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The classification of bunching of straight steps on vicinal crystal surfaces identifies two types according to the 
behavior of the minimal step-step distance in the bunch lmin with increasing the number of steps N in it. In the B1-type 
lmin remains constant while in the B2-type it decreases. Both types are illustrated by new results for well-known mod-
els. The precise numerical analysis is aimed at the intermediate asymptotic regime where self-similar spatiotemporal 
patterns develop. In the model of Tersoff et al. the regular step train is destabilized by step-step attraction of infinite 
range. It is shown that this model belongs to the B1-type and the same time-scaling exponent of 1/5 for N, terrace 
width and bunch width is obtained. An extended set of scaling exponents is obtained from the model of S.Stoyanov 
of diffusion-limited evaporation affected by electromigration of the adatoms. This model is of B2-type and shows a 
systematic shift of the exponents with respect to the predictions of the hypothesis for universality classes in bunching 
thus requiring further modification of it.

Key words: Vicinal crystal surface, Step-step interactions, Step bunching, Modeling and simulation, Scaling and 
universality, classification.

RETROSPECTIVE

The most intensive studies of the bunching 
of straight steps on vicinal crystal surfaces were 
initiated by the discovery of Latyshev et al. [1] – 
equally spaced steps gather in groups in result of 
resistive DC-heating of Si(111)-vicinals (surfaces 
of a monocrystal that are slightly deviated from the 
(111)-plane and the result is sequence of straight 
equidistant monoatomic steps). A theoretical ex-
planation of the phenomenon was suggested by 
Stoyanov [2] who identified as source of the in-
stability the electromigration of Si-adatoms which 
causes bias of the surface diffusion and thus uneven 
contribution of the two terraces adjacent to a step 
to its motion. In these initial years the theoretical 
efforts were focused on understanding and predict-
ing the initial stages of the process – the way the 
instability arises and grows further. More recently 
were addressed [3–5] also the late stages  of the 
process when the instability is well developed and 
enters into the so called intermediate asymptotic re-
gime [6] in which the surface morphology becomes 
self-similar both in space and in time. The adequate 
description of this regime is given in terms of scal-

ing laws which include a combination of model 
parameters, length-scale(s) of the phenomenon and 
time. There are several reasons for the continuing 
interest in bunching studies: (i) the so called step 
flow growth mode is the important one from tech-
nological point of view; (ii) bunched surfaces are 
nowadays used as templates for bottom-up strate-
gies to grow nanostructures [7]; (iii) this is a clear 
and very rich case of surface self-organization after 
the system is driven out of equilibrium [8] and op-
posite tendencies compete – surface destabilization 
due to various kinetic or thermodynamic factors op-
posed by the omnipresent step-step repulsion which 
favors the equidistant step distribution. 

CLASSIFICATION

The classification was introduced recently by 
Staneva et al. [9]. The step bunching phenomena are 
classified according to the behavior of the minimal 
step-step distance in the bunch lmin with increasing 
the number of step N in it as shown in the Table 1. 

There are several reasons that hindered formula-
tion of the classification in the years: (i) the commu-
nities that carry out active research on the two types 
practically do not overlap; (ii) the property of con-
stant lmin was not explicitly recognized in the model 
studies of the B1-type [10, 11]; (iii) the number of 
necessary length-scales to describe the step bunch-
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ing thoroughly was not instituted firmly in the pro-
tocol for the B2-type studies. In what follows I de-
scribe briefly the computational protocol and then 
present the two types with numerical results from 
well-known models stressing on the new findings.

Numerical procedure. – There are two general 
ways to obtain the system of ordinary differential 
equations (ODE’s) for the velocities of steps. The 
usual one, of extended Burton-Cabrerra-Frank type 
(essentially 1D approach), is to deduce these by 
rigorous considerations - solving the proper diffu-
sion equation on a single terrace with diffusion bias 
entering the equation, i.e. the drift of adatoms due 
to electromigration, and/or the asymmetry in kinet-
ics of attachment/detachment entering the bound-
ary conditions (BC) on the steps through unequal 
kinetic coefficients. The step-step repulsion also en-
ters the BC modifying the equilibrium (reference) 
concentrations used to calculate the actual devia-
tion from equilibrium. Step velocity is proportional 
to the diffusive fluxes entering the step from both 
terraces. Another approach is to construct velocity 
equation(s) ad hoc [12]. Once a system of ODE’s 
is defined it is solved numerically by a suitable 

