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The transient hydromagnetic flow through a porous medium between two infinite parallel porous plates is studied 

with heat transfer considering the Hall effect and the temperature dependent physical properties under constant pressure 

gradient. An external uniform magnetic field and a uniform suction and injection are applied perpendicular to the 

horizontal plates. A numerical solution for the governing non-linear coupled set of the momentum equations and the 

energy equation including the viscous and Joule dissipations is adopted. The effect of the porosity of the medium, the 

Hall current and the temperature-dependent viscosity and thermal conductivity on both the velocity and temperature 

distributions is reported. 
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INTRODUCTION 

The flow of an electrically conducting fluid 

between infinite horizontal parallel plates, known 

as Hartmann flow, has interesting applications in 

magnetohydrodynamic (MHD) power generators 

pumps, etc. Hartmann and Lazarus [1] investigated 

the effect of a transverse uniform magnetic field on 

the flow of a viscous incompressible electrically 

conducting fluid between two infinite parallel 

plates. Exact solutions for the velocity fields were 

developed [2-5] under different physical effects. 

Some exact numerical solutions for the heat transfer 

problem are derived in [6]. Soundalgekar et al. 

[7,8] examined the effect of Hall current on the 

steady MHD Couette flow with heat transfer. The 

temperatures of the two plates were assumed 

constant [7] or varying along the plates in the 

direction of the flow [8]. Attia [9] examined the 

effect of Hall current on the velocity and 

temperature fields of an unsteady Hartmann flow 

with uniform suction and injection applied 

perpendicular to the plates. 

In these studies the physical properties are 

assumed to be constant; however, it is known that 

some physical properties are functions of 

temperature and assuming constant properties is a 

good approximation as long as small differences in 

temperature are involved. More accurate prediction 

for the flow and heat transfer can be achieved by 

considering the variation of the physical properties 

with temperature [10-13]. Klemp et al. [14] studied 

the effect of temperature-dependent viscosity on the 

entrance flow in a channel in the hydrodynamic 

case. Attia and Kotb [15] solved the steady MHD 

fully developed flow and heat transfer between two 

parallel plates with temperature dependent viscosity 

which has been extended to the transient state by 

Attia [16]. The influence of the dependence of the 

physical properties on temperature in the MHD 

Couette flow between parallel plates was studied 

[14,15]. 

In this paper, the transient Hartmann flow 

through a porous medium of a viscous 

incompressible electrically conducting fluid is 

investigated with heat transfer under constant 

pressure gradient. The viscosity and thermal 

conductivity of the fluid are assumed to vary with 

temperature while the Hall current is taken into 

consideration. The fluid is flowing between two 

electrically insulating porous plates and is acted 

upon by an axial constant pressure gradient. A 

uniform suction and injection and an external 

uniform magnetic field are applied perpendicular to 

the surface of the plates. The two plates are kept at 

two constant but different temperatures and the 

viscous and Joule dissipations are taken into 
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consideration in the energy equation. The flow in 

the porous medium is described by a differential 

equation governing the fluid motion based on the 

Darcy’s law which considers the drag exerted by 

the porous medium [17-21]. The coupled set of the 

non-linear momentum and energy equations is 

solved numerically using the method of finite 

differences to determine the velocity and 

temperature fields. The effect of porosity of the 

medium, the Hall current, the suction and injection 

velocity and the temperature-dependent viscosity 

and thermal conductivity on both the velocity and 

temperature distributions is discussed. 

FORMULATION OF THE PROBLEM 

The fluid flows between two infinite horizontal 

parallel plates located at the y=±h planes, as shown 

in Fig. 1. The two plates are porous, insulating and 

kept at two constant but different temperatures T1 

for the lower plate and T2 for the upper plate with 

T2>T1. A constant pressure gradient is imposed in 

the axial x-direction and uniform suction from 

above and injection from below, with velocity vo, 

are applied impulsively at t=0. A uniform magnetic 

field Bo, assumed unaltered, is applied 

perpendicular to the plates in the positive y-

direction. The Hall effect is considered and 

accordingly, a z-component of the velocity is 

initiated. The viscosity and the thermal conductivity 

of the fluid depend on temperature exponentially 

and linearly, respectively, while the viscous and 

Joule dissipations are not neglected in the energy 

equation.  

