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Analytical solution of a transient Hartmann flow with Hall current and ion slip using
finite Fourier transform
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The transient Hartmann flow of an electrically conducting viscous incompressible fluid bound by two parallel
insulating porous plates is studied using finite Fourier transform. An external uniform magnetic field is applied while
the fluid motion is subjected to a constant pressure gradient. The Hall current and the ion slip are taken into
consideration in the momentum equations. The effect of the Hall current and ion slip on the velocity and distribution of

the flow is investigated.
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INTRODUCTION

The Hartmann flow defined as a
magnetohydrodynamic (MHD) flow between two
parallel plates is a classical issue that has many
applications in MHD pumps, MHD power
generators, accelerators, aerodynamics heating, and
petroleum industry. In ref. [1] the influence of a
transverse uniform magnetic field on the flow of a
conducting fluid between two insulated infinite
parallel stationary plates is studied. Then a lot of
research work has been done concerning the
Hartmann flow under different physical effects [2-
11]. In most cases the Hall and ion slip terms were
ignored in applying Ohm’s law as they have no
marked effect for small and moderate values of the
magnetic field. However, when an application of
MHD requests a strong magnetic field, the
influence of electromagnetic force becomes
noticeable [4]. Under these conditions, the Hall
current and ion slip are important as they will affect
the magnitude and direction of the current density
and consequently affect the magnetic force term. In
ref. [6] the Hall effect on the steady motion of
electrically conducting and viscous fluids in
channels was studied. In [8-9] the effect on the
steady MHD Couette flow with heat transfer was
studied. The temperatures of the two plates were
assumed either to be constant [8] or to vary linearly
along the plates in the direction of the flow [9]. In
[11] the effect of Hall current on the steady
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Hartmann flow subjected to a uniform suction and
injection at the bounding plates was studied. Later,
in [12] the problem of the unsteady state with heat
transfer was extended taking into consideration the
Hall effect while neglecting the ion slip. In [13] the
ion slip was taken into consideration and the
equations of motion were solved analytically using
the Laplace transform (LT) method. The energy
equation was solved numerically using the finite
difference method taking into consideration the
Joule and viscous dissipations.

In this paper, an analytical solution is presented
for the transient flow of an incompressible, viscous,
electrically conducting fluid between two infinite
insulating horizontal plates with the consideration
of both the Hall current and ion slip. The fluid is
acted upon by a constant pressure gradient in the
axial direction, while a uniform magnetic field is
applied perpendicular to the plates. The induced
magnetic field is neglected by assuming a very
small magnetic Reynolds number. The momentum
equations are solved analytically using Finite
Fourier Sine transform (FFST). The effect of the
magnetic field, the Hall current, and the ion slip on
the velocity distribution is studied.

DESCRIPTION OF THE PROBLEM

The two insulating porous plates are located at
y =thand extended from Xx=0 to « and from

2 =0 to oo as shown in Fig.1.
The fluid flow between the two plates is

influenced by a constant pressure gradient 3—'3 in
X
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Fig. 1. Schematic diagram of the system.

the x-direction. The whole system is subject to a
uniform magnetic field in the positive y-direction
while the induced magnetic field is neglected. The
existence of the Hall term gives rise to the z-
component of the velocity. Thus the velocity
vector of the fluid is given as:

v(y,t) =u(y, )i +w(y,t)k 1)
The fluid flow is governed by the momentum

equation

p%:,uVZV—VP+J/\BO (2)

where p and u are the density and the

coefficient of viscosity of the fluid, respectively. If
the Hall and ion slip terms are retained, the current
density J is given by

J :O'{V/\BO—,B(J /\BO)+'BBi J ABO)/\BO}

B,
®3)

where o is the electric conductivity of the fluid,

£ is the Hall factor and B, is the ion slip

parameter [4].
yield

Eqn. (3) may be solved in J to

GBZ

JA B0 :—ﬁ
L+ B.)" + B,

{(@+ B.BJu+Bw)i+(+ BB, )w- Bu)k}

(4)

where S, =o S B, is the Hall parameter [4].

Thus, in terms of Egns. (1) and (4), the two
components of Eqgn. (2) read
ou_ dP o oB?

'Dat = &-F/'l?_m((l_kﬂiﬂe)u*_ﬁew)!
®)

612

w_ dPw  oB?
P o T g A

7 (L+ B )W f.u),
(6)

The second and third terms on the right-hand
side represent the viscous and Joule dissipations,
respectively.

The problem is simplified by writing the
equations in  non-dimensional form. The
characteristic length is taken to be h, and the

. ... ph? . .
characteristic time is p—2 while the characteristic

U

velocity is ih We define the following non-
o,

dimensional quantities:
X .y z phu . phw o Pph?

