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The quantum calculation of the free energy of polyatomic dipole-active polarizable particles revealed two 

mechanisms of free energy change during interaction with a polar medium (solvation and fluctuation mechanisms). 

For charged particles the main contribution to complete free energy change is given by the solvation mechanism. 

Correspondingly, for simple charged particles in homogeneous isotropic polar medium without spatial dispersion this 

brings to Born free energy of solvation. For uncharged particles with equilibrium dipole moment, solvation mechanism 

also contributes to the change in system’s free energy, and this contribution for spherical particles is in direct proportion 

to the quadratic dipole moment of the particle and in inverse proportion to its volume. In the frame of the solvation 

mechanism, effects of nonisotopity and nonlocality of medium (like zeolites), effects of spatial dispersion may be taken 

into account.   

The fluctuation mechanism of free energy change of the system has usually a minor contribution to the complete 

change of system’s free energy, but it should be considered for systems where contribution of solvation mechanism is 

not great and also for systems, where vibration frequencies of the impurity particle change greatly upon placing it in a 

polar medium.  

The obtained results will promote the investigations of adsorption processes on the zeolite surface, the study of 

kinetics of charge transfer and particle transfer process in channels of composite materials.  

Key words: thermodynamic analysis, polar medium, free energies, spatial dispersion, frequency dispersion, zeolites.  

INTRODUCTION 

Natural and synthetic zeolites have wide 

application in gas separation installations, gas 

generators, purification plants, for creation of 

ionisators, super-condensers, and accumulators. 

Their wide application is connected with the 

specific structure of zeolites, the form of their 

nanopores providing unique sorption 

properties. The surface of zeolites is very 

active, so they are fine catalysts for many 

processes. Size, form and properties of the 

surface of nano-sized materials may be adapted 

and optimized for a particular application. 

Placing different ions in the pores of natural 

and synthetic zeolites we obtain modified 

materials, which have unique properties. For 

determination of the realization possibility of 

processes with participation of zeolites, first of 

all, thermodynamic analysis of the 

corresponding system has to be conducted.  

 

1. FREE ENERGIES OF POLYATOMIC 

POLARIZABLE DIPOLE-ACTIVE PARTICLES 

IN POLAR MEDIUM 

      Complete change of system’s free 

energy includes the following components: 

 a) Work connected with cavity formation in 

the medium, where the impurity particle is 

placed;   

 b) Free energy connected with the 

translational and rotational motion of the 

impurity as a whole;   

 c)  Electrostatic part connected with the 

interaction of the impurity particle with the 

medium (zeolite and liquid in canals).   

Below we shall calculate the latter 

component, which in the majority of cases, 

makes the greatest contribution to the free 

energy change.  

2. HAMILTONIAN OF THE SYSTEM 

Existence of electrostatic interaction between 

impurity and medium causes polarization of the 

medium. In turn, polarized medium influences 

the impurity particle and polarizes it. The 

Hamiltonian of the system may be represented * To whom all correspondence should be sent: 
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as:   
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                                                                       (1) 

where s

mH - is Hamiltonian of the system; pH - 

is Hamiltonian of the particle; 
0

)r(P - is the 

average value of medium polarization induced 

by the electric field of the particle, with field 

intensity E(r,Q0) [1], (Q0 – is the set of 

intramolecular coordinates of the impurity). 

Going from the Hamiltonian of the 

nonpolarized medium s

mH  to the Hamiltonian 

of the polarized medium Hm, in dielectric 

approximation we have:  
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                                                                       (2)          

According to the fluctuation - dissipative 

theorem:  

   ),t,r(E)tt;r,r(Gtdrd)t,r(P kk

R

PP0i i



 

                 
                                                      (3) 

where R

PPG  is the retarded Green function of 

operators of medium polarization [1]. 

