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The transient Hartmann flow of an electrically conducting viscous incompressible fluid bound by two parallel 

insulating porous plates is studied using finite Fourier transform.  An external uniform magnetic field is applied while 

the fluid motion is subjected to a constant pressure gradient. The Hall current and the ion slip are taken into 

consideration in the momentum equations.  The effect of the Hall current and ion slip on the velocity and distribution of 

the flow is investigated. 
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INTRODUCTION 

The Hartmann flow defined as a 

magnetohydrodynamic (MHD) flow between two 

parallel plates is a classical issue that has many 

applications in MHD pumps, MHD power 

generators, accelerators, aerodynamics heating, and 

petroleum industry. In ref. [1] the influence of a 

transverse uniform magnetic field on the flow of a 

conducting fluid between two insulated infinite 

parallel stationary plates is studied. Then a lot of 

research work has been done concerning the 

Hartmann flow under different physical effects [2-

11].  In most cases the Hall and ion slip terms were 

ignored in applying Ohm’s law as they have no 

marked effect for small and moderate values of the 

magnetic field. However, when an application of 

MHD requests a strong magnetic field, the 

influence of electromagnetic force becomes 

noticeable [4]. Under these conditions, the Hall 

current and ion slip are important as they will affect 

the magnitude and direction of the current density 

and consequently affect the magnetic force term. In 

ref. [6] the Hall effect on the steady motion of 

electrically conducting and viscous fluids in 

channels was studied. In [8-9] the effect on the 

steady MHD Couette flow with heat transfer was 

studied. The temperatures of the two plates were 

assumed either to be constant [8] or to vary linearly 

along the plates in the direction of the flow [9]. In 

[11] the effect of Hall current on the steady 

Hartmann flow subjected to a uniform suction and 

injection at the bounding plates was studied. Later, 

in [12] the problem of the unsteady state with heat 

transfer was extended taking into consideration the 

Hall effect while neglecting the ion slip. In [13] the 

ion slip was taken into consideration and the 

equations of motion were solved analytically using 

the Laplace transform (LT) method. The energy 

equation was solved numerically using the finite 

difference method taking into consideration the 

Joule and viscous dissipations.  

In this paper, an analytical solution is presented 

for the transient flow of an incompressible, viscous, 

electrically conducting fluid between two infinite 

insulating horizontal plates with the consideration 

of both the Hall current and ion slip.  The fluid is 

acted upon by a constant pressure gradient in the 

axial direction, while a uniform magnetic field is 

applied perpendicular to the plates.  The induced 

magnetic field is neglected by assuming a very 

small magnetic Reynolds number.  The momentum 

equations are solved analytically using Finite 

Fourier Sine transform (FFST).  The effect of the 

magnetic field, the Hall current, and the ion slip on 

the velocity distribution is studied. 

DESCRIPTION OF THE PROBLEM 

The two insulating porous plates are located at 

hy  and extended from 0x  to   and from 

0z  to   as shown in Fig.1. 

The fluid flow between the two plates is 

influenced by a constant pressure gradient 
dx

dP
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Fig. 1. Schematic diagram of the system. 

 

 

the x-direction.  The whole system is subject to a 

uniform magnetic field in the positive y-direction 

while the induced magnetic field is neglected.  The 

existence of the Hall term gives rise to the z-

component of the velocity.  Thus the velocity 

vector of the fluid is given as: 

ktywityutyv ),(),(),(       (1) 

The fluid flow is governed by the momentum 

equation 
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where   and   are the density and the 

coefficient of viscosity of the fluid, respectively. If 

the Hall and ion slip terms are retained, the current 

density J is given by 
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where   is the electric conductivity of the fluid, 

  is the Hall factor and iB  is the ion slip 

parameter [4].  Eqn. (3) may be solved in J  to 

yield 
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where oe B     is the Hall parameter [4].  

Thus, in terms of Eqns. (1) and (4), the two 

components of Eqn. (2) read 
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The second and third terms on the right-hand 

side represent the viscous and Joule dissipations, 

respectively. 

The problem is simplified by writing the 

equations in non-dimensional form. The 

characteristic length is taken to be h, and the 

characteristic time is 
2

2



h
 while the characteristic 

velocity is 
h


. We define the following non-

dimensional quantities: 
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In terms of the above non-dimensional variables 

and parameters, Eqns. (5)-(6) are written as (the 

"hats" will be dropped for convenience): 
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where Ha  is the Hartmann number subjected to 

the following initial and boundary conditions: 

1y  ;  0

0  t;   0





wu
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The main purpose of this paper is to solve the 

partial differential Eqns. (7), and (8) by FFST. 

SOLUTION OF THE EQUATIONS OF MOTION 

USING FFST 

The FFST of a function   is defined as: 

x 

y 

z 

Main flow (u) 

Lower plate 

Upper plate 
y = h 

y = -h 
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where the kernel of the transform is: 
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 For transforming the second derivative we use the 

operational property 
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Thus, if the boundary value problem involves a 

second-order derivative, extends over a finite 

domain Ly0   , and has boundary conditions 

at both ends in the following form: 
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then FFST can be used to transform the 2nd-

order derivative. 

Defining:   

iwuv                 (14) 

Eqns. (7) and (8) can be combined as: 
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Applying FFST to Eqn. (15) yields  
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The solution of the linear inhomogeneous partial 

differential Eqn. (16) under the initial and boundary 

conditions given in Eqn. (9) is given as 
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 The inverse transform of  and their real and 

imaginary components are given by 
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Figs. 2(a) and 2(b) present the evolution of the 

profiles of the velocity components u  and w  

versus y for 3aH ; 3 ie   ; 5
dx

dP
 , and 

for various values of time t (0.1; 0.5; 1.5; 3.0).   The 

figures show the parabolic shape of the profiles and 

indicate that both u  and w  reach their steady state 

monotonously with time. 