)A(:f’y:fj:f,ﬂzilwzi’ = 2 7f:721
h” h h )z u H P
In terms of the above non-dimensional variables
and parameters, Eqgns. (5)-(6) are written as (the

"hats" will be dropped for convenience):

au dP du Ha’
Z_ T, e , 7
ow  d*w Ha?

o @y AN @

where Ha is the Hartmann number subjected to
the following initial and boundary conditions:
u=w=0 ; t<0
P (9)
u=w=0;y==%1
The main purpose of this paper is to solve the
partial differential Egns. (7), and (8) by FFST.

SOLUTION OF THE EQUATIONS OF MOTION
USING FFST

The FFST of a function is defined as:
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L

Fl000)=G,(0) = [ g )y 0y <L n=123.... (10)

where the kernel of the transform is:
sin (”T”y) (11)

For transforming the second derivative we use the
operational property

2
Fs(d dgﬁy’J =27 (90) ~cos(nm)))- (257G, (m (12)

y L L

Thus, if the boundary value problem involves a

second-order derivative, extends over a finite
domain 0<y <L , and has boundary conditions

at both ends in the following form:
9(0,t)= f,(t)
g(L,t)z fz(t)’

then FFST can be used to transform the 2nd-
order derivative.

(13)

Defining:
V=U+iw (14)
Eqns. (7) and (8) can be combined as:
v__dp v M ps sy (15)
a oo gy T
Applying FFST to Eqn. (15) yields
2_2
Ne v (7 v =P+ 2 (cosnz-1) 16)
ot dx nrx
where
Ha’ .
ks——— 1+ B8, —ip. (17)
(1+ﬂiﬂe)2+ﬂ§( B.B.~iB.)

The solution of the linear inhomogeneous partial
differential Eqn. (16) under the initial and boundary
conditions given in Eqgn. (9) is given as

ZP*Z(cosnﬂ—l) _[m@}
V,(n,t) = & 272[7[2 1-e (18)
+k
( 4 )

The inverse transform of and their real and
imaginary components are given by

dP

2
.| —*—(cos nz-1) [, 19
V(y’t):z dxnﬁ{l-e[ ! }] sin [n”(32/+1)j ( )

22
n=1 [n T +k]
4

u(y,t) =Refv(y,0)}, w(y,t) = Im{u(y,t)} (20)
Figs. 2(a) and 2(b) present the evolution of the
profiles of the velocity components u and W

versusy for H, =3; .=/, =3 ; (;_P:_5 “and
X

for various values of time t (0.1; 0.5; 1.5; 3.0). The
figures show the parabolic shape of the profiles and

indicate that both u and w reach their steady state
monotonously with time.

RESULTS AND DISCUSSION

As seen in Tables 1 and 2, the comparison
between LT as used by Attia [13] and FFST
methods for solving the equation of motion for
Hartmann flow indicates that the outputs are nearly
equal which lends confidence to the results
obtained here.

Table 1. Comparison between LT and FFST for
calculating u

t=0.5 t=1.5 t=3

LT FFST LT FFST LT FFST

-1 0 0 0 0 0 0
-0.8 0.5815 0.5811 0.6898 0.6898 0.6936 0.6936
-0.6  0.9968 0.9961 1.2029 1.2028 1.2101 1.2101
-04 12734 12724 15571 15569 1567 1.567
-0.2 14312 143 17647 1.7646 1.7764 1.7763
0 14825 14812 1.8331 1.833 1.8454 1.8453
0.2 14312 143 1.7647 1.7646 1.7764 1.7763
04 12734 12724 15571 1.5569 1.567 1.567
0.6 0.9968 0.9961 1.2029 1.2028 1.2101 1.2101
0.8 0.5815 0.5811 0.6898 0.6898 0.6936 0.6936

1 0 0 0 0 0 0

Table 2. Comparison between LT and FFST for
calculating w

t=0.5 t=1.5 t=3
LT FEST LT FFST LT FFST

-1 0 0 0 0 0 0
-0.8  0.0229 0.0229 0.0438 0.0437 0.0456 0.0456
-0.6  0.0429 0.0428 0.0824 0.0824 0.0859 0.0859
-0.4 0.0579 0.0578 0.1124 0.1124 0.1172 0.1172
-0.2 0.0673 0.0671 0.1313 0.1313 0.1369 0.1369

0 0.0704 0.0703 0.1378 0.1377 0.1436 0.1436
0.2 0.0673 0.0671 0.1313 0.1313 0.1369 0.1369
0.4 0.0579 0.0578 0.1124 0.1124 0.1172 0.1172
0.6 0.0429 0.0428 0.0824 0.0824 0.0859 0.0859
0.8 0.0229 0.0229 0.0438 0.0437 0.0456 0.0456

1 0 0 0 0 0 0

In Fig. 2, the velocity component U reaches the
steady state faster thanw.
Fig. 3 presents the time evaluation of u and w

at y=0 for various values of the Hall parameter £, ,
the ion slip parameter S;at Ha =1.
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Fig. 2(a). Variation of U versusy.
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Fig. 2(b). Variation of W versusy.