For the intensity of the electric field of 

impurity particles in dipole approximation the 

expression may be used:  

 
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                            (4) 

Here
EEG and 

EG are Green functions of the 

operators of electric field intensity and the 

scalar potential of the condensed medium; they 

may be expressed by the Green functions G , 

which may be simply defined from the solution 

of the electrostatic task (see [1, 2]). i  is the 

dipole moment of i-th bond of the particle, 
iR  

is the radius-vector of the i-th dipole of the 

particle,  , R is the charge of the particle and 

the radius-vector of the charge localization 

point.   

For a polarizable particle the value of μi 

differs from the corresponding vacuum 

value i

0 , it could be determined through:  

 

                               

 


 
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where i

  is the polarizability tensor of the i-

th bond of the particle. It is obvious that if all 

components of the polarizability tensor and the 

vacuum values of the dipole moment of the 

bond are known, then all 3N values of   may 

be found from system (5). As Green functions, 

the corresponding solutions of electrostatic 

tasks of model functions may be used, which 

allows taking into account the effects of spatial 

dispersion of the medium. Further, substituting 

the found values i

  into correlation (4) we 

define the electric field intensity of the system 

ε(r, Ri,) and from (3) we find the polarization 

of medium 
0

)r(P


. 

       Substituting (3) into (2) we rewrite the 

Hamiltonian of the system in the following 

form:  
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                              (6) 

In this formula we expand the electric field 

intensity into a series by Q0 up to linear terms, 

  ).Q,r(E)r(PrdHHH mp0


  (7)  

Here Hp is the Hamiltonian of the polarized 

solvated particle,  
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In (7) 0  is the free energy of the solvated 

particle, which has the following form:   

)Q,r(E)tt,r,r(G)Q,r(Erdrdtdtd
2
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00


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 (10) 

By transformation of coordinates (shift and 

turn) Hp may be reduced to quadratic form with 

frequencies ωs and coordinates Qs. 
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where Qs0 is the equilibrium value of 

coordinate Qs, J – the minimal energy of the 

particle. 

It is obvious that the influence of a solvated 

polarized particle on the medium leads to 

additional polarization of the medium. 

Therefore, it is necessary to use the 

characteristics of the polar particle in (7) - (11) 

and introduce E(Q0) instead of E(Q). 

In formula (7) we expand into series the 

electric field intensity E by Q – Q0 up to a 

linear term. Consequently:  
)2(

int

)1(

intpm0 HHHHH  ,  (12) 

where 

 rd)Q,r(EPH 0

)1(

int


  ,           (13) 

is the interaction of the medium polarization 

fluctuations with the static field of the 

impurity, and  
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


 ,                    (14) 

is the interaction of the medium polarization 

fluctuations with intramolecular vibrations of 

the impurity. 

The electrostatic part of the free energy 

change connected with introduction of 

polyatomic dipole-active impurities in the polar 

medium may be written in the following form 

[3]:  

321o  ,      (15) 

where 
1  and 

2  are the changes of the 

system free energy connected with )1(

intH  and 
)2(

intH  interactions, correspondingly, 3   is the 

change of the vibrational free energy of the 

impurity particle.   

3. CALCULATION OF THE FREE ENERGIES 

OF SOLUTION ΔΩ0 AND ΔΩ1 

The change of free energy 
1  may be 

expressed through the matrix   
)1(

1 SlnkT .                  (16) 

Here, averaging is carried out over the states 

of polar medium and S(1) matrix has the form:    




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


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



0

0

)1( )r(E),r(PrddexpTS
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 (17) 

After S(1) matrix expansion into series and 

calculation of quantum-statistical averages of 

δP operators, we obtain  [4]: 

  
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PP00000
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2

1 
     (18) 

Where kT/1 , k is the Boltzmann 

constant, T- temperature, 
 PPG - temperature 

Green functions of medium polarization 

fluctuation operators [1], 

),r(P),r(PT);r,r(G PP   


(19) 

 

 

Substituting P  in the formula (18) to the 

value from formula (3) and integrating over τ, 

τ', t, t' , we obtain: 

  

  )r(E)0;r,r(G)0;r,r(G)Q,r(Erdrd
2

1
0PP

R

PP001
0


 


               (20)