 

Fig. 1 The geometry of the problem 

The flow is through a porous medium where the 

Darcy model is assumed [19]. The fluid motion 

starts from rest at t=0, and the no-slip condition at 

the plates implies that the fluid velocity has neither 

a z nor an x-component at y=±h. The initial 

temperature of the fluid is assumed to be equal to 

T1 as the temperature of the lower plate. Since the 

plates are infinite in the x and z-directions, the 

physical quantities do not change in these 

directions, which leads to one-dimensional 

problem. 

The flow of the fluid is governed by the Navier-

Stokes equation: 

oBJvp
Dt

vD 

 ).(
       (1) 

where, ρ is the density of the fluid, μ is the 

viscosity of the fluid, J


 is the current density, and 

v


 is the velocity vector of the fluid, which is given 

by: 

ktywjvityuv o


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If the Hall term is retained, the current density 

J


is given by the generalized Ohm's law [4]: 
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 
           (2) 

where, σ is the electric conductivity of the fluid 

and β is the Hall factor [4]. Equation (2) may be 

solved in J


to yield: 
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where, m is the Hall parameter and m= oB   . 

Thus, the two components of the momentum Eq. 

(1) read: 
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where, K  is the Darcy permeability [19] and 

the last term in the right side of Eqs. (4) and (5) 

represents the porosity force in the x- and z-

directions respectively. It is assumed that the 

pressure gradient is applied at t=0 and the fluid 

starts its motion from rest. Thus 

.0:0  wut                 (6a) 

For t > 0, the no-slip condition at the plates 

implies that 

,0:  wuhy
              (6b) 

.0:  wuhy
                (6c) 

 The energy equation describing the 

temperature distribution for the fluid is given by 

[18]: 
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Where, T is the temperature of the fluid, cp is 

the specific heat at constant pressure of the fluid, 

and k is the thermal conductivity of the fluid. The 

last two terms in the right side of Eq. (7) represent 

the viscous and Joule dissipations, respectively. 
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plates. Exact solutions for the velocity fields were 

developed [2-5] under different physical effects. 
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effect of Hall current on the velocity and 
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with uniform suction and injection applied 
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In these studies the physical properties are 
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good approximation as long as small differences in 
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for the flow and heat transfer can be achieved by 

considering the variation of the physical properties 
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entrance flow in a channel in the hydrodynamic 

case. Attia and Kotb [15] solved the steady MHD 
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parallel plates with temperature dependent viscosity 

which has been extended to the transient state by 

Attia [16]. The influence of the dependence of the 

physical properties on temperature in the MHD 
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In this paper, the transient Hartmann flow 

through a porous medium of a viscous 

incompressible electrically conducting fluid is 

investigated with heat transfer under constant 

pressure gradient. The viscosity and thermal 

conductivity of the fluid are assumed to vary with 

temperature while the Hall current is taken into 

consideration. The fluid is flowing between two 

electrically insulating porous plates and is acted 

upon by an axial constant pressure gradient. A 
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uniform magnetic field are applied perpendicular to 
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consideration in the energy equation. The flow in 

the porous medium is described by a differential 

equation governing the fluid motion based on the 

Darcy’s law which considers the drag exerted by 

the porous medium [17-21]. The coupled set of the 

non-linear momentum and energy equations is 

solved numerically using the method of finite 

differences to determine the velocity and 

temperature fields. The effect of porosity of the 

medium, the Hall current, the suction and injection 

velocity and the temperature-dependent viscosity 

and thermal conductivity on both the velocity and 

temperature distributions is discussed. 

