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Thermodynamic analysis of processes with the participation of zeolites
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The quantum calculation of the free energy of polyatomic dipole-active polarizable particles revealed two
mechanisms of free energy change during interaction with a polar medium (solvation and fluctuation mechanisms).

For charged particles the main contribution to complete free energy change is given by the solvation mechanism.
Correspondingly, for simple charged particles in homogeneous isotropic polar medium without spatial dispersion this
brings to Born free energy of solvation. For uncharged particles with equilibrium dipole moment, solvation mechanism
also contributes to the change in system’s free energy, and this contribution for spherical particles is in direct proportion
to the quadratic dipole moment of the particle and in inverse proportion to its volume. In the frame of the solvation
mechanism, effects of nonisotopity and nonlocality of medium (like zeolites), effects of spatial dispersion may be taken
into account.

The fluctuation mechanism of free energy change of the system has usually a minor contribution to the complete
change of system’s free energy, but it should be considered for systems where contribution of solvation mechanism is
not great and also for systems, where vibration frequencies of the impurity particle change greatly upon placing it in a
polar medium.

The obtained results will promote the investigations of adsorption processes on the zeolite surface, the study of
kinetics of charge transfer and particle transfer process in channels of composite materials.
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INTRODUCTION

Natural and synthetic zeolites have wide
application in gas separation installations, gas
generators, purification plants, for creation of
ionisators, super-condensers, and accumulators.
Their wide application is connected with the
specific structure of zeolites, the form of their
nanopores  providing  unique  sorption
properties. The surface of zeolites is very
active, so they are fine catalysts for many
processes. Size, form and properties of the
surface of nano-sized materials may be adapted
and optimized for a particular application.
Placing different ions in the pores of natural
and synthetic zeolites we obtain modified
materials, which have unique properties. For
determination of the realization possibility of
processes with participation of zeolites, first of
all, thermodynamic  analysis of the
corresponding system has to be conducted.

* To whom all correspondence should be sent:
E-mail tamaz.marsagishvili@mes.gov.ge

1. FREE ENERGIES OF POLYATOMIC
POLARIZABLE DIPOLE-ACTIVE PARTICLES
IN POLAR MEDIUM

Complete change of system’s free
energy includes the following components:

a) Work connected with cavity formation in
the medium, where the impurity particle is
placed,;

b) Free energy connected with the
translational and rotational motion of the
impurity as a whole;

c) Electrostatic part connected with the
interaction of the impurity particle with the
medium (zeolite and liquid in canals).

Below we shall calculate the latter
component, which in the majority of cases,
makes the greatest contribution to the free
energy change.

2. HAMILTONIAN OF THE SYSTEM

Existence of electrostatic interaction between
impurity and medium causes polarization of the
medium. In turn, polarized medium influences
the impurity particle and polarizes it. The
Hamiltonian of the system may be represented
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as:

H=H, +H, - [(P()) E(F.Q,)d7 - |

0

SP(F)E(F,Q,)dr,

1)
where H: - is Hamiltonian of the system; H,-
is Hamiltonian of the particle; (P(r)) - is the

average value of medium polarization induced
by the electric field of the particle, with field
intensity E(r,Q% [1], (Q° — is the set of
intramolecular coordinates of the impurity).
Going from the Hamiltonian of the
nonpolarized medium H; to the Hamiltonian

of the polarized medium Hm, in dielectric
approximation we have:

H:Hmﬂﬂ—éﬁmﬂ%ai%mfj[@EﬂQﬁﬁy

(2)
According to the fluctuation - dissipative
theorem:

(P.(F,1)) :-jolrjoltGRP (F, 7 t—t)E (F, 1),
3)
where GF, is the retarded Green function of
operators of medium polarization [1].
For the intensity of the electric field of
impurity particles in dipole approximation the
expression may be used:

e, (1) == [0Be ¢, (7)1 RO

~R)+6,,(RRIR).