Green functions 
0

PPG  and PPG   are phonon 

Green functions of the medium, when ω = 0 

they are equal, so 

01                            (21) 

By integrating  formula (10) over τ and τ' we 

obtain the following expression 0 : 

   
)r(E)0;r,r(G)r(Erdrd

2

1 0R

PP

0

0


. (22) 

 For a homogeneous local isotropic medium, 

for which  
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)rr()
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the free energy of the solution 0  takes the 

form: 


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
 20

0 ))r(E(rd)
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8

C 
          (24) 

Here ε is the static value of dielectric 

permeability. For spherically symmetric 

particles with z charge  the formula (24) brings 

about the Born solvation energy: 

             Q = e2/2rε                            (25)     

    If the particle is not charged but has an 

equilibrium dipole moment, then for 

spherically symmetric particles we obtain:  

3

0

2

0
r3

)
1

1(



 ,                  (26) 

where r0 – radius of particle.  

4. EFFECTS OF MEDIUM SPATIAL 

DISPERSION. 

Taking into account the spatial dispersion of 

the medium let us rewrite (22) in the following 

form: 

rdrd)r()r,r(G)r(
2

1
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  
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  (27) 

where G  is the Green function (GF) of the 

medium scalar potential operators, ρ is the charge 

density of the impurity which creates an electric 

field with intensity Eo. 

Effects of spatial dispersion of the medium may 

be considered, when calculating the free energy 

change of the system, if some model functions are 

used as Green functions of operators of polarization 

fluctuation or charge density or a medium scalar 

potential. For determination of GF )r,r(G



  the 

results of solving electrostatic tasks
 
may be used: 

accurate within electron charge GF 

)r,r(G



 coincides with the magnitude of the 

electrostatic potential in point r


of the system, if in 

point r

  a unit charge is placed. Considering the 

above mentioned, it should be expected that 

allowance behavior of GF )r,r(G



  will be of 

type:  
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1
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 ,             (28) 

In this case, the behavior of GF G  and G  

will be of type: 
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The Fourier component of )r(f


 function may 

be connected with the longitudinal component of 

the dielectric permeability εl( k). After standard 

conversions we get: 
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Hereby, for Fourier components we have the 

following correlation:   
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In case of a local homogeneous medium, from 

the previous formula we get:   
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In the r


 space the latter formula has the form:  
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If the impurity particle is spherically symmetric, 

has z charge and radius r0, then for the change of 

free energy 
1  we get: 
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For consideration of space dispersion effects, 

instead of -function in formula (34) the function 

may be used:   

 rr
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In the capacity of  rr 


 function the 

exponentially damped function normalized on unity 

must be selected:  
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 (37)                   

      If for charge density of impurity particle 
ex  

classic approximation is used and assuming that the 

point of charge localization coincides with the 

origin of coordinates, then  

)r(z)r(ex 
                        (38) 

In this case for
1  we have: 
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Analogously, the change of free energies of the 

system, where space dispersion effects of the 

medium are described by more complicated 

functions, may be calculated. For example, if   

describes oscillations with attenuation:  
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Then for the free energy change 
1  we 

obtain: 
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Here the parameter 1/ will be approximately 

equal to the diameter of the solvent molecule.                                                               

If for charge density 
ex  quantum approximation is 

used, then   

2ex )r(e)r(

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where )r(


  is wave function. 

In the capacity of wave function we take the 

normalized function:   
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GF of operators of medium scalar potential we 

take in the form (36). Free energy change 
1  has 

the form:  
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Using here the form of the function  rr 
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(37) and the wave function )r(
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we get: 
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Omitting cumbersome calculations, we give the result in the form:    
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For description of space dispersion effects of the 

medium, the function may be used:  
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If we take (43) as wave function )r(


 , then for 

1  we obtain: 
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r
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4
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where 











r
  - is the error integral: 


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
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



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0

t dte
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             (49)             

During numerical calculations by formula (49) it 

is convenient to use an approximate expression for 

the error integral:   
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2
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1
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
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


 