FORMULATION OF THE PROBLEM 

The fluid flows between two infinite horizontal 

parallel plates located at the y=±h planes, as shown 

in Fig. 1. The two plates are porous, insulating and 

kept at two constant but different temperatures T1 

for the lower plate and T2 for the upper plate with 

T2>T1. A constant pressure gradient is imposed in 

the axial x-direction and uniform suction from 

above and injection from below, with velocity vo, 

are applied impulsively at t=0. A uniform magnetic 

field Bo, assumed unaltered, is applied 

perpendicular to the plates in the positive y-

direction. The Hall effect is considered and 

accordingly, a z-component of the velocity is 

initiated. The viscosity and the thermal conductivity 

of the fluid depend on temperature exponentially 

and linearly, respectively, while the viscous and 

Joule dissipations are not neglected in the energy 

equation.  

 

Fig. 1 The geometry of the problem 

The flow is through a porous medium where the 

Darcy model is assumed [19]. The fluid motion 

starts from rest at t=0, and the no-slip condition at 

the plates implies that the fluid velocity has neither 

a z nor an x-component at y=±h. The initial 

temperature of the fluid is assumed to be equal to 

T1 as the temperature of the lower plate. Since the 

plates are infinite in the x and z-directions, the 

physical quantities do not change in these 

directions, which leads to one-dimensional 

problem. 

The flow of the fluid is governed by the Navier-

Stokes equation: 

oBJvp
Dt

vD 
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where, ρ is the density of the fluid, μ is the 

viscosity of the fluid, J


 is the current density, and 

v


 is the velocity vector of the fluid, which is given 

by: 
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If the Hall term is retained, the current density 

J
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is given by the generalized Ohm's law [4]: 
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and β is the Hall factor [4]. Equation (2) may be 
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where, K  is the Darcy permeability [19] and 

the last term in the right side of Eqs. (4) and (5) 

represents the porosity force in the x- and z-

directions respectively. It is assumed that the 

pressure gradient is applied at t=0 and the fluid 

starts its motion from rest. Thus 

.0:0  wut                 (6a) 

For t > 0, the no-slip condition at the plates 

implies that 

,0:  wuhy
              (6b) 

.0:  wuhy
                (6c) 

 The energy equation describing the 

temperature distribution for the fluid is given by 

[18]: 
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Where, T is the temperature of the fluid, cp is 

the specific heat at constant pressure of the fluid, 

and k is the thermal conductivity of the fluid. The 

last two terms in the right side of Eq. (7) represent 

the viscous and Joule dissipations, respectively. 
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The temperature of the fluid must satisfy the 

initial and boundary conditions, 

,:0 1TTt                       (8a) 

,,:0 1 hyTTt              (8b) 

.,:0 2 hyTTt                (8c) 

The viscosity of the fluid is assumed to vary 

with temperature and is defined as, μ=μof1(T). By 

assuming the viscosity to vary exponentially with 

temperature, the function f1(T) takes the form [7], 

f1(T)=exp(-a1(T-T1)). In some cases a1 may be 

negative, i.e., the coefficient of viscosity increases 

with temperature [7,22]. Also the thermal 

conductivity of the fluid is varying with 

temperature as k=kof2(T). We assume a linear 

dependence for the thermal conductivity upon the 

temperature in the form k=ko(1+b1(T-T1)) [23], 

where the parameter b1 may be positive or negative 

[24]. 

Introducing the following non-dimensional 

quantities, 
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, a is the viscosity 

variation parameter, 

 bTTbf  1)(1)(ˆ
1212 , b is the 

thermal conductivity variation parameter, 

oohvS  /
 is the suction parameter, 

oo hBHa  /222 
, Ha is the Hartmann number, 

KhM /2 , is the porosity parameter, 

opo kc /Pr 
 is the Prandtl number, 

)(/ 12
222 TTchEc po  

 is the Eckert number, 

NuL = (∂T/∂ ŷ ) ŷ =-1 is the Nusselt number at the 

lower plate, 

NuU = (∂T/∂ ŷ ) ŷ =1 is the Nusselt number at the 

upper plate 

Equations (4) to (8) read (the hats are dropped 

for simplicity) 
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 (12) 

