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In this study, the unsteady magnetohydrodynamic (MHD) flow and heat transfer of a dusty electrically conducting 

fluid between two infinite horizontal plates with temperature dependent physical properties are investigated.  The fluid 

is acted upon by an exponentially decaying pressure gradient in the axial direction and an external uniform magnetic 

field perpendicular to the plates.  The governing coupled momentum and energy equations are solved numerically by 

using the method of finite differences.  The effects of the variable physical properties and the applied magnetic field on 

the velocity and temperature fields for both the fluid and dust particles are studied. 
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INTRODUCTION 

The flow and the heat transfer of dusty fluids in 

a channel have been studied by many authors [1-7].  

The study of this type of flow gets its importance 

from its wide range of applications especially in the 

fields of fluidization, combustion, use of dust in gas 

cooling systems, centrifugal separation of matter 

from fluid, petroleum industry, purification of 

crude oil, electrostatic precipitation, polymer 

technology, and fluid droplets sprays.  The flow of 

a dusty conducting fluid through a channel in the 

presence of a transverse magnetic field has a 

variety of applications in MHD generators, pumps, 

accelerators, and flowmeters.  In these devices, the 

solid particles in form of ash or soot are suspended 

in the conducting fluid as a result of the corrosion 

and wear activities and/or the combustion processes 

in MHD generators and plasma MHD accelerators.  

The consequent effect of the presence of solid 

particles on the performance of such devices has 

led to studies of particulate suspensions in 

conducting fluids in the presence of externally 

applied magnetic field [8-13]. 

Most of the above mension studies are based on 

constant physical properties.  More accurate 

prediction for the flow and heat transfer can be 

achieved by taking into account the variation of 

these properties with temperature [14].  Klemp et al. 

[15] studied the effect of temperature dependent 

viscosity on the entrance flow in a channel in the 

hydrodynamic case.  Attia and Kotb [16] studied 

the steady MHD fully developed flow and heat 

transfer between two parallel plates with 

temperature dependent viscosity.  Later Attia [17] 

extended the problem to the transient state. 

In the present work, the transient flow and heat 

transfer of an electrically conducting, viscous, 

incompressible dusty fluid with temperature-

dependent viscosity and thermal conductivity are 

studied.  The fluid is flowing between two 

electrically insulating infinite plates maintained at 

two constant but different temperatures.  The fluid 

is acted upon by an exponentially decaying pressure 

gradient and an external uniform magnetic field 

perpendicular to the plates.  The magnetic Reynolds 

number is assumed very small so that the induced 

magnetic field is neglected.  It is assumed that the 

flow is laminar and the dust particles occupy a 

constant finite volume fraction. This configuration 

is a good approximation of some practical 

situations such as heat exchangers, flow meters, and 

pipes that connect system components. This 

problem is chosen due to its occurrence in many 

industrial engineering applications [18].   

In general, there are two basic approaches for 

modeling two-phase fluid-particle flows.  They are 

based on the Eulerian and the Lagrangian 

descriptions known from fluid mechanics.  The 
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former treats both the fluid and the particle phases 

as interacting continua [19-21], while the latter 

treats only the fluid phase as a continuum with the 

particle phase being governed by the kinetic theory 

[22]. The present work employs the continuum 

approach and employs the dusty-fluid equations 

discussed by Marble [19].  

The flow and temperature distributions of both 

the fluid and dust particles are governed by a 

coupled set of the momentum and energy equations.  

The Joule and viscous dissipations are taken into 

consideration in the energy equation.  The 

governing coupled nonlinear partial differential 

equations are solved numerically by using finite 

differences.  The effects of the external uniform 

magnetic field and of the variable viscosity and 

thermal conductivity on the time development of 

the velocity and temperature distributions for both 

the fluid and dust particles are discussed. 