                                                                               (50)            

where 





r

2P1

1
t

,  

P = 0,2316; b1 = 0,3194; b2 = - 0,3566; b3 = 1,7815;  

b4 = -1,8213; b5 = 1,3303.                                      (51)              

In quantum case for charge density of the particle 

also the following function may be used:  

  r

23
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e
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




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
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
            (52)  

If expression (47) is used for   function, then 

for 
1  we have: 
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214
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If space dispersion effects of medium are 

described by function (47), and for charge density the 

function is used:   

 
22r2

3

e
24

e4
r 







                 (54) 
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then the free energy change will be equal to:    
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                   (55)            

In the capacity of  function describing space 

dispersion effects of the medium the step function 

may be selected:                             

     rrrr
4

3
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   (56) 

   If exponential function of the form (52) is 

selected as a wave function, then for
1  we have:  























 

22

220

2

0

2

23

0

2

1

106106
4074e

Ce

56

3Ce

4

3Ce

14

81
             (57) 

For a model in which charge density is described by a function of the type (43), we have:   
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(58) 

     If charge density has the form (54), then  
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 (59)    

Thus, for the free energy change of the system, 

when a polyatomic polarizable nondipole charged 

particle is introduced into a condensed medium, the 

calculations may be carried out with different 

precision, considering various effects: in case of 

quantum or classic behavior of the degrees of 

freedom of the impurity, effects of spatial dispersion 

of the medium, which may be described by a set of 

different model functions; interactions of 

intramolecular vibrations of the impurity with 

polarization fluctuations of the medium.  

For obtaining the equilibrium dipole moment of 

an impurity particle in classic approximation for the 

charge density of a particle placed in a local 

homogeneous isotropic medium, we have the 

following expression:  

      


  4

C
rrrErErdrd 0d

1
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    (60) 

After corresponding integration we obtain:  

   23

00

d

1 Qdr3C8            (61) 

where 0r  is the particle radius. 

Naturally, a total change of free energy for a 

charged dipole particle will be equal to the sum of 

changes for charged impurity (35) and dipole 

impurity (61):     
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
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






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In regard to obtaining the space dispersion of the 

medium for dipole particles, representation of the 

free energy change of the system in one of the 

following forms is more convenient:    

 

            rdrdrPrPr,rGrPrPr,rGrdrd exex

EE

exex
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
             (63) 

For particle polarization ex

 
point approximation 

may be used:  

   rdrex 
                  (64) 

For GF, G and GEE different model functions 

may be used.  

Most acceptable way for calculation of 1 for the 

charge density of charged dipole particle in quantum 

approximation is to use correctly selected wave 

functions d
 
and to carry out integration by formula 

(44) for various types of  
 
functions.     

5. CALCULATION OF THE FLUCTUATION 

PART OF FREE ENERGY CHANGE 

Let us write the change of free energy in the 

following form:  

              
)2(

2 SlnkT                       (65)              

where 

  


 
0

ss

)2( )(Q)r(V),r(PrddexpTS


.  (66)               

 Let us formally represent the matrix as:  
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. (67)             

and the corresponding free energy )(2  , similarly 

to correlation (16), like this [1]: 
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Integrating this correlation accordingly by λ from 0 

up to 1 and taking into account the condition   

),0()1(12   we express 
2  

through Green function  
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, (69)                  

where PQG  - is the Green function of operators P  

and Q with effective interaction )r(Vs . 

     Expanding the Green function into Fourier series 

by τ and integrating by τ we have: 
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      Taking into account the results [1-5] it follows 

that: 

 







n

nQQnss
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where W is renormalized interaction of 

intramolecular vibrations with each other through the 

polar medium. This quantity may be calculated 

quantum-chemically or may be simulated by a 

suitable function with consideration of above 

mentioned formulas. 
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                                                                               (72) 

Green functions of normal coordinate operators of 

intramolecular vibrations of the solvated impurity 

satisfy the system of linear algebraic 

nonhomogeneous equations:    

ssssssss QQss

0
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QQQQ G)(W)(GG)(G

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Here 
0

QQ ss
G are the Green functions of the oscillator. 