(4)

Here G, and G, are Green functions of the
operators of electric field intensity and the
scalar potential of the condensed medium; they
may be expressed by the Green functionsG,,
which may be simply defined from the solution
of the electrostatic task (see [1, 2]). p' is the
dipole moment of i-th bond of the particle, R,
is the radius-vector of the i-th dipole of the
particle, p, R is the charge of the particle and
the radius-vector of the charge localization
point. _
For a polarizable particle the value of p'
differs from the corresponding vacuum

value p},, it could be determined through:
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My = Ho + D Olg {GE,@ML + GEuq,p}, (5)

j=1
where O‘ixs is the polarizability tensor of the i-

th bond of the particle. It is obvious that if all
components of the polarizability tensor and the
vacuum values of the dipole moment of the
bond are known, then all 3N values of pn may
be found from system (5). As Green functions,
the corresponding solutions of electrostatic
tasks of model functions may be used, which
allows taking into account the effects of spatial
dispersion of the medium. Further, substituting
the found values p! into correlation (4) we

define the electric field intensity of the system
g(r, Ri,) and from (3) we find the polarization

of medium (P(F)), .
Substituting (3) into (2) we rewrite the

Hamiltonian of the system in the following
form:

H:Hm+Hp+;jE(?,Q)G§P(?,r) (7, Q)Fdr - [3P(F)E(T, Q)
(6)

In this formula we expand the electric field
intensity into a series by Q°up to linear terms,

H =8Q, +H, +H,, - [dfsP(NE(T, Q). (7)

Here H, is the Hamiltonian of the polarized
solvated particle,

HP = H +37d, Q0 + 3 h, Q2Q%,  (8)

where

1 OE° OE?°
' = 250° EPW , (9
n m Q3 =Qp,
0 0
d =LlEogr E | E =_GREY).,
2 5Q aQ Qn=Qno

In (7) 69, is the free energy of the solvated
particle, which has the following form:

50, = % j dtdt’ j drdT'E, (7, Q0)GH 5 (.7t~ 1)E,(7,Q})
(10)
By transformation of coordinates (shift and
turn) Hp may be reduced to quadratic form with
frequencies ws and coordinates Qs.
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1 0
HP :Egms{(Qs_Qso)z_aQs}"'Jv (11)
where Qso is the equilibrium value of

coordinate Qs, J — the minimal energy of the
particle.

It is obvious that the influence of a solvated
polarized particle on the medium leads to
additional polarization of the medium.
Therefore, it is necessary to wuse the
characteristics of the polar particle in (7) - (11)
and introduce E(Qo) instead of E(Q).

In formula (7) we expand into series the
electric field intensity E by Q — Qo up to a
linear term. Consequently:

H =380, +H, +H, +HQ +HZ, (12)
where
H® = ~[8PE(T,Q,)df ,  (13)

is the interaction of the medium polarization
fluctuations with the static field of the
impurity, and

HE) = =" [disP(F)5Q,V, (7);
v, -9 (14)
aQS Qs=Qs0
is the interaction of the medium polarization
fluctuations with intramolecular vibrations of
the impurity.

Q) = ——_[dr<

Where B=1/kT, k is the Boltzmann
constant, T- temperature, GSF,QSF,ﬁ - temperature
Green functions of medium polarization
fluctuation operators [1],

G0, (T, 731 = 1) = ~(T.0P, (¥, 1)OP, (7', ) (19)

50, = %J'dfd FEo, (7, Q0)|GE5,

H 0
Green functions G;, and G5 are phonon

Green functions of the medium, when ® = 0
they are equal, so

30, =0 (21)

By integrating formula (10) over t and T we

The electrostatic part of the free energy
change connected with introduction of
polyatomic dipole-active impurities in the polar
medium may be written in the following form

[3]:

3Q =0Q, +0Q, +0Q, +6Q,, (15)
where 3Q2, and 8, are the changes of the
system free energy connected with H® and

int

H® interactions, correspondingly, 8Q, is the

change of the vibrational free energy of the
impurity particle.
3. CALCULATION OF THE FREE ENERGIES
OF SOLUTION AQo AND AQ;
The change of free energy 8¢, may be
expressed through the matrix
5Q = —kTIn(s). (16)
Here, averaging is carried out over the states
of polar medium and S® matrix has the form:

S =T exp{? dr j dFSf’(F,r)EO(F)} (17)

