematical model”, formulated by 
extension of Eq. 11 for modelling the systems 
characterised by n τ’s and generalised from Z to X 
[10]: 

�
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   (12) 

where k’s are integers. Obviously, ak and bk 
coefficients depend also on the detailed meaning of 
X (Z or Y) [7].  

When for the system under study also a CPE 
should be taken into account (in contrast to e.g. R 
and C elements, CPE has two parameters), a model 
similar to Eq. 12 can be used. However, in such a 
case both in the numerator and denominator 
additional terms of s at fractional powers (fractal 
values of k) appear, what results in constrains 
between some coefficients; hence, not all of them 
are independent [10].  

In the general case of H’s, i.e. when signals and 
responses are not restricted to electrical quantities, 

and the system is not restricted to one-port, 
relatively simple models, similar to the discussed 
above for X, find no application. Instead, just from 
the beginning of modelling much more detailed 
models, taking into account also the system 
variables, must be used. For instance, one of the 
various possible TFs of transport of hydrogen (H) 
throughout a large thin single-phase elastic metal 
(M) membrane (one-dimensional transport, along 
the z coordinate, 0 < z < L) in response to a small 
amplitude H concentration, c, signal at the z = 0 
surface, δcz=0, close to equilibrium (c0≤z<L ≈ ceq) is 
the ratio of small-amplitude hydrogen flux, δJ, 
responses at the z = L and z = 0 surfaces of the 
specimen. Under assumptions that 1/ this transport 
takes place in a self-stressed (as, typically, H atoms 
expand the original M lattice) M, and 2/ hindrances 
of the surface processes can be neglected, the 
following model has been proposed [1]:  
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where TR
YVA

3
2 2

�
  (14) 

� �eq1 AcD
sq
�

�   (15) 

and V and Y  denote partial molar volume of H 
in M (its not-zero value causes self-stress in M 
lattice) and bulk elastic modulus of the M-H solid 
solution, respectively, R and T gas constant and 
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temperature, and D diffusion constant of H in the 
M-H solid.  

The main criterion of correctness, or rather 
usefulness of the chosen hypothetical model for a 
given TFS is the qualitative and quantitative 
similarity of its theoretical computed spectrum to 
the modelled, i.e. experimental TFS. The 
qualitative similarity is determined by the selected 
model, while the quantitative similarity is improved 
in the procedure of fitting of this model by a 
gradual change of its parameters, i.e. fitting of its 
theoretical spectrum to the modelled experimental 
one [6].  

ADVICES RELATED TO THE FITTING OF A 
SELECTED MODEL TO TFS 

Typically, the fitting of a selected model to a 
given experimental TFS is performed by Complex 
Non-linear Least Squares method (CNLS), by 
minimising in an iterative procedure the weighted 
χ2 function, defined as follows [6]: 

� � � �� �� �
����

l

k kkkkkk HHwHHw
1

2''''''2'''2
thexthex

�  (14) 

where k denotes sequence number of successive 
experimental points (usually from the highest to the 
lowest f) up to l (0 ≤ k ≤ l), H� and H'' are real and 
imaginary components of Hk, respectively, and the 
subscripts th and ex denote the theoretical 
(computed from the model) and experimental 
quantities, while w' and w'' are respective statistical 
weights.  

As all least squares (NLS) methods, CNLS is 
based on the assumption that the experimental TFS 
is contaminated only by random errors, Gaussian in 
character. Hence, the presence of errors of any 
other character in the given modelled TFS reduces 
the reliability of the fitting results.  

At a proper convergence of the iterative 
procedure, χ2 should gradually decrease down to its 
so-called “global minimum” value, where the 
model parameters free (i.e. not fixed at an assumed 
value) in the given fitting computation attain their 
so-called “best-fit” estimates. The smaller the value 
of χ 2, the better is the (statistical) goodness of the 
fit.  

With respect to the choice of weighting system, 
the assumption that w� = w'' = 1 (so-called “unit 
weights”) is worst. If there is no specific premises, 
the so-called “modulus weights” should be advised 
[6, 13]:  

2
'''

ex
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k
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H
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                    (15) 

The number of experimental points in the fitted 
spectrum should be possibly large. On the other 
hand, the model should be not over-flexible, i.e. the 
number of its parameters should be possibly small. 
Both above aspects are taken into account if as the 
measure of fit goodness, instead of �2, the standard 
deviation of the given fit is considered [6]: 

      nfpl �
�

2

fit
��

             (16) 

where nfp denotes the number of model parameters 
being free in the given fitting. Hence, �fit can be 
considered as χ2 normalised on (l – nfp). Another 
advantage of σfit, in comparison with χ2, is that at 
the advised weighting system (Eq. 15) it is 
dimensionless.  

