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Radiation effects in the two-dimensional flow of an electrically conducting second-grade fluid are examined. Non-

linear radiative heat flux is considered in the formulation of the energy equation. Viscous dissipation effects are 

retained. The developed nonlinear differential systems are solved numerically using the shooting method with a fourth-

fifth order Runge-Kutta integration procedure. The solutions are validated with the built-in numerical solver bvp4c of 

the software MATLAB. The dimensionless expressions of skin friction coefficient and rate of heat transfer at the sheet 

are evaluated and discussed. 
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INTRODUCTION 

The study of viscoelastic boundary layer flows due 

to the movement of inextensible surfaces is 

important in many manufacturing processes. A 

number of technical processes concerning polymers 

involve the cooling of continuous strips or 

filaments by drawing them through a quiescent 

fluid. The thin polymer sheet constitutes a 

continuously moving surface with a non-uniform 

velocity through an ambient fluid. In these cases the 

properties of the final product depend to a great 

extent on the rate of cooling, which is governed by 

the structure of the boundary layer near the moving 

strip. Due to the entrainment of the ambient fluid, 

this boundary layer is different from that in the 

Blasius [1] flow past a fixed flat plate. Crane [2] 

was probably the first to discover the flow due to a 

stretching surface in an otherwise ambient fluid. 

Since then many authors have studied various 

aspects of this problem such as the effects of 

surfaces mass transfer, magnetic field, arbitrary 

stretching velocity, variable wall temperature or 

heat flux (Gupta and Gupta [3], Chakrabarti and 

Gupta [4], Grubka and Bobba [5], Banks [6], Chen 

and Char [7], Ali [8], Pop and Na [9], Magyari and 

Keller [10], Liao and Pop [11], Kumari and Nath 

[12], Hayat et al. [13-15], Mustafa et al. [16,17], 

Zheng et al. [18-20], Liu et al. [21], etc. The 

thermal radiation effect in such flow configurations 

is prominent in nuclear power plants, satellites and 

space vehicles, in combustion appliances such as 

fires, furnaces, IC engines, ship compressors, solar 

radiation buildings, etc. Influence of thermal 

radiation on the steady incompressible flow of a 

viscoelastic fluid with constant suction has been 

discussed by Raptis and Perdikis [22]. Sedeek [23] 

and Raptis et al. [24] examined the thermal 

radiation effect on the boundary layer flow of an 

electrically conducting viscous fluid. Bataller [25] 

examined the radiation effects in the Blasius flow 

of a viscous fluid. Elbeshbeshy and Emam [26] 

discussed the thermal radiation effects on the 

unsteady flow due to a stretching sheet immersed in 

a porous medium. Homotopic solutions for a 

unsteady mixed convection flow of a Jeffrey fluid 

with thermal radiation have been provided by Hayat 

and Mustafa [27]. Motsumi and Makinde [28] 

investigated the radiation effects on the 

incompressible flow of a nanofluid with viscous 

dissipation. Flow and heat transfer of a MHD 

viscous fluid over an unsteady stretching surface 

with radiation heat flux are examined by Zheng et 

al. [29]. In another paper, Zheng et al. [30] 

discussed the buoyancy lift effects on the mixed 

flow and radiation heat transfer of a micropolar 

fluid towards a vertical permeable plate. * To whom all correspondence should be sent: 
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Recently the flow analysis of non-Newtonian fluids 

has received remarkable attention due to its 

relevance in various processes such as plastic 

manufacture, performance of lubricants, application 

of paints, polymer processing, food processing and 

movement of biological fluids. In particular, the 

boundary layer flow of a second-grade fluid is 

widely discussed. Numerical investigation of the 

mass transfer effects in the flow of an electrically 

conducting second-grade fluid has been performed 

by Cortell [31]. Mixed convection flow of a 

second-grade fluid past a vertical flat surface with 

variable surface temperature has been investigated 

by Mushtaq et al. [32]. Hayat et al. [33] examined 

the effects of thermal radiation and viscous 

dissipation in the Blasius flow of a second-grade 

fluid. Three-dimensional boundary layer flow 

analysis of a second- grade fluid has been 

addressed by Nazar and Latip [34]. Exact solutions 

for the hydro-magnetic flow and heat transfer in a 

second-grade fluid with heat generation/absorption 

have been obtained by Abel et al. [35]. Nazar et al. 

