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Effect of porosity on the flow and heat transfer between two parallel porous plates
with the Hall effect and variable properties under constant pressure gradient
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The transient hydromagnetic flow through a porous medium between two infinite parallel porous plates is studied
with heat transfer considering the Hall effect and the temperature dependent physical properties under constant pressure
gradient. An external uniform magnetic field and a uniform suction and injection are applied perpendicular to the
horizontal plates. A numerical solution for the governing non-linear coupled set of the momentum equations and the
energy equation including the viscous and Joule dissipations is adopted. The effect of the porosity of the medium, the
Hall current and the temperature-dependent viscosity and thermal conductivity on both the velocity and temperature

distributions is reported.
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INTRODUCTION

The flow of an electrically conducting fluid
between infinite horizontal parallel plates, known
as Hartmann flow, has interesting applications in
magnetohydrodynamic (MHD) power generators
pumps, etc. Hartmann and Lazarus [1] investigated
the effect of a transverse uniform magnetic field on
the flow of a viscous incompressible electrically
conducting fluid between two infinite parallel
plates. Exact solutions for the velocity fields were
developed [2-5] under different physical effects.
Some exact numerical solutions for the heat transfer
problem are derived in [6]. Soundalgekar et al.
[7,8] examined the effect of Hall current on the
steady MHD Couette flow with heat transfer. The
temperatures of the two plates were assumed
constant [7] or varying along the plates in the
direction of the flow [8]. Attia [9] examined the
effect of Hall current on the velocity and
temperature fields of an unsteady Hartmann flow
with uniform suction and injection applied
perpendicular to the plates.

In these studies the physical properties are
assumed to be constant; however, it is known that
some physical properties are functions of
temperature and assuming constant properties is a
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good approximation as long as small differences in
temperature are involved. More accurate prediction
for the flow and heat transfer can be achieved by
considering the variation of the physical properties
with temperature [10-13]. Klemp et al. [14] studied
the effect of temperature-dependent viscosity on the
entrance flow in a channel in the hydrodynamic
case. Attia and Kotb [15] solved the steady MHD
fully developed flow and heat transfer between two
parallel plates with temperature dependent viscosity
which has been extended to the transient state by
Attia [16]. The influence of the dependence of the
physical properties on temperature in the MHD
Couette flow between parallel plates was studied

[14,15].
In this paper, the transient Hartmann flow
through a porous medium of a viscous

incompressible electrically conducting fluid is
investigated with heat transfer under constant
pressure gradient. The viscosity and thermal
conductivity of the fluid are assumed to vary with
temperature while the Hall current is taken into
consideration. The fluid is flowing between two
electrically insulating porous plates and is acted
upon by an axial constant pressure gradient. A
uniform suction and injection and an external
uniform magnetic field are applied perpendicular to
the surface of the plates. The two plates are kept at
two constant but different temperatures and the
viscous and Joule dissipations are taken into
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consideration in the energy equation. The flow in
the porous medium is described by a differential
equation governing the fluid motion based on the
Darcy’s law which considers the drag exerted by
the porous medium [17-21]. The coupled set of the
non-linear momentum and energy equations is
solved numerically using the method of finite
differences to determine the velocity and
temperature fields. The effect of porosity of the
medium, the Hall current, the suction and injection
velocity and the temperature-dependent viscosity
and thermal conductivity on both the velocity and
temperature distributions is discussed.

FORMULATION OF THE PROBLEM

The fluid flows between two infinite horizontal
parallel plates located at the y=+h planes, as shown
in Fig. 1. The two plates are porous, insulating and
kept at two constant but different temperatures T,
for the lower plate and T for the upper plate with
T.>T1. A constant pressure gradient is imposed in
the axial x-direction and uniform suction from
above and injection from below, with velocity vo,
are applied impulsively at t=0. A uniform magnetic
field Bo, assumed unaltered, is applied
perpendicular to the plates in the positive y-
direction. The Hall effect is considered and
accordingly, a z-component of the velocity is
initiated. The viscosity and the thermal conductivity
of the fluid depend on temperature exponentially
and linearly, respectively, while the viscous and
Joule dissipations are not neglected in the energy
equation.

Uniform Suction

y=h Upper Plate T T T T
T=T, I I 1 1

.........................................