 

DESCRIPTION OF THE PROBLEM 

In this paper, the dusty fluid is assumed to be 

flowing between two infinite horizontal electrically 

non-conducting stationary plates located at the 

y=±h planes and kept at two constant temperatures 

T1 for the lower plate and T2 for the upper plate 

with T2>T1 so natural convection is eliminated.  The 

dust particles are assumed to be spherical in shape 

and uniformly distributed throughout the fluid.  The 

motion of the fluid is produced by an exponential 

decaying pressure gradient 
tGedxdP /  in the 

x-direction, where G and   are constants. This is 

an example of a time-dependent pressure gradient. 

Other forms of time-dependent pressure gradients 

may be considered in future work. A uniform 

magnetic field Bo is applied in the positive y-

direction.  Geometry of the problem is illustrated in 

Figure 1. 

 

Uniform suction 
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            y     B0          Main flow 
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Uniform injection 

Fig. .1 The geometry of the problem 

 

The fluid motion starts from rest at t=0, and the 

no-slip condition at the plates implies that the fluid 

and dust particles velocities vanish at y=±h. The 

initial temperatures of the fluid and of dust particles 

are assumed equal to T1.  The viscosity and the 

thermal conductivity of the fluid are taken to be 

temperature dependent.  The viscosity is taken to 

vary exponentially with temperature whereas a 

linear dependence on temperature of the thermal 

conductivity is assumed.  Since the plates are 

infinite in the x and z-directions, the physical 

variables are invariant in these directions and the 

problem is essentially one-dimensional with 

velocities u(y,t) and up(y,t) along the x-axis for fluid 

and particle phase respectively. 

To formulate the governing equations for this 

investigation, the balance laws of mass and linear 

momentum are considered along with information 

about interfacial and external body forces and stress 

tensors for both phases.  The balance laws of mass 

(for the fluid and particulate phases, respectively) 

may be written as  

,0))1.((  Vt


           (1a) 

,0).(  pt V


        (1b) 

where t is time,   is the particulate volume 

fraction, V


 is the fluid-phase velocity vector, and 

pV


 is the particulate-phase velocity vector.  The 
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fluid is assumed incompressible and the densities 

for both phases are assumed constant.   

 The balance laws of linear momentum (for 

the fluid and particulate phases, respectively) may 

be written as  

 

,.).)(1( bfVVVt


     (2a) 

pppptp bfVVV


 ).(       (2b) 

where   is the fluid-phase density, 


 is the 

fluid-phase stress tensor, f


is the interphase force 

per unit volume associated with the relative motion 

between the fluid and particle phases, b


is the 

fluid-phase body force per unit volume, and pb


 is 

the particle-phase body force per unit volume. 

Along with Eqs. (1) and (2), the following 

constitutive equations are used 

)),)(()(1( TVVIP


    (3a) 

),( pp VVNf


                                   (3b) 

,)( oo BBVb


              (3c) 

,0


pb                        (3d) 

where P is the fluid pressure, I


 is the unit 

tensor,   is the fluid dynamic viscosity, p  is the 

particle-phase dynamic viscosity, N is the 

momentum transfer coefficient [24], which for 

spherical dust particles =  
m

r6
, r is the average 

radius of dust particles, m is the average mass of 

dust particles, 
m

r
p

3

4 3
   is the material density 

of dust particles,   is the electric conductivity of 

the fluid and a transposed T denotes the transpose 

of a second-rank tensor.  In the present work it is 

assumed that the suspension is dilute and thus no 

particle-particle interaction exists [19]. In Eq. (3c) 

it is assumed that the magnetic Reynolds number 

Rem = σµLoUo, which is the ratio of the induced 

magnetic field to the applied external magnetic 

field, is very small and hence the induced magnetic 

field is neglected [23] and Bo is the only magnetic 

field in the problem. The quantities µLoUo are 

respectively the magnetic permeability of the fluid, 

the characteristic length, which in this case = h, and 

the characteristic velocity of the fluid.   It should be 

pointed out that in the present work the 

hydrodynamic interactions between the phases are 

limited to the drag force.  This assumption is 

feasible when the particle Reynolds number is 

assumed to be small.  Other interactions such as the 

virtual mass force [25], the shear force associated 

with the turbulent motion of dust particles [26], and 

the spin-lift force [27] are assumed to be negligible 

compared to the drag force [28]. To recapitulate, it 

is assumed that the flow is laminar, the fluid is 

incompressible, dust particles occupy a constant 

finite volume fraction, induced magnetic field is 

negligible, the virtual mass force, shear force, and 

spin lift force on dust particles are negligible. 