After SY matrix expansion into series and
calculation of quantum-statistical averages of
OP operators, we obtain [4]:

>E (7, QO)——jdrjdrjdrd F'Eg, (T, Qo) Eoy (T, Q0) G o (T, 77, T)  (18)

Substituting(P) in the formula (18) to the

value from formula (3) and integrating over r,
T, t,t, we obtain:

(F, 750 = 0) = Gyp 4y (F. P50 = 0) Egy (7) (20)

obtain the following expression 8, :
30, = % [dFdPES ()G 5, (.70 = O)EQ(F) - (22)

For a homogeneous local isotropic medium,
for which
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- 1 1 ==
Gpp, (F, T 0 =0) :—E(l—g—)éaﬁéi(r -7").(23)

the free energy of the solutionX, takes the
form:

50, = -~ (1-D)[drE (M)’ (24)
8n €

Here ¢ is the static value of dielectric
permeability. For spherically symmetric
particles with z charge the formula (24) brings
about the Born solvation energy:

Q=¢e%2re (25)

If the particle is not charged but has an
equilibrium  dipole moment, then for
spherically symmetric particles we obtain:

=-(- —) 3 (26)

where ro — radius of particle.

4. EFFECTS OF MEDIUM SPATIAL
DISPERSION.

Taking into account the spatial dispersion of
the medium let us rewrite (22) in the following
form:

=—= j p(1)G,, (7, T)p(F)dd’ (27)

is the Green function (GF) of the

medium scalar potential operators, p is the charge
density of the impurity which creates an electric
field with intensity E..

Effects of spatial dispersion of the medium may
be considered, when calculating the free energy
change of the system, if some model functions are
used as Green functions of operators of polarization
fluctuation or charge density or a medium scalar

where GW

potential. For determination of GF G (T,T) the
results of solving electrostatic tasks may be used:
accurate within electron charge GF

G, (T, ) coincides with the magnitude of the

electrostatic potential in point T of the system, if in
pointT' a unit charge is placed. Considering the
above mentioned, it should be expected that

allowance behavior of GF G, (T,T") will be of
type:

G, (T, F) = C(F )‘ E (28)
In this case, the behavior of GFG@p and qu)
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will be of type:
G, (FF) =G, (F,7) =—F(F)3(F - TF) (29)
The Fourier component of f(T) function may

be connected with the longitudinal component of
the dielectric permeability €'( k). After standard
conversions we get:

0= MJe'”f(k) (30)

1

Hereby, for Fourier components we have the

following correlation:
—i 1—% O (32)
47 e (k)

In case of a local homogeneous medium, from
the previous formula we get:

Gwp(R,R’):—i(l— 1 Jsm, —Z— (33)

In the T space the latter formula has the form:

G, (,7) ——iC ,O(F —T") (34)

and

G,, (k,K) =

If the impurity partlcle is spherlcally symmetric,
has z charge and radius ro, then for the change of

free energy &€, we get:
C,z° z° 1
8, =——2 = ——(1——) (35)
2r, 2r, €
For consideration of space dispersion effects,

instead of  -function in formula (34) the function
may be used:

GY(F.F) =

“oA(F-7)  @39)

In the capacity of Ax(}r—r'|) function the

exponentially damped function normalized on unity
must be selected:

A (F-7)= 8nl e " (37)

If for charge density of impurity particle p*

classic approximation is used and assuming that the
point of charge localization coincides with the
origin of coordinates, then

p™(F) = 5(F) (38)
In this case for 8€2; we have:
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2 2
50, = —f 2 1-% (39)
167TA 167TA €

Analogously, the change of free energies of the
system, where space dispersion effects of the
medium are described by more complicated

functions, may be calculated. For example, if A,
describes oscillations with attenuation:

A (F=F])= V(Vg;:m ) 40)

Then for the free energy change €2, we
obtain:

™" cos(A[7

C,2° v(v2 —3)\? sz —Xz)
167 (v2 + XZ)Z

Here the parameter 1/4 will be approximately
equal to the diameter of the solvent molecule.
If for charge density p®™ quantum approximation is

80, =— (41)

ex (¢ 2|2
p™ (F) = ¢[¥ (1) (42)
where W (T) is wave function.