routine, usually fourth order Runge-Kutta but oth-
er modern integration strategies could be adopted 
as well [13]. The non-trivial part of the study is to 
design and implement a procedure to recognize the 
evolving surface pattern and to extract the informa-
tion needed [14, 15]. Usually not less than 1000 steps 
(=equations) are included in the calculation in order 
to ensure smoothness of the quantities that describe 
the evolution of the system. Our computational 
protocol [14, 15] consists of gathering statistics 
based on the step-step distances with two monitor-
ing schemes (MS) running simultaneously with the 
important definition in the background of what is 
bunch distance. We define a step-step distance to 
be a bunch distance always when it is smaller than 
the initial (vicinal) one, usually denoted by l. Other 
choices are also possible[16] but these are not justi-
fied by physical considerations. The first monitor-
ing scheme, MS – I, is designed to follow the tem-
poral evolution of the system. It calculates at every 
time step of the integration the number of bunches 
in the system and then the average number of steps 
in bunch N, the average bunch width Lb, average 
terrace width between bunches TW, etc. plus an 
individual quantity – the global minimal step-step 
distance in the system lmin_g. These quantities are 
written in files versus time. The second monitoring 
scheme, MS - II, cumulates separately information 
for any bunch size – average bunch width Lb, aver-
age minimal step-step distance in the bunch lmin, first 
and last step-step distances l1 and llast, see Figures 1 
and 6 for some definitions, that would appear dur-
ing the whole simulation and at every time step this 
information is updated and written in files versus 
the bunch size. Thus at every time step integral in-
formation is available from MS - II that reflects the 
whole surface evolution up to this moment. The co-
incidence of the results from the two schemes for a 
matching dependence as the bunch width vs. bunch 
size is considered non-trivial and mutual validation 
of the two schemes, see Figure 7. Mostly used are 
the N vs. time dependence from MS – I (plus bunch 
width Lb vs. time when studying B2-type) and lmin
vs. N from MS – II. The combination of the two 
schemes could be used also for structuring the data 
from experiments in order to plot it in the same co-
ordinates as the data from calculations and make a 
direct comparison.
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Table 1.

When increasing the number of steps N in the 
bunch ..

 .. the minimal step-step distance 
in the bunch lmin ..

Number of characteristic length-
scales

B1-type .. remains constant 1
B2-type .. decreases 2

Fig. 1. TE-model, step trajectories as obtained when 
solving numerically the equations for step velocity [10]. 
It is seen that when two bunches coalesce the resulting 
bunch has a width being the sum of the bunch widths 
before the coalescence
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B1-type – Examples for experimental systems 
that show B1-type step bunching are the Si(113) 
surface, high temperature annealing of TaC(910) 
[17], vicinal Ag(111) in electrolyte [18], etc. I will 
illustrate this type with results from the model of 
step bunching due a step-step attraction of infinite 
range, proposed by Tersoff et al.[10], we will call 
this TE-model. The other limiting case of zero-
range step-step attraction called ‘sticky steps’ was 
introduced quite recently [19, 20] and the surface 
slope behavior in this model is still under investiga-
tion. The physical origin of the step-step attraction 
in the TE-model is identified as the strain cumu-
lated during heteroepitaxial growth which remains 
uncompensated at the steps and forms force mo-
nopoles. As a result instability develops mediated 
by mass diffusion which breaks the equidistant step 
distribution, thus being a vicinal analogue to the 
Asaro-Tiller-Grinfeld instability [8]. The equations 
for step velocity are published[10] and here only a 
comment is provided instead – this model and two 
more [12, 21] have a specific property of the equa-
tions, namely, they consist of two mathematically 
identical terms with opposite effect, destabilizing 
and stabilizing, and with different notation of the 
parameters. The second term introduces the effect 
of the omnipresent step-step repulsion and the first 
one – the effect of the emerging step-step attraction. 
In the original model of Tersoff et al. [10] the energy 
of step-step repulsion decays inversely proportional 
to the square of the step-step distance and the energy 
of step-step attraction increases with the logarithm 
of the step-step distance – the bigger is the distance 
between the steps, the larger is the uncompensated 
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strain. The results are obtained with same values of 
the parameters: 1 = 10 (destabilizing), 2 = 1 (sta-
bilizing), the first one contains the magnitude of the 
step-step attraction and the second one – the magni-
tude of step-step repulsion. In Figure 1 are plotted 
the step trajectories and some of the elements of the 
monitoring schemes are marked. Figure 2 contains 
data on the surface profile for well-developed insta-
bility – as seen the slope is constant along the sur-
face while on Figures 3 and 4 it is seen that the slope 
does not change with the increase of the bunch size 
N and in time. Figure 4 demonstrates that only one 