Substituting Eqs. (3) into Eqs. (1) and (2) yields, 

after some arrangements  

),(2

po

t uuNuB
y

u

y
Ge

t

u





















   
 

(4) 

),( p

p
uuN

t

u





                         (5) 

where )1/(   p .  The first three terms 

in the right-hand side of Eq. (4) are respectively the 

pressure gradient, viscous forces, and Lorentz force 

terms.  The last term represents the force due to the 

relative motion between fluid and dust particles.  

The initial and boundary conditions on the velocity 

fields are respectively given by 

.0:0  puut                                  (6a) 

For t>0, the no-slip condition at the plates 

implies that 

,0:  puuhy                  (6b) 

.0,0:  puuhy                  (6c) 

Heat transfer takes place from the upper hot 

plate to the lower cold plate by conduction through 

the fluid, and there is heat generation due to both 

the Joule and viscous dissipations.  Dust particles 

gain heat from the fluid by conduction through their 

surface. To describe the temperature distributions 

for both the fluid and dust particles, two energy 

equations are required, which are [29, 30] 

),(22

2

TT
C

uB
y

u

y

T
k

yt

T
c p

T

sp

o 





































                                   (7) 
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),(
1

TT
t

T
p

T

p







                           (8) 

where T is the temperature of the fluid, Tp is 

the temperature of the particles, c is the specific 

heat capacity of the fluid at constant volume, Cs is 

the specific heat capacity of the particles, k is the 

thermal conductivity of the fluid, γT is the 

temperature relaxation time = cCsp 2/Pr3  , γp 

is the velocity relaxation time = 2ρpr2/9μ, Pr is the 

Prandtl number=μoc/ko, μo and ko are, respectively, 

the viscosity and thermal conductivity of the fluid 

at T1.  The last three terms in the right-hand side 

of Eq. (7) represent, respectively, the viscous 

dissipation, the Joule dissipation, and the heat 

conduction between the fluid and dust particles.  

The initial and boundary conditions of the 

temperature fields are  

,:0 1TTTt p                                     (9a) 

,1:,0 TTThyt p                       (9b) 

.:,0 2TTThyt p                        (9c) 

The viscosity of the fluid is assumed to depend 

on temperature and is defined as, μ=μof1(T).  For 

practical reasons relevant to most fluids [15, 30, 

31], the viscosity is assumed to vary exponentially 

with temperature.  The function  f1(T) takes the 

form [13,14], 
)(

1
1)(

TTa
eTf


 . The parameter a 

is positive values for liquids such as water, 

benzene or crude oil.  In some gases like air, 

helium or methane a is negative, that is the 

viscosity increases with temperature [9, 24, 30]. 

The thermal conductivity of the fluid is 

assumed to vary with temperature as k=kof2(T).  

We assume linear dependence of the thermal 

conductivity on temperature, that is, f2(T)=1+b(T-

T1), where the parameter b may be positive for 

some fluids such as air or water vapor or negative 

for others fluids such as liquid water or benzene 

[30, 31]. 

The problem is given more generality if the 

equations are written in the non-dimensional form.    