In the capacity of wave function we take the
normalized function:
32 ar

e ? (43)

P(F) = —
() (6n)"
GF of operators of medium scalar potential we
take in the form (36). Free energy change 8C2, has
the form:

(44)
Using here the form of the function AA([F - r’)

(37) and the wave function () in the form (43),
we get:

e’C
5O, = -~ [dFdF'di’A, (T - F'
T 3272 x(}

used, then
e’C,a® ¢ )i = 1
(87:)0473 Idrdr dr exp(—T| —oF+7 )J (45)
Omitting cumbersome calculations, we give the result in the form:
2 2 6 5 4 3
e“CyA : (3207 — 4”22 + 4o, _55(21 3 21? N 38c4x N 26(51 200 _g) (46)
8n(a/2) A A A A 20

For description of space dispersion effects of the r 2 ey , . , i
medium, the function may be used: CD(KJ =1- ;e‘ ' [blt +b,t" +b,t” +b,t" + byt ]
~ =2
F-7 (50)
3 J (47)

80, = —

5Q, =

where, 1

11pV2 "
»

P =0,2316; b1=0,3194; b, = - 0,3566; bz = 1,7815;
bs=-1,8213; bs=1,3303. (51)

In quantum case for charge density of the particle
also the following function may be used:

o\ o ar
r 1+— e ™ 52
pl(F) ==~ ( > ] (52)
r ri If expression (47) is used for A, function, then
| — j et (49) _
by for 6€2, we have:

During numerical calculatlons by formula (49) it
is convenient to use an approximate expression for
the error integral:

2 2 —| 0LI’+%
50, = -2 Co @ Coot [ df{r[1+ %rj [yt +byt? + byt® + b,t* + btk [ " ] (53)

o 1
A;L(JI’ - |): %12)3 eXp{_

If we take (43) as wave function W(T), then for
S0, we obtain:

2 3 ®
8Q, = _&C jdrre“@(ij (48)
4 A

where CD(%) - is the error integral:

56 14@

If space dispersion effects of medium are .\ dep®
described by function (47), and for charge density the p(F)= \/— (54)
function is used: 42
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then the free energy change will be equal to:

5Q), =

J2n T

In the capacity of A, function describing space
dispersion effects of the medium the step function

may be selected:
oo, 3 Lo,
A*qr‘r)im (.~ [F ~F]) (s6)

o(F - ¥

2 2 3 _ 23%% r?
_ 26 COB + 8e COB jdrre ( A j [blt + b2t2 + b3t3 + b4t4 + b5t5]

81e’C, 3e’C, 3¢e’C,

SO = == - -
142802 4 A 56 A

(55)

If exponential function of the form (52) is
selected as a wave function, then for 8C, we have:

For a model in which charge density is described by a function of the type (43), we have:

2
SAQ, = 3% C{ 1 —E}L

A (arn) 4
If charge density has the form (54), then

e [473(12 +7ha+40 + 106 + %} (57)
Ao Ao
2
eC 3 [1+ i) e (58)
4 ai ai

4\p* —32)"

2

2 2 _
50, =3¢ co{l_( 1 }_4e C, ezw{&s

208) | 2n

1207 -1
+—
4%

Thus, for the free energy change of the system,
when a polyatomic polarizable nondipole charged
particle is introduced into a condensed medium, the
calculations may be carried out with different
precision, considering various effects: in case of
guantum or classic behavior of the degrees of
freedom of the impurity, effects of spatial dispersion
of the medium, which may be described by a set of
different model  functions; interactions  of
intramolecular vibrations of the impurity with
polarization fluctuations of the medium.

For obtaining the equilibrium dipole moment of
an impurity particle in classic approximation for the
charge density of a particle placed in a local
homogeneous isotropic medium, we have the
following expression:

50, = JATAY 9,6, (1.7 P2 (O () = [ e o (.7 RO (irr

For particle polarization p®™ point approximation

may be used:
p™(F)=d3(r) (64)
For GF, G and Gee different model functions
may be used.