Fig. 2. TE-model, surface profile (inverse of the step-
step distances) for well-developed instability. The width 
of the ‘peaks’ is the bunch width Lb. Interesting dynamic 
phenomenon is observed – when two bunches coalesce 
the slope of each is lower from the side of the other bunch 
(the double arrows from the bottom)

Fig. 3. TE-model, MS-II, the minimal step-step distance 
in the bunch, measured in units of initial vicinal distance 
l, is not function of the number of steps in the bunch N
and thus the model is attributed to the B1-type

Fig. 4. TE-model, MS-I, the number of steps in the bunch 
N, the terrace width TW and the bunch width Lb share 
the same time-scaling exponent of 1/2, hence only one 
length-scale is needed what is typical for the B1-type. 
Data from several runs are used
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time-scaling exponent is found for three different 
quantities – N, terrace width and bunch width and it 
is 1/5, different from 1/4 as found by Tersoff et al. 
[10]. The reasons for this difference are still unclear 
and subject to further studies.

B2-type – Some typical examples for experi-
mental systems that show B2-type of step bunch-
ing, besides the most studied one – that of evaporat-
ing Si(111)-vicinals [1], are the KDP crystal growth 
[22, 23] and SiC epitaxial growth [24] although the 
latter shows quite rich bunching behavior and at-
tribution to the B1-type is also possible after careful 
analysis of the experimental data using our system-
atic approach. I will illustrate this type with results 
on the model of diffusion limited vicinal evapora-
tion already studied by Stoyanov and Tonchev [3] 
(called here EvEm-model) and the reason for this 
revisit is that the original study was restricted by 
the computational power at that time to the method 
of single bunch. Later on specially designed experi-
ments [25] have shown that the process of Si(111) 
vicinal evaporation is actually controlled by the dif-
fusion of the Si-adatoms on the terraces rather than 
by the attachment/detachment kinetics at the steps 
as suggested by a later study [16]. Very recently 
sophisticated experimental setup was developed 
[26] that would permit to study the time depend-
encies describing thoroughly the bunching process. 
As usually, systematic numerical studies play im-
portant role in planning experimental strategy and 
understanding its results. 

The equations for step velocity are rather com-
plex [3] and I will not adduce them here. Also, the 
original values of the parameters are preserved and 
only the parameter that contains the magnitude of 
the step-step repulsion is increased approximately 
thrice in order to permit faster computations. The 
reason is that in the method of single bunch used [3] 
one deals with systems of maximum 60–70 equa-
tions (steps) while in the present computation are 
included 1000 steps. The initial vicinal geometry 
comprises steps randomly deviated from their equi-
distant positions in order to permit development of 
the instability in a way similar to the real one.  As 
for the previous, TE-model, these calculations in-
clude only the value n=2 from the step-step repul-
sion law, i.e. the repulsion energy decays with the 
inverse square of the step-step distance. The bunch-
ing process in the EvEm model is illustrated qualita-
tively by the step trajectories, Figure 5, and surface 
slope, Figure 6, and quantities that are monitored 
are marked.