To do this, define the following non-dimensional 

quantities, 

,,)ˆ,ˆ(

,ˆ

),,()ˆ,ˆ(

2

















o

p

o

p

o

huhu
uu

h

t
t

h

y

h

x
yx












 

,ˆ,ˆ

12

1

12

1

TT

TT
T

TT

TT
T

p
p









  

,ˆ
2

3

o

Gh
G




  

)(ˆ
12 TTaa                    is the viscosity 

parameter, 

)(ˆ
12 TTbb                    is the thermal 

conductivity parameter, 

TaeTf
ˆˆ

1 )ˆ(ˆ  ,   

TbTf ˆˆ1)ˆ(ˆ
2  ,   

oo hBHa  /222  , Ha is the Hartmann number, 

oNhR  /2  is the particle concentration 

parameter, 
2

1 / hNG o   is the particle mass parameter, 

oo kc /Pr   is the Prandtl number, 

)(/ 12

222 TTchEc po    is the Eckert 

number. 

Too hL  /2  is the temperature relaxation 

time parameter. 

In terms of the above non-dimensional 

variables and parameters Eqs. (4)-(9) take the 

form (hats are dropped for convenience) 

)(
)(

)( 21

2

2

1 p

t uuRuHa
y

u

y

Tf

y

u
TfGe

t

u


















 

         (10) 

)(
1

1

p

p
uu

Gt

u






                              (11) 

.0:0  puut                               (12a) 

,0:10,t  puuy                 (12b) 

,0,1:10,t  puuy                  (12c) 
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
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

     ),(
Pr3

2
TT

R
p                         (13) 

),( TTL
t

T
po

p






                         (14) 

,0:0  pTTt                            (15a) 

,0:1,0  pTTyt              (15b) 

,1:1,0  pTTyt                  (15c) 

Equations (10), (11), (13), and (14) represent a 

system of coupled, nonlinear partial differential 

equations which may be solved numerically under 

the initial and boundary conditions (12) and (15) 

using the finite difference approximations.  The 

Crank-Nicolson implicit method is used [32].  

Finite difference equations relating the variables 

are obtained by writing the equations at the mid 

point of the computational cell and then replacing 

the different terms by their second order central 

difference approximations in the y-direction.  The 

diffusion term is replaced with the average of the 

central differences at two successive time levels.  

The nonlinear terms are first linearized and then 

an iterative scheme is used at every time step to 

solve the linearized system of difference equations.  

The solution at a certain time step is chosen as an 

initial guess for next time step and the iterations 

are continued till convergence, within a prescribed 

accuracy.  Finally, the resulting block tri-diagonal 

system is solved using the generalized Thomas-

algorithm [32].  We define the variables 

yuA  /  and yH  /  to reduce the 

second order differential Eqs. (10) and (13) to first 

order differential equations, and an iterative 

scheme is used at every time step to solve the 

linearized system of difference equations. In the 

numerical solution some parameters are not varied 

and given the following fixed values: R=0.5, 

1G =0.8, G=5, α=1, Pr=1, Ec=0.2, and Lo=0.7.  

Step sizes Δt=0.001 and Δy=0.01 for time and 

space, respectively are chosen.  Smaller step sizes 

do not show any significant change in the results.  

The iterative scheme continues until the fractional 

difference between two successive iterations 

becomes less than a specified small value. 

Convergence of the scheme is assumed when all 

of the unknowns u, A, T and H for the last two 

approximations differ from unity by less than 10-6 

for all values of y in –1<y<1 at every time step. 

The required accuracy is usually reached after 

about 7 iterations. It should be mentioned that the 

results obtained herein reduce to those reported by 

Singh [8] and Aboul-Hassan et al. [12] for the 

case of  fluid with constant properties.  These 

comparisons lend confidence in the accuracy and 

correctness of the solutions presented. 

A linearization technique is first applied to 

replace the nonlinear terms at a linear stage, with 

the corrections incorporated in subsequent 

iterative steps until convergence is reached. Then 

the Crank-Nicolson implicit method is used at two 

successive time levels [26].  An iterative scheme 

is used to solve the linearized system of difference 

equations.  The solution at a certain time step is 

chosen as an initial guess for next time step and 

the iterations are continued till convergence, 

within a prescribed accuracy.  Finally, the 

resulting block tri-diagonal system is solved using 

the generalized Thomas-algorithm [26].  Finite 

difference equations relating the variables are 

obtained by writing the equations at the mid point 

of the computational cell and then replacing the 

different terms by their second order central 

difference approximations in the y-direction.  The 

diffusion terms are replaced by the average of the 

central differences at two successive time-levels. 