,,,,,,,,,,,,,,,,,,,,,,,,

N,
N

........................

y=-h  Lower Plate
e
u=0

Uniform Injection

Fig. 1 The geometry of the problem

The flow is through a porous medium where the
Darcy model is assumed [19]. The fluid motion
starts from rest at t=0, and the no-slip condition at
the plates implies that the fluid velocity has neither
a z nor an X-component at y=xh. The initial
temperature of the fluid is assumed to be equal to
T as the temperature of the lower plate. Since the
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plates are infinite in the x and z-directions, the

physical quantities do not change in these
directions, which leads to one-dimensional
problem.

The flow of the fluid is governed by the Navier-
Stokes equation:
Dv - = = - =
p—==-Vp+V.(uVV)+J A B,
Dt (1)
where, p is the density of the fluid, p is the
viscosity of the fluid, J is the current density, and

V is the velocity vector of the fluid, which is given
by:
V=u(y, i +v, j+w(y,t)k
If the Hall term is retained, the current density
Jis given by the generalized Ohm's law [4]:
J=0(AB,-p(J ~AB,)). @
where, o is the electric conductivity of the fluid
and B is the Hall factor [4]. Equation (2) may be

solved in J to yield:
2

JAB, =~

~((U+mw)i + (w—mu)k)
1+m ..(3)

where, m is the Hall parameter and m=oc £ B, .

Thus, the two components of the momentum Eg.
(1) read:

u, O'u udu_ oBy A

P pv°ay SO Ty e M Y (4)
O O W DD OBy (®)
Pty T o oy Tem M

where, K is the Darcy permeability [19] and
the last term in the right side of Egs. (4) and (5)
represents the porosity force in the x- and z-
directions respectively. It is assumed that the
pressure gradient is applied at t=0 and the fluid
starts its motion from rest. Thus
t=0:u=w=0. (6a)
For t > 0, the no-slip condition at the plates
implies that

y=h:u=w=0. (60)
The energy equation describing the

temperature distribution for the fluid is given by
[18]:

ar T 0, 0T L du, oW, o (7)
Py TPy 8y(k6y) ((8y) (3y))+1+m (u*+w).

Where, T is the temperature of the fluid, cp is
the specific heat at constant pressure of the fluid,
and k is the thermal conductivity of the fluid. The
last two terms in the right side of Eq. (7) represent

the viscous and Joule dissipations, respectively.
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The temperature of the fluid must satisfy the
initial and boundary conditions,

t:OT:Tl, (8&)

The viscosity of the fluid is assumed to vary
with temperature and is defined as, u=uof1(T). By
assuming the viscosity to vary exponentially with
temperature, the function fi(T) takes the form [7],
fi(T)=exp(-a1(T-T1)). In some cases al may be
negative, i.e., the coefficient of viscosity increases
with temperature [7,22]. Also the thermal
conductivity of the fluid is varying with
temperature as k=kof2(T). We assume a linear
dependence for the thermal conductivity upon the
temperature in the form k=ko(1+by(T-Ty)) [23],
where the parameter b1 may be positive or negative

[24].
Introducing the following non-dimensional
guantities,
®9.2)=0YD g Mo g Mgy WA, ToT
h ph hluo Ho TZ_Tl

¢ _—a1(To-T1)o _ ,—ab i . .
f (@) =e 11271 =¢ , a is the viscosity

variation parameter,
f2(0) =1+by (T, ~T))O=1+b6

thermal conductivity variation parameter,

is the

S = pvoh/ is the suction parameter,

2 p2p2
Ha® = aBoh /”0, Ha is the Hartmann number,

M =h?/ K, is the porosity parameter,
Pr'=40¢p %o is the prandtl number,
o 2yn2. 201

Be=uo/1"cpp"(2=T) g the Eckert number,

NuL = (87/0 Y ) § =1is the Nusselt number at the
lower plate,

Nuy = (0T/0 § ) § =1 is the Nusselt number at the
upper plate

Equations (4) to (8) read (the hats are dropped
for simplicity)

8i‘+s‘1“=e+fl(e)@f’fl(g)‘i“— Hazz(u+mw)—Mu, ©)
a oy o° oy oy l4m
@+S@: fl(H)aZ—‘g’+afl(g)@—H—azz(w—mu)—Mw. (10)
a oy o oy oy l4m
t=0:u=w=0, (11a)
t>0:y=-1, u=w=0, (11b)
t>0:y=1 u=w=0. (11¢c)

