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Some problems in the column apparatuses modeling
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The solutions of some theoretical problems of the column apparatuses modeling in the cases of one-, two- and three-
phase processes are presented in the approximation of the mechanics of continua. The effect of the radial non-
uniformity of the velocity distribution, the effect of the tangential flow and simultaneous mass and heat transfer
processes in one-phase column are analyzed. The possibility for obtaining the interphase distribution of the mass
transfer resistances in two-phase columns is shown. An iterative numerical algorithm for non-stationary processes

modeling in three-phase columns is also presented.
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INTRODUCTION

The fundamental modeling problems in column
apparatuses are a result of the complicated
hydrodynamic behavior of the flows in the
columns. The presence of different phases (gas,
liquid and solid) leads to the necessity for
formulation of two or three phases hydrodynamic
problem. At the other side the equations of the
interphase surface, where boundary conditions must
be formulated, are practically unknown. As a result
the solution of the interphase mass transfer problem
is not possible because the velocity function in the
convection-diffusion equation is unknown.

The interphase mass transfer problem in column
apparatuses may be modeled using a new approach
based on the approximations of the mechanics of
continua [1-4], where the mathematical point is
equivalent to a small (elementary) physical volume,
sufficiently small with respect to the apparatus
volume, but at the same time sufficiently large with
respect to the intermolecular volumes of the
medium. As a result the mathematical description
of the processes presents the mass balance in this
elementary volume in the form of a convection-
diffusion type of model, using the convection-
diffusion equations. These types of models [1-4]
allow a qualitative analysis of the process in order
to obtain the main, small and slight physical effects
(mathematical operators in the models), and to
reject the slight effects (operators).

The use of the convection-diffusion type of
models for modeling (quantifying) of the processes
in column apparatuses is not possible because the
velocity function in the convection-diffusion
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equations is unknown. The problem can be avoided
if the average values of the velocities and
concentrations over the cross-sectional area of the
column are used, i.e. the medium elementary
volume (in the physical approximations of the
mechanics of continua [1-4]) will be equivalent to a
small cylinder with radius ro and a height, which is
sufficiently small with respect to the column height
and at the same time sufficiently large with respect
to the intermolecular distances in the medium.

The main part of the problems in one-phase
columns is the decrease of the processes efficiency
as a result of the effect of radial non-uniformity of
the velocity distribution. This problem can be
avoided by using a tangential inlet of the flow in
the column, which is very useful in the cases of
simultaneous mass and heat transfer processes.

Theoretical —analysis of the interphase
distribution of the mass transfer resistances in two-
phase columns allows obtaining the optimal gas-
liquid dispersion, i.e. a system of gas-liquid drops
(liquid-gas bubbles) in the case when the main part
of the interphase mass transfer resistance is in the
gas (liquid) phase.

ONE-PHASE MODEL

Let’s consider a liquid motion in a column
reactor with radius ro (m) and height | (m), where a
homogeneous chemical reaction between two liquid
components is realized. If the difference between
the component concentrations is very large, then
the chemical reaction will be of first order.

© 2015 Bulgarian Academy of Sciences, Union of Chemists in Bulgaria 755


mailto:chboyadj@bas.bg

Chr. B. Boyadjiev et al.: Some problems in the column apparatuses modeling

Convection—diffusion type of model

If the velocity u [m.s] and concentration ¢
[kg.m=] distributions in the column are defined as:

u=u(r), c=c(r,z), )
the convection—diffusion type of model [4] can be
expressed as:

ac o°c laoc o _
U—=D| —+-—+— |-kc
0z o> ror or?

z=0, c(r,0)=c,, UCc,=uc,—D—;
( ) 0 0 0 oz
ac oc
r=0, =0; r=r, —=0,
or " or 2)

where D [m?s?] is diffusivity k [s1] - chemical
reaction rate constant, i, Co - input values of the
average velocity and concentration
The qualitative analysis of the model (2) will be
made using generalized variables:

r=rR, z=1Z, u(r)=u(r,R)=0U(R),

¢(r.z)=c(r,R 1Z)=c,C(R.Z), g=(r|—°j2, )