Next are shown the studies of the size-scaling 
(MS-II), first of the bunch width Lb, Figure 7, and 
then of the minimal, first and last step-step distance, 
Figure 8. Together with the studies of the time-scal-
ing (MS-I) of the relevant quantities, Figure 9, these 

Fig. 5. Step trajectories in the model of diffusion limited 
vicinal evaporation affected by electromigration of the 
adatoms (EvEm-model). Every step moves in the up 
direction mediating the vicinal surface evaporation. It is 
well seen how bunches split in two

Fig. 6. EvEm-model, surface profile for well developed 
instability. With arrows are shown the places where 
appear some of the quantities used by the monitoring 
schemes. The higher slope is in the bunch with more 
steps (the right one), hence B2-type

scaling exponents form a set that could be compared 
with the predictions of the universality classes in 
bunching hypothesis [16, 27]. Here I will only stress 
that the comparison leads to the following conclu-
sion: the set of obtained exponents with n=2, corre-
sponds to the originally predicted for n=0 and thus 
is systematically shifted down in n with 2. There 
is still no explanation for such a shift and thus the 
present results are a challenge for further modifica-
tion of the continuum equation which reflects the 
hypothesis of universality.
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Further comment on the results in this subsec-
tion is needed concerning the time-scaling exponent 
of the globally minimum step-step distance which 
is –1/3 as shown on Figure 9. The same exponent 
could be obtained if plugging in t1/2 instead of N
(time-scaling of N, shown on Figure 6) in the size-
scaling relation of lmin (as found on Figure 8):

Thus one could argue that only the resulting 
scaling is enough to describe the spatiotemporal 
evolution of the vicinal surface but I will show in a 
subsequent study that the scaling above is invariant 
across two different B2-type models while the other 
scaling relations – in particular the size-scaling of 
lmin and the time-scaling of N still distinguish unam-
biguously between the models. 

PERSPECTIVE

The nearest future of our computational studies 
of step bunching phenomena is to find the exact 
time-scaling of the number of steps in the bunch 
N, including the pre-factor, for the three models 
of B1-type available, all these having mathemati-
cally identical stabilizing and destabilizing terms 
in the equations for step velocity. As a prelimi-
nary study shows [21] namely the time-scaling of 
N could distinguish between the models and thus 
serve as a reference frame to plan, carry and un-
derstand experiments. In progress are also stud-
ies of three models of B2-type: diffusion and 
attachment-detachment limited evaporation af-
fected by electromigration of the adatoms and a 
minimal model called MM0 which has the same 
destabilizing part in the equation(s) for step mo-
tion as in the latter but the stabilizing part is re-
stricted to depend only on the widths of the two 
adjacent to the step terraces. Third direction of 
our studies comprises models that would eventu-
ally lead to what we now call B2m-type – simul-
taneous bunching and meandering (the steps are 
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Fig. 7. EvEm-model, bunch width Lb versus number of 
steps N from both monitoring schemes. The slope of the 
guiding-eye line corresponds to size-scaling exponent of 
1/3 (note the log-log character of the plot)

Fig. 8. EvEm-model, MS-II, bunch distances - minimal, 
first and last, versus number of steps N as obtained from 
MS-II. The slopes of the guiding eye lines correspond 
to size-scaling exponents of –2/3, –1/2 and –1/3 corre-
spondingly. Note that also the last bunch distance de-
creases when N increases

Fig. 9. EvEm-model, MS-I, time dependencies of the 
number of steps N, terrace width TW, bunch width Lb,
and the globally minimal step-step distance lmin_g. The 
slopes of guiding-eye lines correspond to time-scaling 
exponents of 1/2, 2/3, 1/6 and –1/3, respectively

2 / 32 / 3 1/ 2 1/ 3
min ~ ~ ~l N t t
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no more straight but wavy or meandered), which 
phenomenon is still anti-paradigmatic in a sense 
that in the paradigm the preconditions for bunch-
ing – normal Ehrlich-Schwoebel effect in (vici-
nal) evaporation or inverse Ehrlich-Schwoebel ef-
fect in (vicinal) growth, and meandering – normal 
Ehrlich-Schwoebel effect in growth or inverse 
Ehrlich-Schwoebel effect in evaporation cannot 
be realized simultaneously (downstep electromi-
gration of the adatoms destabilizes both growing 
and evaporating vicinal surfaces). Nevertheless, 
there is sufficient experimental evidence both on 
metal [28, 29] and semiconductor [30] vicinal 
surfaces for simultaneous bunching and meander-
ing although the instability scenario is somewhat 
different. The bunches of B2m-type are expected 
to have their minimal step-step distance (largest 
slope) in the beginning of the bunches [14] rather 
than in the middle as seen on Figure 6 for the B2-
type. Quite recently similar type of behavior was 
reported [31] in a KMC study of evaporating vici-
nal surface of GaN(0001). 
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