Most acceptable way for calculation of 8Q; for the
charge density of charged dipole particle in quantum
approximation is to use correctly selected wave
functions Wy and to carry out integration by formula
(44) for various types of A, functions.
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4
B (blt +b,t + bt +b,t* + b5t5)+

32182 (59)

2
P(b,t? + 2b,t° + 30,t* + 4b,t° + 5b,t°)— Z_x(Zblt3 +6b,t* +12b,t° + 20b,t° + 300,17 ) }

0 = -[arar E(FE®BE-7)2 60

T

After corresponding integration we obtain:
50 =-[grc, /(a5 Jlod/aQf  (6n)

where I, is the particle radius.

Naturally, a total change of free energy for a
charged dipole particle will be equal to the sum of

changes for charged impurity (35) and dipole
impurity (61):
2 2
50y, + 80 = SMCo[ ) 2C gy
3r, \0Q 8,

In regard to obtaining the space dispersion of the
medium for dipole particles, representation of the
free energy change of the system in one of the
following forms is more convenient:

(63)
5. CALCULATION OF THE FLUCTUATION
PART OF FREE ENERGY CHANGE

Let us write the change of free energy in the

following form:
5Q, = —kTIn(S®) (65)

where

SO =T exp {[ f de [ dFSP(F, DV, (F)Q, (r)}. (66)
Let us formally represent the matrix as:
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S =T. exp{xfdr j dFSP(F)V, (?)Qs(t)} . (67)

and the corresponding free energy 8Q, (), similarly
to correlation (16), like this [1]:

0 /a2
(1) _ g X<S( @, (68) G
N (s® (x)}o ’

Integrating this correlation accordingly by A from 0
up to 1 and taking into account the condition

30, =QA=1)-Q(A =0), we express 0,
through Green function

5Q, = _I%Tdr [arav,, ({6 o, (. 1=0)}, (69)

where G, - is the Green function of operators &P
and Q with effective interaction AV,(r).

Expanding the Green function into Fourier series 6

by T and integrating by T we have:
8Q, = —KT j j AV, (F) D Gy o, (F A, @,) , (70)

Taking |nto account the results [1-5] it follows
that:
& on
50, :-ij TZWSS,(X,@H)GQSQS, ho,) (1)
0 n
where W is  renormalized interaction  of
intramolecular vibrations with each other through the
polar medium. This quantity may be calculated
guantum-chemically or may be simulated by a
suitable function with consideration of above
mentioned formulas.

28

KT, (, W(0) o[ & o,
e e e

here ,is the frequency of intramolecular
vibrations of the impurity. Expression in brackets

m

W, (%, 0,) = j AFAF AV, (F)Gyp, g, (F. T30, )WV (),

(72)
Green functions of normal coordinate operators of
intramolecular vibrations of the solvated impurity

satisfy the system of linear  algebraic
nonhomogeneous equations:
0.0, M) =G, +Go o MW (MG q, - (73)

Here GOQSQS are the Green functions of the oscillator.

So solving (73) for any finite number of
intramolecular degrees of freedom N, the components
Gg.o, (h,®,) may be determined and accordingly

integrated by A and summed by n in (71) for
calculation of 8C2, .

For a simple model, when the system has one
dipole-active degree of freedom, we get:

- szZn“smnGgQGQg = kz-r;SpInl— GoowW| (74)
In order to show the possibilities of the
calculations in accordance with (74), we use a polar
approximation (which includes Debye and resonance
function) for the Green function of medium
polarization fluctuation operators In this case,

W(w,) = Z|w

where u; are experimental constants, and m - the
number of poles of the Green function.
Substituting (89) into (88), we get:

(75)

ol

u. o,

(76)
i=1

in this correlation may be presented in the form of

a ratio of two polynomials,

1-2,

i=1

If condition [6] is fulfilled,

n? il - Yo, o o
wo, sz} }H[zm J %szﬂ[zm ”j
(0; +0))@ ~w,) ( o, T*”Z ( u, ‘”J ()
27KT 1,:1[ 27KT
= (n—a,).(n—-a) {4 T@-b,
a, +..+a,=b +..+b, (78) H(n 2,).(n a)zl:l[ i-b) (79)