Where 1o, |, @, co are the characteristic (inherent)
scales (maximal or average values) of the variables.
Introducing the generalized variables (3) in (2), the
convection—diffusion type of model can be written
as:

VR =Pl et 'R m t are

Z=0, C=1 1=U- Pe*lac;
0z

2 2
oc FO[ o°’C 14C acj_DC;

oC oC
=0; R=1 —=0,
R (4)

DI ul kl
where e=Fo1Pe?, Fo_T Pe_B Da_j are the

u 0
Fourier, Damkohler and
respectively.
In the cases of big values of the average velocity
(0=Fo<10?), from the convection—diffusion type of
model (4) may obtain a convection type of model:

ac
“(Riz

R=0,

Peclet numbers,

=-DaC;, Z2=0, C=1 (5)

The effect of the chemical reaction rate is
negligible if 0=Da<10? and as a result C=1.
When a fast chemical reaction takes place (Da>10
2), the terms in the model must be divided by Da
and the approximation 0=Da<107 has to be applied.
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The result is:
2
p_Fo[ldc dc) .
DalRdrR dR
R =0, d—C=0; R=1, d—C=O (6)
dR dR !

i.e. the model (6) is diffusion type.
Average concentration model

The average velocity and concentration at the
column cross-sectional area can be presented as

< 2
=—_[ru )=r—2jrc(r,z)dr. )
00

The convectlon—dlffusion type of model (2)
assumes the velocities and concentration
distributions to be presented [3, 4] by the average
functions (7):

u(ry=ud(r), c(r,z)=c(z)e(r.z), (g
where i(r) and ¢ (r,z) represent the radial non-
uniformity of both the wvelocity and the
concentration  distributions,  satisfying  the
conditions:

To
—jru rydr=1, %Ir ¢(r,z)dr=1 (g

I’.O 0
An average concentration model may be
obtained [1-4] if the expressions (8) were placed
into the model equations (2) and then multiplied by
r and integrated with respect to r over the interval

[0, ro]. The result is:

— 2_
aua—c+d—a__—D8——kE
0z dz oz’
oc
z=0, ¢(0)=c,, —=0,
0)=c, = (10)
where
(Z=OC(Z)=£]QI’UCdI’. (11)
r2
The use of the generalized variables:
;&
z=1, C=—. a(2)=a(12)=A(2). gy
0
leads to:
Al A _perd ?—Dac_;
dz dz dz
= dC
Z=0, C=1 —=0.
iz (13)
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In the cases
0=Fo0<1072, 0=Pel=¢F0<107?, e<1

(see (5)) the model (13) has the convective form:
pdC As_ -DaC; Z=0, C=1. (14)
dZ dz
The function A(Z) in (13, 14) represents the
effect of the velocity radial non-uniformity on the

mass transfer efficiency in the column apparatus:
2%

A(Z):a(z):r—z_[rucdr, (15)
00

where

a@):@:u(m,

6(rz):c(r,z):C£R,Z)
ot c(2)
G(Z)=E§Z)=ZIRC(R,Z)dR (16)

and as a result one can obtain the following
equation:
L C(R,Z)
A(Z):Z RU(R)_—dR_ 17
[T @)

Effect of the radial non-uniformity of the velocity
distribution

The case of parabolic velocity distribution
(Poiseuille flow) will be used as an example:

u(r):U[Z—Z:—z). (18)

0

From (3, 18) follows:

U(R)=2—2R2_ (19)
The model (4) may raise several particular cases
that permit to obtain C(R,Z), C(Z) and to present
results for A(Z)>1, using different approximations:
Fo=1 Da=12 A(Z)=a,,

1 N
aO:WZA(Zn);
n=1
Fo=0,01 Da=12, A(Z)=1+az,

13 A(Z )—1
N Z;, 2 . (20)
The obtained values of a, oo in (20) are shown in
Table 1.
The -equations (13, 14) allow to obtain

expressions for the concentration axial gradient:

_ -
dC _ prOAs . piperd S —~A'DaC;
dz dz dz

dC dA — _

= atPhE_atDpaC.

dz dz (21)