,0:0  t                    (13a) 

,1,0:0  yt               (13b) 

.1,1:0  yt               (13c) 

Equations (9), (10), and (12) represent a system 

of coupled non-linear partial differential equations 

which are solved numerically under the initial and 

boundary conditions (11) and (13) using the method 

of finite differences. A linearization technique is 

first applied to replace the nonlinear terms at a 

linear stage, with the corrections incorporated in 

subsequent iterative steps until convergence is 

reached. Then the Crank-Nicolson implicit method 

is used at two successive time levels [25]. An 

iterative scheme is used to solve the linearized 

system of difference equations. The solution at a 

certain time step is chosen as an initial guess for 

next time step and the iterations are continued till 

convergence, within a prescribed accuracy. Finally, 

the resulting block tri-diagonal system is solved 

using the generalized Thomas-algorithm [25]. 

Finite difference equations relating the variables are 

obtained by writing the equations at the mid point 

of the computational cell and then replacing the 

different terms by their second order central 

difference approximations in the y-direction. The 

diffusion terms are replaced by the average of the 

central differences at two successive time-levels. 

The computational domain is divided into meshes 

each of dimension t and y in time and space, 

respectively. We define the variables A = u/y, B 

= w/y and H = /y to reduce the second order 

differential Eqs. (9), (10) and (12) to first order 

differential equations, and an iterative scheme is 

used at every time step to solve the linearized 

system of difference equations. All calculations are 

carried out for the non-dimensional variables and 

parameters given by, G = 5, Pr = 1, and Ec = 0.2 

where G is related to the externally applied pressure 

gradient and where the chosen given values for Pr 

and Ec are suitable for steam or water vapor. Grid-

independence studies show that the computational 

domain 0<t< and –1<y<1 is divided into intervals 

with step sizes t=0.0001 and y=0.005 for time 

and space respectively. Smaller step sizes do not 

show any significant change in the results. 

Convergence of the scheme is assumed when all of 

the unknowns u, w, A, B,  and H for the last two 

approximations differ from unity by less than 10-6 

for all values of y in –1<y<1 at every time step. 

Less than 7 approximations are required to satisfy 
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The temperature of the fluid must satisfy the 

initial and boundary conditions, 
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The viscosity of the fluid is assumed to vary 

with temperature and is defined as, μ=μof1(T). By 

assuming the viscosity to vary exponentially with 

temperature, the function f1(T) takes the form [7], 

f1(T)=exp(-a1(T-T1)). In some cases a1 may be 

negative, i.e., the coefficient of viscosity increases 

with temperature [7,22]. Also the thermal 

conductivity of the fluid is varying with 

temperature as k=kof2(T). We assume a linear 

dependence for the thermal conductivity upon the 

temperature in the form k=ko(1+b1(T-T1)) [23], 

where the parameter b1 may be positive or negative 

[24]. 

Introducing the following non-dimensional 

quantities, 
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, a is the viscosity 

variation parameter, 

 bTTbf  1)(1)(ˆ
1212 , b is the 

thermal conductivity variation parameter, 

oohvS  /
 is the suction parameter, 

oo hBHa  /222 
, Ha is the Hartmann number, 

KhM /2 , is the porosity parameter, 

opo kc /Pr 
 is the Prandtl number, 
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 is the Eckert number, 

NuL = (∂T/∂ ŷ ) ŷ =-1 is the Nusselt number at the 

lower plate, 

NuU = (∂T/∂ ŷ ) ŷ =1 is the Nusselt number at the 

upper plate 

Equations (4) to (8) read (the hats are dropped 

for simplicity) 
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,0:0  t                    (13a) 

,1,0:0  yt               (13b) 

.1,1:0  yt               (13c) 

Equations (9), (10), and (12) represent a system 

of coupled non-linear partial differential equations 

which are solved numerically under the initial and 

boundary conditions (11) and (13) using the method 

of finite differences. A linearization technique is 

first applied to replace the nonlinear terms at a 

linear stage, with the corrections incorporated in 

subsequent iterative steps until convergence is 

reached. Then the Crank-Nicolson implicit method 

is used at two successive time levels [25]. An 

iterative scheme is used to solve the linearized 

system of difference equations. The solution at a 

certain time step is chosen as an initial guess for 

next time step and the iterations are continued till 

convergence, within a prescribed accuracy. Finally, 

the resulting block tri-diagonal system is solved 

using the generalized Thomas-algorithm [25]. 