[36] discussed the Stokes second problem for a 

second-grade fluid. Jamil et al. [37] examined the 

flow of a second-grade fluid due to constantly 

accelerated shear stresses. Homotopic solutions for 

a squeezing flow of a second-grade fluid between 

parallel disks have been computed by Hayat et al. 

[38]. Perturbation analysis for a flow of modified 

second-grade fluid over a porous plate has been 

performed by Pakdermili et al. [39]. Steady laminar 

boundary layer flow of a second-grade fluid in the 

presence of thermophoresis effects has been 

examined by Olajuwon [40]. 

In some recent papers the heat transfer 

characteristics have been investigated using non-

linear Rosseland approximation for thermal 

radiation (see Pantokratoras and Fang [41], 

Mushtaq et al. [42], Cortell [43] and Mushtaq et al. 

[44]). The present work deals with the influence of 

non-linear thermal radiation on the flow of an 

electrically conducting second-grade fluid due to a 

stretching sheet. The developed mathematical 

problems were solved for the numerical solution 

through a shooting method. It is important to point 

out that computation of either analytic or numerical 

solutions of the classical Navier–Stokes equations 

(characterizing complex flow mechanics) [45-48] is 

often handy for the researchers. Graphs showing 

the behavior of various parameters are sketched and 

analyzed. 

PROBLEM FORMULATION 

We consider the steady flow of an 

incompressible second-grade fluid over a stretching 

sheet situated at y = 0. Let Uw = ax be the velocity 

of the stretching sheet where a > 0 is constant. A 

uniform transverse magnetic field of strength B0 is 

applied normal to the flow. The induced magnetic 

field is neglected under the assumption of small 

magnetic Reynolds’ number. The boundary layer 

equations governing the steady two-dimensional 

stagnation-point flow of second- grade fluid are 

[31-33]: 

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 0, 

(1) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
 = 𝜈

𝜕2𝑢

𝜕𝑦2
−
𝜎𝐵0

2

𝜌
𝑢 

+
𝛼1
𝜌
(
𝜕𝑢

𝜕𝑥

𝜕2𝑢

𝜕𝑦2
+ 𝑢

𝜕3𝑢

𝜕𝑥𝜕𝑦2
+ 𝑣

𝜕3𝑢

𝜕𝑦3
+
𝜕𝑢

𝜕𝑦

𝜕2𝑣

𝜕𝑦2
), 

(2) 

where ν is the kinematic viscosity, σ is the electrical 

conductivity of the fluid, B0 is uniform magnetic 

field along the y-axis, α1(≥0) is the material fluid 

parameter of the second-grade fluid, u and  𝑣 are 

the velocity components in x- and y-directions, 

respectively. The boundary conditions in the 

present problem are 

𝑢 = 𝑈𝑤(𝑥) = 𝑎𝑥, 𝑣 = 0    at 𝑦 = 0, 
(3) 

𝑢 → 0   as 𝑦 → ∞. 

Introducing the following variables 

𝜂 = √
𝑎

𝜈
𝑦,    𝑢 = 𝑎𝑥𝑓′(𝜂),   𝑣 = −√𝜈𝑎𝑓(𝜂).   (4) 

Eq. (1) is identically satisfied and Eqs. (2) and (3) 

become 

𝑓′′′ + 𝑓𝑓′′ − 𝑓′
2
−𝑀𝑓′ 
+𝛽(2𝑓′𝑓′′′ − 𝑓𝑓𝑖𝑣 − 𝑓′′2) = 0 

(5) 

𝑓(0) = 0,   𝑓′(0) = 1,   𝑓′(+∞) → 0, (6) 

where 𝑀 = 𝜎𝐵0
2/𝜌𝑎 is the magnetic parameter 

and 𝛽 = 𝛼1𝑎/𝜌𝜈 is viscoelastic parameter. It 
interesting to note that Eq. (5) subjected to the 

boundary conditions (6) admits a closed form exact 

solution of the following form (see Cortell [31]).  