 So solving (73) for any finite number of 

intramolecular degrees of freedom N, the components  

),(G nQQ ss



 may be determined and accordingly 

integrated by   and summed by n in (71) for 

calculation of 
2 . 

      For a simple model, when the system has one 

dipole-active degree of freedom, we get:   
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    In order to show the possibilities of the 

calculations in accordance with (74), we use a polar 

approximation (which includes Debye and resonance 

function) for the Green function of medium 

polarization fluctuation operators. In this case,   
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where ui  are experimental constants, and m - the 

number of poles of the Green function.    

     Substituting (89) into (88), we get:                
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here s is the frequency of intramolecular 

vibrations of the impurity. Expression in brackets 

in this correlation may be presented in the form of 

a ratio of two polynomials,
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If condition [6] is fulfilled, 

l1l1 b...ba...a             (78) 

Then, as it is known from the theory of Г-functions 
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In our case condition (78) is fulfilled, so 
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  where j  is the root of (74). W(ω=0)/ω2 should 

be always less than unit. If the ratio is close to unit, 

then such molecules dissociate.  

CONCLUSIONS 

A method of calculation of the free energy 

change of polyatomic polarizable dipole-active 

particles during their dissolution in heterogeneous 

polar medium is presented. Two mechanisms of 

interaction of these particles with the polar medium 

are considered: solvation and fluctuation 

mechanism, including ion-dipole and dipole-dipole 

interactions. The obtained analytic expressions 

allow realization of quantitative calculations for 

dissolved particles with any finite number of 

degrees of freedom of intra-molecular vibrations, 

under consideration of the spatial and frequency 

dispersion of the medium.   

Thereby, at the expense of the “fluctuation” 

mechanism of interaction of the intramolecular 

vibrations of a particle with the medium 

polarization fluctuations, dissociation of the 

molecule is possible, although solvation of this 

molecule by the medium does not allow the 

molecule to dissociate to ions. This mechanism is 

also important for chemical adsorption – the 

adsorbed molecule may desorb because of the 

“fluctuation” mechanism. Moreover, the adsorbed 

molecule may dissociate to ions owing to this 

mechanism.  
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ТЕРМОДИНАМИЧЕН АНАЛИЗ НА ПРОЦЕСИ С УЧАСТИЕ НА ЗЕОЛИТИ 

Т. Марсагишвили*, М. Мачавариани, Г. Татишвили, Е. Цхакария 

Държавен университет “Ив. Явахишвили”, Тбилиси, Институт по неорганична химия и електрохимия 

“Р. Агладзе”., 0186 Тбилиси, Грузияa 

Постъпила на 19 август, 2012 г.; приета на 1 октомври, 2012 г. 

Квантово-химкичните пресмятания разкривяат два механизма на изменение на вободната енергия на дипол-

активни поляризуеми частици при взаимодействие с полярна среда (солватация и флуктуационен механизъм). 

При заредени частици главният принос за пълното изменение на свободната енергия се дава от 

солватационния механизъм. Съответно, при прости заредени частици в хомогенна изотропна среда без 

пространствена дисперсия това води до свободна енергия на солватация по Борн. За незаредени частици с 

равновесен диполен момент солватационният механизъм също води до промяна на свободната енергия на 

системата, а за сферични частици тя е право пропорционална на квадрата на диполния омент на частицата и 

обратно пропорционална на обема й.  В рамките на солватационния механизъм ефектите на анизотропия и не-

локализирането на средата (напр. при зеолити) трябва да се държи сметка за пространствената дисперсия. 

Флуктуационният механизъм на изменението на свободната енергия в системата обикновено има малък 

принос за обшото изменение. Той трябва да се отчита в системи със слабо влияние на солватационния 

механизъм или при които вибрационните честоти на онечистванията се променят значително при постаянето 

им в полярна среда..  

Получените резултати ще насърчат изследванията върху адсорбционните процеси на повърхността на 

зеолити, кинетиката на пренос на заряда и преносните процеси в порите на композитни материали. 
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