8, 50 Ly, 10D, chl(a){[é*“]2 +m2 LR
Ay gy o) )| Lem

(12)

t=0:0=0, (13a)

t>0:0=0,y=-1, (13b)

t>0:0=1y=1 (13c)

Equations (9), (10), and (12) represent a system
of coupled non-linear partial differential equations
which are solved numerically under the initial and
boundary conditions (11) and (13) using the method
of finite differences. A linearization technique is
first applied to replace the nonlinear terms at a
linear stage, with the corrections incorporated in
subsequent iterative steps until convergence is
reached. Then the Crank-Nicolson implicit method
is used at two successive time levels [25]. An
iterative scheme is used to solve the linearized
system of difference equations. The solution at a
certain time step is chosen as an initial guess for
next time step and the iterations are continued till
convergence, within a prescribed accuracy. Finally,
the resulting block tri-diagonal system is solved
using the generalized Thomas-algorithm [25].
Finite difference equations relating the variables are
obtained by writing the equations at the mid point
of the computational cell and then replacing the
different terms by their second order central
difference approximations in the y-direction. The
diffusion terms are replaced by the average of the
central differences at two successive time-levels.
The computational domain is divided into meshes
each of dimension At and Ay in time and space,
respectively. We define the variables A = du/dy, B
= ow/oy and H = 06/oy to reduce the second order
differential Egs. (9), (10) and (12) to first order
differential equations, and an iterative scheme is
used at every time step to solve the linearized
system of difference equations. All calculations are
carried out for the non-dimensional variables and
parameters given by, G =5, Pr= 1, and Ec = 0.2
where G is related to the externally applied pressure
gradient and where the chosen given values for Pr
and Ec are suitable for steam or water vapor. Grid-
independence studies show that the computational
domain O<t<oo and —1<y<1 is divided into intervals
with step sizes At=0.0001 and Ay=0.005 for time
and space respectively. Smaller step sizes do not
show any significant change in the results.
Convergence of the scheme is assumed when all of
the unknowns u, w, A, B, #and H for the last two
approximations differ from unity by less than 10
for all values of y in —1<y<1 at every time step.
Less than 7 approximations are required to satisfy
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these convergence criteria for all ranges of the
parameters studied here.

RESULTS AND DISCUSSION

Figures 2-4 show the time development of the
profiles of the velocity and temperature for various
values of the suction parameter S and for Ha =1,
m=1, M=1, a=0.5 and b=0.5.
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Fig. 3 The evolution of the profile of w; (a) S=0; (b) S=1;
(c) S=2. (Ha=1, m=1, M=1, a=0.5, b=0.5)

The velocity and temperature distributions reach
their steady state monotonically as shown in the
figure. The velocity component u reaches steady
state faster than w which, in turn, reaches steady
state faster than 6. This is expected, as u is the
source of w, while both u and w are sources of @. It
is also clear from Figs. 2-3 that the wvelocity
components are asymmetric about the centre of the
channel because of the effect of the suction.
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Fig. 4 The evolution of the profile of 0; (a) S=0; (b) S=1;
(c) S=2. (Ha=1, m=1, M=1, a=0.5, b=0.5)

Figures 5-7 present the time progression of the
velocity components u and w and the temperature 6
at the centre of the channel (y=0) for different
values of m and a and for Ha=1, M=1, S=1 and
b=0. Increasing the parameter a increases the
velocity components u and w and the temperature 6
for all values of m as shown in all figures.
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Fig. 5 The evolution of u at y=0 for various values of a
and m: (a) m=0; (b) m=1; (¢) m=2; . (Ha=1, M=1, S=1,
b=0)

Figure 5 indicates that u increases with
increasing m for all values of a, which can be
attributed to the fact that an increment in m
decreases the resistive force. Figure 6 shows that w
decreases with increasing m for all values of a,
which can be attributed to the fact that an increment
in m increases the resistive force. Figure 7 shows

that & increases with increasing m for all values of
a as a result of increasing the dissipations.
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Figures 8-10 present the time progression of the

velocity components u and w and the temperature -=2=05
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Figures 8-9 indicate that u and w decrease with o2 /
increasing M for all values of a as a result of the 01
damping effect of the porosity. Figure 10 depicts
that the temperature 0 decreases with increasing M % 1 2 3 4
for all values of a as a result of the damping effect t
of the porosity which decreases the velocity and ©

velocity gradients and, in turn, deceases the Fig. 7 The evolution of 8 at y=0 for various values of a
dissipations. Increasing the parameter a increases and m: (a) m=0; (b) m=1; (c) m=2 . (Ha=1, M=1, S=1,
the velocity components u and w and the  b=0)