Then, as it is known from the theory of I'-functions

ri(n=b).(n-b) 1iT(l-a)
In our case condition (78) is fulfilled, so
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) 2 o) 2nkT

S S

m+2 Q)_
502, = kT T4 ki 2n 2 |+ K[ 1= WO erin T 1- 20 |-
2kT 5 (0)

ii=1

m Q)i
KTIn Hr(l anTJ
where 51 is the root of (74). W(w=0)/w, should also important for chemical adsorption — the
. o . adsorbed molecule may desorb because of the
be always less than un_|t. If.the ratio is close to unit, “fluctuation” mechanism. Moreover, the adsorbed
then such molecules dissociate. molecule may dissociate to ions owing to this
CONCLUSIONS mechanism.
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[ocrermna Ha 19 aBrycrt, 2012 r.; npuera Ha 1 okTomMBpH, 2012 1.

KBaHTOBO-XMMKHYHUTE MPECMATAHHS Pa3KpHUBSIAT JBAa MEXaHH3Ma Ha N3MEHEHHE Ha BOOOJHATAa EHEPTrHsl Ha JTUMOJ-
AKTHBHHU MOJSIPU3YEMH YaCTHIN TIPH B3aMMOCHCTBHE C TIOMSIPHA cpejia (comBatamus U GpIyKTyal[MOHEH MEXaHU3bM).

[Ipu 3apeneHW YacTUIM TJIABHUAT IPHHOC 33 MIHIHOTO H3MEHEHHWE Ha CBOOOJHATA EHEpPrus ce JaBa OT
CONBAaTAIMOHHUS MeXaHW3bM. CBOTBETHO, NpPH NPOCTH 3apeleHHM YacTHIHM B XOMOT€HHa M30TPOIHA cpexa 0Oe3
MIPOCTPAHCTBEHA TUCIIEPCHA TOBAa BOAM JO CBOOOIHA €HEprHsl Ha coiBartanus mo bopH. 3a He3apeneHHW YacTHIH C
pPaBHOBECEH JAWIIOJICH MOMEHT COJIBATAIIMOHHHMAT MEXaHHW3BM CBHIIO BOJWM IO HPOMsSHA Ha CBOOOIHATAa €HEPrHsl Ha
cucreMaTta, a 3a C(epUYHM YaCTHUIM TS € MPaBO MPOMOPIMOHAHA Ha KBaJpaTa Ha JUITOJIHUS OMEHT Ha 4acTUIATa U
o0OpaTHO mponopuroHagHa Ha obema . B pamkuTe Ha COJIBAaTAllMOHHUSI MEXaHW3bM €(DEeKTHUTE Ha aHW3O0TPOIHS U He-
JIOKaJTM3UPAHETO Ha cpenara (Hamp. IpH 3e0JIUTH) TPsIOBa 1a ce IbPXKU CMETKA 32 MPOCTPAHCTBEHATA TUCHICPCHSL.

@OnyKTyallMOHHUAT MEXaHW3bM Ha W3MEHEHHETO Ha CBOOOJHATa CHEprus B CHCTeMaTa OOMKHOBEHO MMa MallbK
npuHOC 3a 00moTO M3MeHeHue. Tol TpsOBa na ce OTYMTA B CHCTEMH ChC Ci1ab0 BIMSHUE Ha COJIBATAllMOHHUSA
MEXaHHU3bM WIM IPU KOUTO BHOPALIMOHHHUTE YECTOTH HA OHEYHCTBAHMATA CE€ NMPOMEHST 3HAYUTEIHO MPU IOCTASHETO
UM B IIOJISIpHA Ccpeaa..

[omyyernTe pelynraTH e HAachbpyaT H3CICIBAHUATA BBPXY aJCOPOIMOHHHWTE MPOIECH Ha TOBBPXHOCTTA Ha
3€0JIMTH, KUHETUKATa Ha MPEHOC Ha 3apsiia ¥ IPEHOCHUTE MIPOLIECH B IOPUTE Ha KOMIIO3UTHU MaTepHUaly.
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