From (8) follows that =1 if the velocity radial
non-uniformity is absent (u=:x), i.e. A=a=1 (see (9,
11, 15)). The presence of a radial non-uniformity of
the axial velocity in the columns leads to A>1, i.e. a
decrease of the concentration axial gradient and
process efficiency [4]. In Table 1 are shown the
process efficiencies (conversion degree) in the
cases of presence (G) and absence (Go) of a radial
non-uniformity of the axial velocity in the column:

G =1—2jRU (R)IC(RL)AR, G,=1-C(1). (22)

Table 1. Parameter values and values of process
efficiencies (conversion degree)

a ao G Go
Da=1, Fo=0 0.5511 0.5568 0.6734
Da=1, Fo=0.1 0.2463 0.5938  0.6452
Da=1, Fo=1 1.02 0.6211 0.6281
Da=2, Fo=0 1.3623 0.7806  0.8516
Da=2, Fo=0.l 0.4547 0.8115 0.8502
Da=2, Fo=1 1.04 0.8481 0.8538

The values in Table 1 demonstrate that the radial
non-uniformity of the axial velocity component
leads to a substantial decrease of the conversion
degree.

Effect of the tangential flow

Let’s consider a cylindrical column with axial
input of gas (liquid) flow (Fig.1a). The axial and
radial wvelocity components u,=u,(r,z), ur=ur(r,z)
satisfy the continuity equation:

ou, ou. u,
+—+-—+L=0:
oz or r '

2=0, u,(r,0)=u;(r), r=r, u/(r,z)=0(23)

where u°(r) is the input distribution of the axial
velocity component as a result of the geometric
conditions at the axial input of the column. The
velocity components u,(r,z), ur(r,z) can be obtained
as a solution of the Navier-Stokes equations in
boundary layer approximation, i.e. to solve the
problem of the gas (liquid) jet in immobile gas
(liquid). As a result the radial non-uniformity of the
axial velocity component exists for the columns
with limited height. In these conditions the
conversion degree increase is related to the
decrease of the radial non-uniformity of the axial
velocity component (special geometric conditions
at the axial input of the column).
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A possibility for a partial reduction of the radial
non-uniformity of the axial velocity component is
to use a column with tangential enter [5] of the gas
(liquid) flow (Fig.1b) in the column input.

0 o O

a b
Fig. 1. Cylindrical column with: a - axial gas (liquid)
flow; b - tangential gas (liquid) flow in column inlet; c-
tangential gas (liquid) flow in the column working area.

A maximal reduction of the radial non-
uniformity of the axial velocity component is to use
a column with tangential enter [6] of the gas
(liquid) flow (Fig.1c) in the column working area.
In the cases of tangential input of the flow in the

column, the wvelocity components u,=u(r,ze)

ur=ur(r,z,p), U,=U,(r,z,p) satisfy the continuity

equation:

ou

N, +1 £ +6u’ +2 o,

oL rop or r

2=0, 0<r<r, 0<¢<2r,

-_Q

u,(0,r,p)=t=—;

(Or0) =0 ="

r=r, 0<z<l, 0<@<27z, u/(z,5,¢)=0;
Q

=0, u,(0,r,,0)=u)=— ' (24)
Ty

where Q (ms?) is gas (liquid) flow rate in the
column and rgo is the column inlet radius.
The applying of generalized variables:

z=1Z, r=rR, =27 ®,
0 p=cr ’ (25)

o
u =auy,, ur:uTOU u, =uu,

leads to
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ouU, U

oU ]
144, ur, oU, +Fr):0;

L
R 0p ull "6z = @R
Z=0, 0<R<l, 0<®<l U,(O,R,®)=l
R=1 0<Z<l, 0<d<l U (Z,1d)=0;
®=0, U,(0,0)=1 (26)

+27

Practically U0 Uy and the following
approximation can be used:
_oz I g9
. au(ﬂ _ 0
i.e. o0 = (28)
and from (26) follows:
o, ou, U, _
+—+—=0;
o OoR R
Z=0, 0<R<] UZ(O,R)El;
R=1 0<Z<] Ur(Z,l)EO_ (29)
From model (29) follows that practically

U:(R,2)=1, U(Z,R)=0 (except for the thin boundary
layer at the wall).