The computational domain is divided into meshes 

each of dimension t and y in time and space, 

respectively.  We define the variables 

  / yuA  ,   / ywB  and   / yH   to 

reduce the second order differential Eqs. (9), (10) 

and (12) to first order differential equations, and 

an iterative scheme is used at every time step to 

solve the linearized system of difference equations.  

All calculations are carried out for the non-

dimensional variables and parameters given by, 

G=5, Pr=1, and Ec=0.2 where G is related to the 

externally applied pressure gradient and where the 

chosen given values for Pr and Ec are suitable for 

steam or water vapor.  Grid-independence studies 

show that the computational domain 0<t< and –

1<y<1 is divided into intervals with step sizes 

t=0.0001 and y=0.005 for time and space 

respectively.  Smaller step sizes do not show any 

significant change in the results.  Convergence of 

the scheme is assumed when all of the unknowns 

u, w, A, B,  and H for the last two 

approximations differ from unity by less than 10-6 

for all values of y in –1<y<1 at every time step.  

Less than 7 approximations are required to satisfy 

this convergence criteria for all ranges of the 

parameters studied here.  
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RESULTS AND DISCUSSIONS 

Figures 2a, 2b, 3a, and 3b show the effect of 

the viscosity parameter a on the time development 

of the velocities u and up, and the temperatures T 

and Tp, respectively, at the center of the channel 

(y=0) for Ha = 0 and b = 0. Figures 1a and 1b 

indicate that increasing a increases u and up and 

increases the time required to approach the steady 

state. This is a result of decreasing the viscous 

forces.  The effect of the parameter a on the 

steady state time is more pronounced for positive 

values of a than for 

0
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u
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a=-0.5 a=0 a=0.5

 
(b) 

Fig. 2. Effect of the viscosity parameter a on the time 

variation of: (a) the fluid velocity u at the center of the 

channel (y=0);  (b) the particle phase velocity up at the 

center of the channel (y=0). (Ha=0) 

Figures 4a, 4b, 5a, and 5b present the effect of the 

viscosity parameter a on the time development of 

u, up, T and Tp, respectively, at the centre of the 

channel (y=0) for Ha=1 and b=0. The introduction 

of the uniform magnetic field adds one resistive 

term to the momentum equation and the Joule 

dissipation term to the energy equation. As shown 

in Figures 4a, and 4b the magnetic field results in 

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4

t

T

a=-0.5 a=0 a=0.5

 
(a) 

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4

t
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(b) 

Fig. 3. Effect of the viscosity parameter a on the time 

variation of:(a) the fluid temperature T at the center of 

the channel (y=0); (b) the particle phase temperature Tp 

at the center of the channel (y=0). (Ha=0). 

a reduction in the velocities u and up and their 

steady state times for all values of a due to its 

damping effect.  Figures 5a, and 5b confirm that 

the parameter a has a negligible effect on 

temperature and the viscous dissipation is 

negligible. Comparing with Figures 3 and 5, it is 

observed that the temperature are slightly higher 

in the presence of the magnetic field (Ha = 1). 

This means that the Joule dissipation is small but 

now negligible. negative values.  Notice that u 

reaches the steady state faster than up which is 

expected because the fluid velocity is the source 

for the dust particles velocity.  Figures 3a and 3b 

show that the viscosity parameter a has a 

negligible effect on temperature. This means that 

the viscous dissipation is negligible. Of course 

there is no Joule dissipation when Ha = 0.  The 

time at which Tp reaches the steady state is longer 

than that for T since Tp always follows T. 
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(b) 

Fig. 4. Effect of the viscosity parameter a on the time 

variation of: (a) the fluid velocity u at the center of the 

channel (y=0);  (b) the particle phase velocity up at the 

center of the channel (y=0). (Ha=1). 
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(b) 

Fig. 5. Effect of the viscosity parameter a on the time 

variation of: (a) the fluid temperature T at the center of 

the channel (y=0);  (b) the particle phase temperature 

Tp at the center of the channel (y=0). (Ha=1) 
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Fig. 6. Effect of the thermal conductivity parameter b 

on the time variation of: (a) the fluid temperature T at 

the center of the channel (y=0);  (b) the particle phase 

temperature Tp at the center of the channel (y=0). 