𝑓(𝜂) =
1 − 𝑒−𝑏𝜂

𝑏
;    𝑏 = √

1 +𝑀

1 + 𝛽
. (7) 

Heat transfer analysis 

Under usual boundary layer assumptions, the 

energy equation in the presence of thermal radiation 

and viscous dissipation effects is given by 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2
+
𝜈

𝐶𝑝
(
𝜕𝑢

𝜕𝑦
)
2

−
1

𝜌𝐶𝑝
(
𝜕𝑞𝑟
𝜕𝑦
) 

+
𝛼1
𝜌𝐶𝑝

(𝑢
𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝑣

𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2
), 

(8) 

where T is the temperature, α is the thermal 

diffusivity, Cp is the specific heat at constant 

pressure and qr is the radiative heat flux. Using the 
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Rosseland approximation for thermal radiation and 

applying to optically thick media, the radiative heat 

flux in Eq. (8) is given by [49]  

𝑞𝑟 = −
4𝜎∗

3𝑘∗
𝜕𝑇4

𝜕𝑦
= −

16𝜎∗

3𝑘∗
𝑇3
𝜕𝑇

𝜕𝑦
  , (9) 

where σ* and κ*are the Stefan-Boltzman constant 

and the mean absorption coefficient, respectively. 

Now (8) can be expressed as 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=
𝜕

𝜕𝑦
[(𝛼 +

16𝜎∗𝑇3

3𝜌𝐶𝑝𝑘
∗
)
𝜕𝑇

𝜕𝑦
] 

+
𝜈

𝐶𝑝
(
𝜕𝑢

𝜕𝑦
)
2

+
𝛼1
𝜌𝐶𝑝

(𝑢
𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝑣

𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2
). 

(10) 

It is worth mentioning here that in the previous 

studies on thermal radiation (see [22-30] and 

various references therein), T4 in Eq. (9) was 

expanded about the ambient temperature T∞. 

However in the subsequent subsection this was 

avoided. 

Constant wall temperature (CWT) 

The relevant boundary conditions in this 

situation are 
𝑇 = 𝑇𝑤     at 𝑦 = 0;       𝑇 → 𝑇∞ as 𝑦 → ∞, (11) 

with Tw > T∞ and Tw  and T∞ are the sheet’s 

temperature and the ambient fluid’s temperature, 

respectively. Defining the non-dimensional 

temperature 𝜃(𝜂) = (𝑇 − 𝑇∞)/(𝑇𝑤 − 𝑇∞) and also 

𝑇 = 𝑇∞(1 + (𝜃𝑤 − 1)𝜃) with 𝜃𝑤 = 𝑇𝑤/𝑇∞ 

(temperature ratio parameter), the first term on the 

right hand side of Eq. (10) can be written as 𝛼𝜕/
𝜕𝑦[𝜕𝑇/𝜕𝑦(1 + 𝑅𝑑(1 + (𝜃𝑤 − 1)𝜃)

3)], where 

𝑅𝑑 = 16𝜎
∗𝑇∞

3/3𝑘𝑘∗ denotes the radiation 

parameter for the CWT case, and Rd = 0 provides 

no thermal radiation effect. The latter expression 

can be further reduced to: 

𝑎(𝑇𝑤 − 𝑇∞)

𝑃𝑟
[(1 + 𝑅𝑑(1 + (𝜃𝑤 − 1)𝜃)

3)𝜃′]′, (12) 

where Pr = ν/α is the Prandtl number. Eq. (14) 

takes the following form 

[(1 + 𝑅𝑑(1 + (𝜃𝑤 − 1)𝜃)
3)𝜃 ′]′ 

= −𝑃𝑟 (𝑓𝜃 ′ + 𝐸𝑐
∗ [𝑓′′

2 + 𝛽 (𝑓′𝑓 ′′2 − 𝑓𝑓′′𝑓′′′)]), 
(13) 

with boundary conditions  

𝜃(0) = 1, 𝜃(+∞) → 0, (14) 

where 𝐸𝑐
∗ = 𝑈𝑤

2/𝐶𝑝(𝑇𝑤 − 𝑇∞) is the local Eckert 

number. We notice that x- coordinate could not be 

eliminated from the energy equation. Thus we look 

for the availability of local similarity solutions. 

Using Eq. (7), (13) becomes 

[(1 + 𝑅𝑑(1 + (𝜃𝑤 − 1)𝜃)
3)𝜃 ′]′ 

= −𝑃𝑟 [(
1 − 𝑒−𝑏𝜂

𝑏
)𝜃 ′ + 𝐸𝑐

∗𝑏2(1 + 𝛽)𝑒−2𝑏𝜂]. 
(15) 