Finite difference equations relating the variables are 

obtained by writing the equations at the mid point 

of the computational cell and then replacing the 

different terms by their second order central 

difference approximations in the y-direction. The 

diffusion terms are replaced by the average of the 

central differences at two successive time-levels. 

The computational domain is divided into meshes 

each of dimension t and y in time and space, 

respectively. We define the variables A = u/y, B 

= w/y and H = /y to reduce the second order 

differential Eqs. (9), (10) and (12) to first order 

differential equations, and an iterative scheme is 

used at every time step to solve the linearized 

system of difference equations. All calculations are 

carried out for the non-dimensional variables and 

parameters given by, G = 5, Pr = 1, and Ec = 0.2 

where G is related to the externally applied pressure 

gradient and where the chosen given values for Pr 

and Ec are suitable for steam or water vapor. Grid-

independence studies show that the computational 

domain 0<t< and –1<y<1 is divided into intervals 

with step sizes t=0.0001 and y=0.005 for time 

and space respectively. Smaller step sizes do not 

show any significant change in the results. 

Convergence of the scheme is assumed when all of 

the unknowns u, w, A, B,  and H for the last two 

approximations differ from unity by less than 10-6 

for all values of y in –1<y<1 at every time step. 

Less than 7 approximations are required to satisfy 
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these convergence criteria for all ranges of the 

parameters studied here.  

RESULTS AND DISCUSSION 

Figures 2-4 show the time development of the 

profiles of the velocity and temperature for various 

values of the suction parameter S and for Ha =1, 

m=1, M=1, a=0.5 and b=0.5. 
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Fig. 2 The evolution of the profile of: u; (a) S=0; (b) 

S=1; (c) S=2. (Ha=1, m=1, M=1, a=0.5, b=0.5) 
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Fig. 3 The evolution of the profile of w; (a) S=0; (b) S=1; 

(c) S=2. (Ha=1, m=1, M=1, a=0.5, b=0.5) 

The velocity and temperature distributions reach 

their steady state monotonically as shown in the 

figure. The velocity component u reaches steady 

state faster than w which, in turn, reaches steady 

state faster than . This is expected, as u is the 

source of w, while both u and w are sources of . It 

is also clear from Figs. 2-3 that the velocity 

components are asymmetric about the centre of the 

channel because of the effect of the suction.  
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Fig. 4 The evolution of the profile of θ; (a) S=0; (b) S=1; 

(c) S=2. (Ha=1, m=1, M=1, a=0.5, b=0.5) 

Figures 5-7 present the time progression of the 

velocity components u and w and the temperature  

at the centre of the channel (y=0) for different 

values of m and a and for Ha=1, M=1, S=1 and 

b=0. Increasing the parameter a increases the 

velocity components u and w and the temperature  

for all values of m as shown in all figures.  
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Fig. 5 The evolution of u at y=0 for various values of a 

and m: (a) m=0; (b) m=1; (c) m=2; . (Ha=1, M=1, S=1, 

b=0) 

Figure 5 indicates that u increases with 

increasing m for all values of a, which can be 

attributed to the fact that an increment in m 

decreases the resistive force. Figure 6 shows that w 

decreases with increasing m for all values of a, 

which can be attributed to the fact that an increment 

in m increases the resistive force. Figure 7 shows 

that   increases with increasing m for all values of 

a as a result of increasing the dissipations. 
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Figures 8-10 present the time progression of the 

velocity components u and w and the temperature 

  at the centre of the channel (y=0) for different 

values of M and a and for Ha=1, m=1, S=1 and 

b=0. 
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Fig. 6 The evolution of w at y=0 for various values of a 

and m: (a) m=1; (b) m=2; (Ha=1, M=1, S=1, b=0) 