(Ha=0) 

 

Figures 6a, and 6b show the effect of the 

thermal conductivity parameter b on the time 

development of the temperatures T and Tp, 

respectively, at the center of the channel (y=0) for 

Ha=0 and a=0.  The figures show that increasing 

b increases T and Tp as a result of increasing the 

thermal conductivity. In Figure 6a it is interesting 

that the steady state value of the fluid temperature 

at the center of the channel exceeds 0.5 for 

positive values of b although the Joule and 

viscous dissipations are absent. The reason is that 

the thermal conductivity in the upper half of the 

channel is more that in the lower half if b is 

positive.  

Figures 7a, and 7b present the effect of the 

thermal conductivity parameter b on the time 

development of the temperatures T and Tp, 

respectively, at the center of the channel (y=0) for 

Ha=1 and a=0.  The introduction of the magnetic 

field increases both T and Tp for all values of b 

due to the increase in the dissipation.  
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Fig. 7. Effect of the thermal conductivity parameter b 

on the time variation of: (a) the fluid temperature T at 

the center of the channel (y=0);  (b) the particle phase 

temperature Tp at the center of the channel (y=0). 

(Ha=1) 

 

Figures 8a, 8b, 9a, and 9b present the effect of 

the viscosity parameter a on the profiles of the 

velocities u and up, and the temperatures T and Tp 

for Ha=1 and b=0 at t=6.  

Increasing a increases the velocity and 

displaces the peak of the velocity profile towards 

the upper plate where the viscosity is less. This 

effect is akin to the displacement of the peak of 

the velocity distribution where there is suction at 

one plate and injection at the other plate. Positive 

values of a correspond to a suction velocity from 

the cold plate to the hot plate, while negative 

values of a correspond to a suction velocity from 

the hot plate to the cold plate.  Figures 9a, and 9b 

show that increasing a increases the temperatures 

T and Tp  for all values of y.  It is clear from 

Figures 8, and 9 that the effect of the parameter a 

on the velocities is more pronounced than on the 

temperatures. 

Figures 10a, and 10b present the effect of the 

thermal conductivity parameter b on the 

temperature profiles at t=0, for Ha=1 and a=0.  

The figures indicate that increasing b increases T 

and Tp for all values of y.  This because increasing 

b means that the thermal conductivity near the hot 

plate gets more than near the cold plat. 
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Fig. 8. Effect of the viscosity parameter a on the 

profile of: (a) the fluid velocity u at t = 6;  (b) the 

particle phase velocity up at t = 6. (Ha=1) 
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Fig. 9. Effect of the viscosity parameter a on the 

profile of: (a) the fluid temperature T at t = 6; (b) the 

particle phase temperature Tp at t = 6 . (Ha=1) 
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Fig. 10. Effect of the thermal conductivity parameter b 

on the profile of: (a) the fluid temperature T at t = 6; 

(b) the particle phase temperature Tp at t = 6 . (Ha=1). 