The convergence of the CNLS procedure and 
aptitude for finding the global minimum depends 
on many factors. For instance, the procedure may 
stop at a so-called “local minimum”, characterised 
by a large χ2. In such a case, a change of the staring 
value of some model’s parameter and/or an 
instantaneous change of its character from free to 
fixed can be helpful. Both the convergence of 
procedure and its sensitivity to the starting 
estimates of parameters is very sensitive to the 
applied detailed type of model. For instance, the 
application of the selected equivalent circuit model 
in its Y form to the given IS recalculated from its Z 
to Y form may allow for attaining the global 
minimum, what before those recalculations was not 
possible. However, the generalised mathematical 
models (Eq. 12) seem to be by very far the best 
[12]. Probably, the smaller the degree of 
nonlinearity of the model with respect to its 
parameters, the smaller the sensitivity on the 
aptness of starting estimates and the higher the 
convergence of the fitting procedure are [6, 12]. On 
the other hand, the generalised mathematical 
models are cumbersome to use because the starting 
estimates of their parameters cannot be proposed 
directly from the plots of ISs.  

Additional important criteria of the choice of 
optimal model for the given TFS and its fit 
goodness are the computed relative confidence 
limits of the best-fit parameter estimates (or 
individual standard deviations), and magnitude of 
correlation coefficients of pairs of the best-fit 
estimates. Very broad confidence limits of a 
parameter suggest that it is probably redundant in 
the model. In turn, the magnitude of correlation 
coefficients of two estimates approaching � 1 
indicates that the respective couple is poorly 
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independent. However, one should bear in mind 
that, as in all NLSs, those quantities are computed 
under the assumption that close to the fitting 
minimum the model is linear [4, 6].  

CONCLUSIONS 

Experimental transfer function spectra (TFS) 
can be considered as reliable only if they were 
measured at steady state of the system and under 
experimental conditions assuring its linearity.  

An initial inspection of an experimental TFS in 
plots of various coordinates is necessary, mainly for 
elimination of “wild points”, elimination of the 
frequency range where the TFS in question seems 
to be unreliable, and the preliminary estimation of 
the character and complexity of the system under 
study.  

The character and complexity of the primary 
proposed hypothetical model for a given TFS 
should result from the initial inspection of the latter. 
Its poor fit goodness should result in modification 
of the previously applied model.  

In the case of looking for equivalent electrical 
circuit models for an immittance spectrum (IS) one 
should take into account their possible ambiguities: 
topological and solution.  

Free of ambiguities are the generalised 
mathematical models. Their additional advantages 
are 1/ high convergence ability in the fitting 
procedure, and 2/ exceptionally small sensitivity to 
the selection of staring estimates of the model 
parameters.  
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ИЗБРАНИ ПРОБЛЕМИ НА АНАЛИЗА НА СПЕКТРИТЕ НА ИМПЕДАНСА И 
ПРЕХОДНАТА ФУНКЦИЯ: ОБЗОР  
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(Резюме) 

Експерименталният импедансен спектър (IS), или по-общо, спектърът на преходната функция (TFS) на 
дадена система и особено множество спектри, снети при различни стойности на системните променливи, дават 
обилна информация за системата и протичащите в нея процеси. Изразяването на тази информация в термините 
на физикохимията, обаче, изисква прилагането на специални процедури при анализа на спектрите. 

В тази работа се припомнят избрани въпроси, свързани с надеждността на TFS и на процедурите за техния 
анализ, основани главно на личния опит на автора. Тези въпроси са преди всичко: проблеми, произтичащи от 
факта, че действителните системи не изпълняват напълно изискванията за измерването на TFS (напр. 
линейност), първоначалният визуален анализ на TFS, принципите на моделиране и дискусията на различни 
видове модели (последното за IS), както и ноу-хау за напасването на избрания модел към даден TFS и критерии 
за качеството на това напасване. 
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