RESULTS AND DISCUSSION 

As seen in Tables 1 and 2, the comparison 

between LT as used by Attia [13] and FFST 

methods for solving the equation of motion for 

Hartmann flow indicates that the outputs are nearly 

equal which lends confidence to the results 

obtained here. 
Table 1. Comparison between LT and FFST for 

calculating u  

Y 
t=0.5 t=1.5 t=3 

LT FFST LT FFST LT FFST 

-1 0 0 0 0 0 0 

-0.8 0.5815 0.5811 0.6898 0.6898 0.6936 0.6936 

-0.6 0.9968 0.9961 1.2029 1.2028 1.2101 1.2101 

-0.4 1.2734 1.2724 1.5571 1.5569 1.567 1.567 

-0.2 1.4312 1.43 1.7647 1.7646 1.7764 1.7763 

0 1.4825 1.4812 1.8331 1.833 1.8454 1.8453 

0.2 1.4312 1.43 1.7647 1.7646 1.7764 1.7763 

0.4 1.2734 1.2724 1.5571 1.5569 1.567 1.567 

0.6 0.9968 0.9961 1.2029 1.2028 1.2101 1.2101 

0.8 0.5815 0.5811 0.6898 0.6898 0.6936 0.6936 

1 0 0 0 0 0 0 

Table 2. Comparison between LT and FFST for 

calculating w  

Y 
t=0.5 t=1.5 t=3 

LT FFST LT FFST LT FFST 

-1 0 0 0 0 0 0 

-0.8 0.0229 0.0229 0.0438 0.0437 0.0456 0.0456 

-0.6 0.0429 0.0428 0.0824 0.0824 0.0859 0.0859 

-0.4 0.0579 0.0578 0.1124 0.1124 0.1172 0.1172 

-0.2 0.0673 0.0671 0.1313 0.1313 0.1369 0.1369 

0 0.0704 0.0703 0.1378 0.1377 0.1436 0.1436 

0.2 0.0673 0.0671 0.1313 0.1313 0.1369 0.1369 

0.4 0.0579 0.0578 0.1124 0.1124 0.1172 0.1172 

0.6 0.0429 0.0428 0.0824 0.0824 0.0859 0.0859 

0.8 0.0229 0.0229 0.0438 0.0437 0.0456 0.0456 

1 0 0 0 0 0 0 

In Fig. 2, the velocity component u  reaches the 

steady state faster than w . 

Fig. 3 presents the time evaluation of u  and w  

at y=0 for various values of the Hall parameter e , 

the ion slip parameter i at 1Ha . 
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Fig. 2(a). Variation of u  versus y. 

 
Fig. 2(b). Variation of w  versus y. 

In Fig. 3(a), increasing the parameters e  and 

i  will increase u  because the effective 

conductivity 
22)1( eei 




 decreases with 

increasing e  or i  which reduces the magnetic 

damping force on u . 

In Fig. 3(b), increasing e will increase the 

velocity component w  as a result of the Hall effect, 

but increasing i  will decrease w  for all values of 

e as a result of decreasing the source term of w  
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In Fig. 3(b), increasing e will increase the 

velocity component w  as a result of the Hall effect, 

but increasing i  will decrease w  for all values of 
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For large e  the components u  and w  overshoot, 

exceeding their steady state values and then go 

down towards steady state; the ion slip plays a role 

in suppressing these overshoots. 
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Fig. 3(a). Effect of Hall Parameter e and ion slip 

parameter i  on the time development of u  at y=0. 
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Fig. 3(b). Effect of Hall Parameter e and ion slip 

parameter i  on the time development of w  at y=0. 

Fig. 4 presents u , and w  at y=0 for various 

values of the Hartmann number Ha  and the ion 

slip parameter i  with 3e . 

As shown in Fig. 4(a), for small values of Ha , 

increasing i will slightly decrease u  as a result of 

increasing the damping factor on u ; further 

increasing i  will increase the effective 

conductivity and, in turn, will decrease the damping 

factor on u  which increases u ; on the other hand, 

for larger values of Ha , u  becomes small; 

increasing i  always decrease the effective 

conductivity and consequently, will increase u , the 

effect of on u  becoming more apparent for large 

values of Ha . 

In Fig. 4(b), increasing the ion slip parameter 

i  will decrease w  for all values of Ha , its effect 

is more apparent for higher values of Ha . 
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Fig. 4(a). Effect of Hartmann Number Ha and ion slip 

parameter i  on the time development of u  at y=0 
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Fig. 4(b). Effect of Hartmann Number Ha  and ion slip 

parameter i  on the time development of w  at Y=0. 

CONCLUSIONS 

FFST method can be used to obtain an analytical 

solution for the transient Hartmann flow of an 

electrically conducting, viscous, incompressible 

fluid bound by two parallel insulating plates with 

Hall current and ion slip. The comparison of the 

FFST method with previously used methods as LT 

shows that this technique is very simple and gives 

accurate results for solving the governing 

momentum equation for the whole range of the 

physical parameters used.    
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(Резюме) 

Изследвано е преходното течение на Hartmann flow на електропроводящ несвиваем вискозен флуид между 

две успоредни изолаторни плочи с помощта на крайна Fourier’ова трансформация. Задачата е решена при 

прилагане на външно магнитно поле и постоянен градиент на хидравличното налягане. Токът на Hall и 

приплъзването на йони са отчетени в уравненията на движението. Установено е тяхното влияние върху 

скоростния профил в течността. 