The heat transfer rate at the sheet is defined as 

𝑞𝑤 = −𝑘 (
𝜕𝑇

𝜕𝑦
)
𝑦=0

+ (𝑞𝑟)𝑤 

= −𝑘(𝑇𝑤 − 𝑇∞)√
𝑎

𝜈
[1 + 𝑅𝑑𝜃𝑤

3 ]𝜃 ′(0), 

(16) 

and with the help of the local Nusselt number 

𝑁𝑢𝑥 = 𝑥𝑞𝑤/𝑘(𝑇𝑤 − 𝑇∞), one obtains 

 
𝑁𝑢𝑥

√𝑅𝑒𝑥
= −[1 + 𝑅𝑑𝜃𝑤

3 ]𝜃 ′(0). (17) 

Prescribed surface temperature (PST) 

The boundary conditions in this case are 
𝑇 = 𝑇𝑤 = 𝑇∞ + 𝑐𝑥

2     at 𝑦 = 0; 
      𝑇 → 𝑇∞  as 𝑦 → ∞, 

(18) 

where 𝑐 > 0 is a constant and Eq. (10) reduces to 

(1 + 𝑅𝑑)𝜃
′′ 

= −𝑃𝑟 [
𝑓𝜃 ′ − 2𝑓 ′𝜃

+𝐸𝑐 [𝑓
′′2 + 𝛽 (𝑓 ′𝑓 ′′2 − 𝑓𝑓 ′′𝑓 ′′′)]

], 
(19) 

with the boundary conditions (18). Here 𝐸𝑐 =
𝑎2/𝑐𝐶𝑝 is the constant Eckert number. Using Eq. 

(7), (19) becomes 

(1 + 𝑅𝑑)𝜃
′′ 

= −𝑃𝑟 [
(
1 − 𝑒−𝑏𝜂

𝑏
) 𝜃 ′ − 2𝜃𝑒−𝑏𝜂

+𝐸𝑐𝑏
2(1 + 𝛽)𝑒−2𝑏𝜂

]. 
(20) 

Here the heat transfer rate at the sheet 

becomes 

𝑞𝑤 = −𝑘 (
𝜕𝑇

𝜕𝑦
)
𝑦=0

+ (𝑞𝑟)𝑤 

= −𝑘𝑐𝑥2√
𝑎

𝜈
[1 + 𝑅𝑑]𝜃

′(0), 

 

(21) 

and using the definition of reduced Nusselt 

number one obtains 

𝑁𝑢𝑥

√𝑅𝑒𝑥
= −[1 + 𝑅𝑑]𝜃

′(0). 

 

 

(22) 

Numerical Method 

We have solved Eqs. (15) and (20) with the 

boundary conditions (14) by the shooting method 

using fourth-fifth order Runge-Kutta integration 

technique. The governing equations are reduced to 

a system of first order equations with boundary 

conditions (14) as 
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CWT case  

{
  
 

  
 

𝑑𝜃

𝑑𝜂
= 𝑃; 

𝑑𝑃

𝑑𝜂
=

[−Pr
((

1−𝑒−𝑏𝜂

𝑏
)𝑃 + 𝐸𝑐

∗𝑏2(1 + 𝛽)𝑒−2𝑏𝜂)

−3𝑅𝑑𝑃
2(𝜃𝑤 − 1)(1 + (𝜃𝑤 − 1)𝜃)

2

]

1 + 𝑅𝑑(1 + (𝜃𝑤 − 1)𝜃)
3

,

 

PST case 

{
 
 

 
 

𝑑𝜃

𝑑𝜂
= 𝑃; 

𝑑𝑃

𝑑𝜂
=

[𝑃𝑟 (
2𝜃𝑒−𝑏𝜂 − (

1−𝑒−𝑏𝜂

𝑏
)𝑃

−𝐸𝑐𝑏
2(1 + 𝛽)𝑒−2𝑏𝜂

)]

1 + 𝑅𝑑
,

 

 

 

 

 

(23) 

 

 

 

 

 

 

 

 

 

 

(24) 

 

with boundary conditions    

𝜃(0) = 1, 𝜃(∞) → 0. 

 

(25) 

In order to integrate Eqs. (23) and (24) we 

require a value for 𝑃(0) i.e 𝜃′(0), however no such 

value is given at the boundary. Due to this reason, 

suitable values of 𝑃(0) are guessed and then 

integration is carried out. The values of 𝑃(0) are 

iteratively obtained such that solutions satisfy the 

boundary condition at large 𝜂 with an error less 

than 10−7. 

NUMERICAL RESULTS AND DISCUSSION 

This section discusses the behavior of embedded 

physical parameters on the dimensionless velocity 

and temperature functions. Influence of magnetic 

parameter 𝑀 on the velocity is depicted in Fig. 1(a). 