temperature @ for all values of M as shown in all

figures.
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Fig. 10 The evolution of 0 at y=0 for various values of a
and M: (a) M=0; (b) M=1; (c) M=2;. (Ha=1, m=1, S=1,
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Figure 11 presents the time progression of the
temperature @ at the centre of the channel (y=0) for
different values of m and b and for Ha=1, M=1,
S=1 and b=0.
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Fig. 11 The evolution of 6 at y=0 for various values of b
and m: (a) m=0; (b) m=1; (c) m=2. (Ha=1, M=1, S=1,
a=0)

Increasing the parameter b increases the
temperature @ for all values of m as shown in all
figures. Figure 12 presents the time progression of
the temperature @ at the centre of the channel (y=0)

for different values of M and b and for Ha=1, M=1,
S=1 and a=0.
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Fig. 12 The evolution of 0 at y=0 for various values of b
and M: (a) M=0; (b) M=1; (c) M=2. (Ha=1, m=1, S=1,
a=0)

Increasing the parameter b increases the
temperature & for all values of M, as shown in all
figures. However, the effect of the parameter b on 6
becomes more pronounced for higher values of M.

CONCLUSIONS

The time varying MHD flow through a porous
medium between two parallel plates was
investigated considering the Hall current under the

action of a constant pressure gradient. The viscosity
and the thermal conductivity of the fluid are
assumed to be temperature dependent. The effect of
the porosity parameter M, the Hartmann number
Ha, the Hall parameter m, the viscosity variation
parameter a and the thermal conductivity variation
parameter b on the velocity and temperature fields
at the centre of the channel are discussed.
Introducing the Hall term gives rise to a velocity
component w in the z-direction and affects the main
velocity u in the x-direction. It is found that the
parameter a has a marked effect on the velocity
components u and w for all values of M. However,
the parameter b has no significant effect on u or w.
The porosity parameter M has a marked effect on
the velocity and temperature distributions, however,
its effect on the velocity and its steady state time is
more pronounced than that for the temperature.
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E®EKT HA IIOPBO3HOCTTA BbPXY TEYHEHHUETO 1 TOIUIOIIPEHACAHETO MEXIY
JABE IIOPLO3HHU I1JIOYM C EGEKT HA XOJI M1 I[TIPOMEHJIMBU CBOUCTBA I1PU
[NOCTOAHEH I'PAAMEHT HA HAJIAAHETO

X.A. Atnal, V. A6ac’, M. A. M. A6auitn , A. En-Jlun A6aun®
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* Hayuonanen yenmop 3a 600nu usciedsanus, Munucmepcmeo no 600nu usmounuyu u nanoseane, Ezunem

Mocrenuna xHa 15 romu, 2013 r.; kopurupana Ha 8 cenremBpu, 2013 1.

(Pesrome)

H3cnenBaHo € MpexoJHOTO XUAPOMArHUTHO TEUECHHUE IIpe3 MOpPhO3HA Cpella MEXAy JBe Oe3KpailHu ycrnopeiaHu
MOPBO3HH IJIOCKOCTH C TOILIOOOMEH M C OTYMTaHEeTO Ha edexTa Ha XOJ W TEeMIepaTypHO 3aBHCHUMHU CBOWMCTBA MPH
MIOCTOSIHEH TpajiueHT Ha Hanra"ero. [IpUaokeHo e BBHIIHO MOCTOSHHO MarHWTHO IOJie C PaBHOMEPHO BCMYyKBaHE U
WH)KEHKTHUpaHe MEePHeHIUKYIIPHO HAa XOPU3OHTAJIHUTE IUIouH. [loslydyeHO e 4HCIeHO pelleHHe Ha HeJWHEeHHuTe
ypaBHEHHS Ha JBIDKCHUETO U CHEPrHsTa C OTUYMTAHE HAa JUCHIIALMS Ha CHeprusra oT BUCKO3uTeTa U edekra Jxay.
CrobmiaBa ce 3a e(eKkTH Ha IOpPHO3HOCTTA, TOKa Ha XOJ, TeMIeparypaTra 3aBHCHMOCT Ha BHCKO3HTETa U
TOIUTOTNPOBOJHOCTTA BBPXY PA3NpPEICICHUECTO Ha CKOPOCTTA U TEMIIEpaTypara.
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