Figures 8-9 indicate that u and w decrease with 

increasing M for all values of a as a result of the 

damping effect of the porosity. Figure 10 depicts 

that the temperature   decreases with increasing M 

for all values of a as a result of the damping effect 

of the porosity which decreases the velocity and 

velocity gradients and, in turn, deceases the 

dissipations. Increasing the parameter a increases 

the velocity components u and w and the 

temperature  for all values of M as shown in all 

figures.  
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Fig. 7 The evolution of θ at y=0 for various values of a 

and m: (a) m=0; (b) m=1; (c) m=2 . (Ha=1, M=1, S=1, 

b=0) 
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Fig. 8 The evolution of u at y=0 for various values of a 

and M: (a) M=0; (b) M=1; (c) M=2; . (Ha=1, m=1, S=1, 

b=0) 
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Fig. 9 The evolution of w at y=0 for various values of a 

and M: (a) M=0; (b) M=1; (c) M=2. (Ha=1, m=1, S=1, 

b=0) 
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Fig. 10 The evolution of θ at y=0 for various values of a 

and M: (a) M=0; (b) M=1; (c) M=2;. (Ha=1, m=1, S=1, 

b=0) 

Figure 11 presents the time progression of the 

temperature  at the centre of the channel (y=0) for 

different values of m and b and for Ha=1, M=1, 

S=1 and b=0.  
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Fig. 11 The evolution of θ at y=0 for various values of b 

and m: (a) m=0; (b) m=1; (c) m=2. (Ha=1, M=1, S=1, 

a=0) 

Increasing the parameter b increases the 

temperature  for all values of m as shown in all 

figures. Figure 12 presents the time progression of 

the temperature  at the centre of the channel (y=0) 

for different values of M and b and for Ha=1, M=1, 

S=1 and a=0.  
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Fig. 12 The evolution of θ at y=0 for various values of b 

and M: (a) M=0; (b) M=1; (c) M=2. (Ha=1, m=1, S=1, 

a=0) 

Increasing the parameter b increases the 

temperature  for all values of M, as shown in all 

figures. However, the effect of the parameter b on  

becomes more pronounced for higher values of M.  

CONCLUSIONS 

The time varying MHD flow through a porous 

medium between two parallel plates was 

investigated considering the Hall current under the 

action of a constant pressure gradient. The viscosity 

and the thermal conductivity of the fluid are 

assumed to be temperature dependent. The effect of 

the porosity parameter M, the Hartmann number 

Ha, the Hall parameter m, the viscosity variation 

parameter a and the thermal conductivity variation 

parameter b on the velocity and temperature fields 

at the centre of the channel are discussed. 

Introducing the Hall term gives rise to a velocity 

component w in the z-direction and affects the main 

velocity u in the x-direction. It is found that the 

parameter a has a marked effect on the velocity 

components u and w for all values of M. However, 

the parameter b has no significant effect on u or w. 

The porosity parameter M has a marked effect on 

the velocity and temperature distributions, however, 

its effect on the velocity and its steady state time is 

more pronounced than that for the temperature.  
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(Резюме) 

Изследвано е преходното хидромагнитно течение през порьозна среда между две безкрайни успоредни 

порьозни плоскости с топлообмен и с отчитането на ефекта на Хол и температурно зависими свойства при 

постоянен градиент на налгането. Приложено е външно постоянно магнитно поле с равномерно всмукване и 

инженктиране перпендикулярно на хоризонталните плочи. Получено е числено решение на нелинейните 

уравнения на движението и енергията с отчитане на дисипация на енергията от вискозитета и ефекта Джаул. 

Съобщава се за ефекти на порьозността, тока на Хол, температурата зависимост на вискозитета и 

топлопроводността върху разпределението на скоростта и температурата. 

 