In Fig. 3(a), increasing the parameters g, and

Fi  will increase U because the effective
conductivity g 5 > decreases with
(1+ﬂiﬂe) +ﬂe

increasing S, or B; which reduces the magnetic
damping force on u.

In Fig. 3(b), increasing S, will increase the
velocity component W as a result of the Hall effect,
but increasing S; will decreasew for all values of

p.as a result of decreasing the source term of w
B.Hau
(1+ﬂiﬂe)2 +ﬂe
L+ B f.)Ha’w
W+ B ) + B,
onWw becoming clearer for higher values of g,
In Fig. 3(b), increasing S, will increase the

velocity component W as a result of the Hall effect,
but increasing S; will decrease W for all values of

p.as a result of decreasing the source term of W
( B.Ha’u

(1+ﬂiﬁe)2 +:Be
614

) and increasing its damping

term , the influence of ion sli
( ) p

) and increasing its damping

(L+ .. )Ha*w
W+BiB)* + B
onw becoming clearer for higher values of S,

For large p, the components U and W overshoot,

exceeding their steady state values and then go
down towards steady state; the ion slip plays a role
in suppressing these overshoots.

term (

), the influence of ion slip
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Fig. 3(a). Effect of Hall Parameter f,and ion slip
parameter S on the time development of U at y=0.
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Fig. 3(b). Effect of Hall Parameter f,and ion slip
parameter f3; on the time development of W at y=0.

Fig. 4 presents u, and w at y=0 for various
values of the Hartmann number Ha and the ion
slip parameter f; with g, =3.

As shown in Fig. 4(a), for small values of Ha,
increasing S; will slightly decrease U as a result of
increasing the damping factor on u; further
increasing B, will increase the effective
conductivity and, in turn, will decrease the damping
factor on U which increases U ; on the other hand,
for larger values of Ha, u becomes small;
increasing f; always decrease the effective
conductivity and consequently, will increase U, the
effect of on U becoming more apparent for large

values of Ha.
In Fig. 4(b), increasing the ion slip parameter

B, will decrease W for all values of Ha , its effect
is more apparent for higher values of Ha .
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Fig. 4(a). Effect of Hartmann Number Ha and ion slip
parameter f; on the time development of u at y=0
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Fig. 4(b). Effect of Hartmann Number Ha and ion slip

parameter £, on the time development of W at Y=0.
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CONCLUSIONS

FFST method can be used to obtain an analytical
solution for the transient Hartmann flow of an
electrically conducting, viscous, incompressible
fluid bound by two parallel insulating plates with
Hall current and ion slip. The comparison of the
FFST method with previously used methods as LT
shows that this technique is very simple and gives
accurate results for solving the governing

momentum equation for the whole range of the
physical parameters used.
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AHAJIMTUYHO PEINEHUE HA 3ATAYATA 3A TIPEXOJHO TEHEHUE HA HARTMANN C
TOK HA HALL 1 MOHHO ITPUITITE3BAHE CIIOMOILTA HA KPAVHA
TPAHCOOPMAILIMA HA FOURIER

VY. A6n En-Meren*, X. Atna, M. Enbapayu

Jlenapmamenm no usuuno u mamemamuyno unxicenepcmeo, Hnoicenepen gpaxynmem, Yuusepcumem 6 En-Darwom, En-
Darom 63514, Ecunem

[Moctpnuna Ha 8 aBrycrt, 2013 r.; kopurupana Ha 18 HoemBpH, 2013 T.

(Pesrome)

HU3cnenpaHo e mpexoaHoto Teuenue Ha Hartmann flow mHa enexkrTpompoBosiy HECBHBaeM BHCKO3CH (GIyHI MEKIY
JIBE YCHOpPEIHM HW30JaTOPHM IUIOYM C NOMOIUTa Ha KpaiiHa Fourier’oBa TpaHcdopmanus. 3azadaTa € pelleHa Ipu
NpUIaraHe Ha BBHINHO MAarHUTHO MOJi€ M TIOCTOSHEH IPaJueHT Ha XHUAPaBIMYHOTO HaisraHe. Toxksr Ha Hall u
MPUILTBE3BAHETO Ha HOHM ca OTYETEHH B YPABHEHUSTAa HA JABIKCHMETO. YCTAaHOBEHO € TSAXHOTO BIIMSHHUE BBPXY

CKOPOCTHUA HpO(i)I/IJ'I B TCYHOCTTA.

615