It is noticed that increasing magnetic field strength 

restricts the flow and consequently thins the 

momentum boundary layer. Fig. 1(b) indicates an 

increase in the velocity and the boundary layer 

thickness when the viscoelastic effects strengthen. 

Fig. 2 is plotted to perceive the effects of 

radiation parameter on the temperature 𝜃. The 

results are given for both CWT and PST cases. In 

contrast to the linear radiation heat transfer 

problem, even a minor variation in the radiation 

parameter greatly influences the temperature and 

the thermal boundary layer thickness. The increase 

in temperature distribution with the radiation 

parameter is significant in the CWT case when 

compared with the PST case.  

 

 
(a) CWT 

 
(b) PST 

Fig.1. Velocity field 𝑓 ′for different values of 

magnetic parameter 𝑀 and viscoelastic parameter 𝛽. 

 
(a) CWT 

 
(b) PST 

Fig. 2. Temperature profiles for different values of 

the radiation parameter 𝑅𝑑. 
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a) CWT 

 
(b) PST 

Fig. 3. Temperature profiles for different values of 

𝑃𝑟 

The effect of Prandtl number 𝑃𝑟 on the 

temperature is shown in Fig. 3.  

Increase in 𝑃𝑟 may be regarded as a decrease in 

the thermal diffusivity and consequently a thinner 

thermal boundary layer is expected for a greater 𝑃𝑟. 

Specifically 𝑃𝑟 =  0.72, 1, 7 corresponds to air, 

electrolyte solution such as mixture of salt and 

water and water, respectively. We observed that the 

profiles get closer to the boundary as Pr increases 

indicating a diminution in the thermal boundary 

layer thickness. We also noticed that temperature 

profiles show large deviation with the variation of 

Pr for a sufficiently strong thermal radiation effect 

(𝑅𝑑 = 1).  
The influence of Eckert number 𝐸𝑐 on the 

temperature for both CWT and PST cases is 

observed in Fig. 4. Here the profiles are computed 

with and without thermal radiation effects. When 

𝑅𝑑 = 0 the temperature 𝜃 first increases to a 

maximum value and then smoothly descends to 

zero value as 𝜂 → ∞. Moreover, the temperature 𝜃 

is an increasing function of 𝐸𝑐.  
Fig. 5 illustrates the behavior of second-grade 

fluid parameter 𝛽 on the thermal boundary layer. In 

accordance with Abel et al. [39], the temperature 𝜃 

is a decreasing function of 𝛽. In other words, the 

fluid becomes colder as normal stress differences 

are increased. Numerical values of the 

dimensionless heat transfer rate at the sheet for 

 
 (a) CWT 

 
(b) PST  

Fig. 4: Temperature profiles for different values of 

the Eckert number. 

 
a) CWT 

 

(b) PST 

Fig. 5. Temperature profiles for different values of 

the viscoelastic parameter 𝛽. 
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various parametric values are provided in tables 1 

and 2.  

The results are presented with and without 

thermal radiation effects. The results are also 

compared with those obtained through the built-in 

numerical solver bvp4c of the software MATLAB 

and found in an excellent agreement. The Nusselt 

number (−𝜃′(0)) is positive for all values of the 

parameters. This is because the fluid is colder than 

the solid wall and heat, therefore, flows from the 

stretching sheet to the fluid. Regardless of the 

values of other parameters the magnitude of the 

local Nusselt number is larger in the absence of 

thermal radiation effects (𝑅𝑑 = 0). The magnitude 

of the local Nusselt number is an increasing 

function of the second-grade fluid parameter. 

However, it slightly decreases as the magnetic field 

effects intensify. We have earlier observed in the 

graphical results that profiles become increasingly 

steeper when 𝑃𝑟 is increased. The Nusselt number, 

being proportional to the initial slope, increases 

with an increase in 𝑃𝑟. That’s why the wall heat 

transfer rates are larger in the case of liquids when 

compared with gases such as air, hydrogen, etc. 

Moreover, the behavior of the Eckert number 𝐸𝑐 on 

the dimensionless heat transfer rate is similar to that 

of 𝑃𝑟 in a qualitative sense. 