 

Table 1. Variation of u at y=0 for various values of  a 

and b at t=6 (Ha=1) 

u a=-0.5 a=-0.1 a=0.0 a=0.1 a=0.5 

b=-0.5 0.0882 0.0862 0.0857 0.0854 0.0842 

b=-0.1 0.1096 0.1091 0.1089 0.1089 0.1086 

b=0.0 0.1154 0.1154 0.1154 0.1154 0.1154 

b=0.1 0.1214 0.1219 0.1220 0.1221 0.1225 

b=0.5 0.1473 0.1502 0.1508 0.1513 0.1532 

Table 2. Variation of up at y=0 for various values of  a 

and b at t=6 (Ha=1) 

 

up a=-0.5 a=-0.1 a=0.0 a=0.1 a=0.5 

b=-0.5 0.1716 0.1683 0.1676 0.1669 0.1651 

b=-0.1 0.2029 0.2022 0.2020 0.2019 0.2014 

b=0.0 0.2112 0.2112 0.2112 0.2112 0.2112 

b=0.1 0.2197 0.2204 0.2206 0.2207 0.2212 

b=0.5 0.2549 0.2588 0.2597 0.2604 0.2629 

 

Table 3. Variation of T at y=0 for various values of  a 

and b at t=6 (Ha=1) 

T a=-0.5 a=-0.1 a=0.0 a=0.1 a=0.5 

b=-0.5 0.3782 0.4440 0.4587 0.4723 0.5149 

b=-0.1 0.3799 0.4455 0.4601 0.4736 0.5159 

b=0.0 0.3803 0.4459 0.4605 0.4739 0.5163 

b=0.1 0.3807 0.4463 0.4609 0.4743 0.5166 

b=0.5 0.3829 0.4482 0.4627 0.4761 0.5181 

 

Table 4. Variation of Tp at y=0 for various values of a 

and b at t=6 (Ha=1). 

Tp a=-0.5 a=-0.1 a=0.0 a=0.1 a=0.5 

b=-0.5 0.3271 0.3962 0.3998 0.4125 0.4536 

b=-0.1 0.3296 0.3886 0.4021 0.4148 0.4557 

b=0.0 0.3303 0.3892 0.4028 0.4154 0.4563 

b=0.1 0.3309 0.3899 0.4034 0.4160 0.4568 

b=0.5 0.3340 0.3929 0.4063 0.4188 0.4593 

Tables 1-4 present the variation of u, up, T, and 

Tp, respectively, at the center of the channel (y=0) 

at t=6 for various values of a and b and for Ha=1.  

It is clear that increasing a increases the 

temperatures for both the fluid and dust particle 

for all values of b.  However, its effect on the 

velocities depends on the value of b.  For negative 

b, increasing a decreases u and up but for positive 

b, increasing a increases them.  Increasing the 

parameter b increases the velocities u and up and 

the temperatures T and Tp for all values of a.  

CONCLUSIONS 

In this paper the transient MHD flow and heat 

transfer of a dusty and electrically conducting 

fluid are studied in the presence of an external 

uniform magnetic field taking into consideration 

the variations of the viscosity and thermal 

conductivity of the fluid with temperature.  The 

variation of the viscosity of the fluid with 

temperature has an apparent effect on the velocity 

of both the fluid and dust particles.  The peak of 

the velocity distribution displaces from the center 

of the channel towards reasons of less viscosity. 

Changing the viscosity has a negligible effect on 

temperatures and it is inferred that the viscous 

dissipation is negligible. Variation of the thermal 

conductivity of the fluid with temperature has a 

pronounced effect on temperature distributions. 

Temperatures shift towards the temperature of the 

plate near which the thermal conductivity is 

higher. Increasing the magnetic field decreases the 

velocity for both phases at all positions and times. 

It also produces a small increase in temperature 

and it is inferred that the Joule dissipation is small 

but not negligible.  
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(Резюме) 

В тази работа е изследвано нестационарното магнитохидродинамично течение (MHD) и топлообмена в 

запрашен електропроводящ флуид между две безкрайни успоредни плоскости при температурно зависими 

физични свойства.  Флуидът се намира под действието експоненциално затихващ градиент на налягането по 

оста на течението и при хомогенно външно магнитно поле перпендикулярно на плоскостите. Спрегнатите 

уравнения на движението и на топлопроводността са решени числено по метода на крайните разлики. 

Изследван е и ефекта на променливите физични параметри и на приложеното магнитно поле върху скоростта на 

течението и температурното поле за флуида и за праховите частици. 
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