CONCLUSIONS 

Thermal radiation effects on the flow of an 

electrically conducting second-grade fluid are 

investigated. Heat transfer analysis data were 

considered for two different heating processes, 

namely, (i) a sheet with a constant wall temperature 

(CWT) and (ii) a sheet with the prescribed surface 

temperature (PST). The temperature function in the 

Table 1. Heat transfer rate at the wall 𝜃′(0) in the CWT case for various parametric values 

𝑃𝑟 𝜃𝑤 𝐸𝑐
∗ 𝑀 𝛽 𝑅𝑑 𝑓 ′′(0) 

𝜃′(0) 
bvp4c Shooting 

7 2 0.2 0 0 1 -1 -0.37106 -0.37106 

     0  -1.45808 -1.45806 

    0.5 1 -0.81649 -0.38379 -0.38380 

     0  -1.44118 -1.44116 

   0.5 1 1 -0.86602 -0.34539 -0.34539 

     0  -1.20864 -1.20863 

    1.5 1 -0.77459 -0.34809 -0.34809 

     0  -1.18001 -1.17999 

   1.5 2 1 -0.91287 -0.27540 -0.27540 

     0  -0.75827 -0.75826 

  0.5  3 1 -0.79056 0.01436 0.01436 

     0  1.20696 1.20698 

0.72 1 0.2 0.5 0.5 1 -1 -0.22543 -0.22544 

     0  -0.36975 -0.36975 

   1.5  1 -1.2909 -0.16740 -0.16740 

     0  -0.28331 -0.28332 

Table 2. Heat transfer rate at the wall 𝜃′(0) in the PST case for various parametric values 

𝑃𝑟 𝐸𝑐 𝑀 𝛽 𝑅𝑑 𝑓 ′′(0) 
𝜃′(0) 

bvp4c Shooting 
7 0.2 0 0 1 -1 -2.56119 -2.56120 

    0  -3.69545 -3.69550 

   0.5 1 -0.81649 -2.59471 -2.59472 

    0  -3.72385 -3.72381 

  0.5 1 1 -0.86602 -2.49538 -2.49542 

    0  -3.57175 -3.57177 

   1.5 1 -0.77459 -2.50739 -2.50744 

    0  -3.58013 -3.58019 

 0 1.5 2 1 -0.91287 -2.75488 -2.75489 

    0  -3.99382 -3.99388 

   3 1 -0.79056 -2.78670 -2.78673 

    0  -4.02502 -4.02509 

0.72 0.5 0.25 1 1 -0.79056 -0.64036 -0.640370 

    0  -0.96354 -0.96354 

  0.5 2 1 -0.70710 -0.63373 -0.63374 

    0  -0.93594 -0.93596 
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radiation term of the energy equation is not further 

expanded by Taylors’ series about the ambient 

temperature in the CWT case. The key points of the 

present study can be summarized as follows: 

1. The presence of magnetic field creates a 

bulk known as Lorentz force which opposes the 

fluid velocity and, as a consequence, boundary 

layer thins as the strength of magnetic field 

increases. Moreover, the temperature 𝜃 is an 

increasing function of the magnetic parameter 𝑀. 

On the other hand, the magnitude of velocity and 

the boundary layer thickness are increasing 

functions of the second-grade fluid parameter 𝛽. 

2. Temperature 𝜃, being a strong function of 

the radiation parameter in the CWT case, 

appreciably increases in the CWT case when 

compared with the PST case. 

3. A significant reduction in the temperature 

function is observed when the Prandtl number 𝑃𝑟 is 

increased for sufficiently stronger thermal radiation 

effect. This outcome is similar in both CWT and 

PST cases. Moreover, the rate of heat transfer at the 

sheet enhances when 𝑃𝑟 is increased. 

4. The magnitude of Nusselt number 𝜃 ′(0) 
increases with an increase in the viscoelastic effects 

and magnetic field strength.  

5. The present work for the case of Newtonian 

fluid can be recovered by setting 𝛽 = 0. 
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 (Резюме) 

Изучени са ефектите на радиационното топлопренасяне в двумерно течение в електропроводяща течност от 

втора степен. Нелинейният радиационен топлинен поток се отчита при формулирането на  уравнението за 

енегията. Ефектите на вискозна дисипация на енергията са взети под внимание. Системата от нелинейни 

диференциални уравнения е решена числено по метода на прострелването с интеграционна процедура по Рунге-

Кута от четвърта степен. Решенията са проверени с вградена числена процедура bvp4c от софтуера MATLAB. 

Пресметнати са коефициента на триене и скоростта на топлопренасяне. 

 