The presented theoretical analysis shows that
using tangential input of the flow in the column
area leads to a significant decrease of the velocity
radial non-uniformity and as a result to an increase
of the conversion degree in the columns.

Simultaneous mass and heat transfer processes

The heat and mass transfer Kinetics theory
shows [3], that the process rate depends on the
characteristic velocity in the boundary layer. The
big difference between these velocities leads to a
substantial increase of the heat transfer rate through
the column wall in the cases of axial and tangential
input of the flows (T Uy).

Let’s consider simultaneous mass and heat
transfer processes in a column chemical reactor,
where the velocity, concentration and temperature t
(deg) distributions in the column are denoted as:

u=u(r), c=c(rz), t(r.z), (30)

The mass and heat transfer model in the physical
approximations of the mechanics of continua [1-4]
can be expressed as:

oc d%c laoc o ,
U—=D| S+-—+— |-kc;
0z 0z ror or
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oc
z=0, c(r,0)=c,, UC,=uc,—D—,
( ) 0 0 0 62
oc oc
r=0, —=0; r=r, —=0.
p» v (31)

ot A (ot 1ot o q .,
Uu—= St —t— kc;
0z ror or

E_'Ocp pcp
2=0, t(r,0)=t, oty =ut, - %
pe, 0z
ot
r=r, t=t; —-i1—=k,
’ a P (32)

where p (kg.m?®) is density, ¢, [J.kgl.deg?] -
specific heat at constant pressure, 4 [J.m.st.deg?]
— thermal conductivity, q [J.kg™] — heat effect of
the chemical reaction, ko [J.m2s?] - local heat
transfer flux. In the model (31, 32) Dk,4,p,Cp,0,ko
are temperature functions, where to <t<tsort;<t <
to in the case of endothermic (q<0) or exothermic
(g>0) chemical reaction. Practically the difference |
to- ts | is not so big and in (31, 32) may use constant
values of D k,A,0,Cp,Q,Ko at t"=(to+ts)/2.

From the condition t;=const follows that the volume
heat generation in the column is equal to the
interface heat transfer through the column wall:

27rj rokcdr = -27r,4 [ﬂj
0 or rr,

ot Lok _
5] @@, @

A qualitative analysis of the model (31, 32) will
be made using generalized variables:

r=rR, z=1Z, u(r)=u(r,R)=0U(R),
c(r,z)=c(nR12)=¢c,C(R,Z),
t(r,z)=t(rR,12)=tT(R,2), (34)

where ro,l,i,co,t” are the characteristic (inherent)
scales (maximal or average values) of the variables.
The introduction of generalized variables (34) in
(31, 32) leads to:

2 A2 2
uR)E_D(EIC 1C oC) K.
6z ur7\1°0z> RER oR
Z=0, C(R0O)=1, 1EU(R)—B§;
ul oz
oC oC
R=0, —=0; R=1 —=0.
oR oR (35)

2 A2 2:
U(R)EiT_ Al [I’OaT lal GT}_ alke, C

— = +S—+ -C;
oz upc,Z\ 1P az7 RR R’ ) upct
A o7 t
Z=0, T(R0)=T,, 1=U(R)- —, =2,
(RO)=T, (R) Tupc,l oz’ ° t
2
R=1, T=T; T - b%ugz) 1% @3
R 2t t

In the cases of very high columns it may use the
2
approximation 0= %310‘2 and the models (35,

36) are of parabolic type. If the average velocity i
is very high, it may use the approximations

0=2! <107 gng 0=
ur,

<107 j.e. the models

% upc,ry
(32, 33) are of convective type:
oC {
U(R)—=-—C; Z=0, C(R,0)=1.
(R) == (RO)=1.@37)
oT  qlkc
U(R)—== °C; Z2=0, T(R,0)=T,.

Average temperature model

The average temperature at the column cross-
sectional area can be presented as

2

F(z):r—zjrt(r,z)dr. (39)
00

The velocities and temperature distributions can
be presented by the average functions (7, 39):

u(ry=ad(r), t(r,z)=t(z)f(r,z2), (40)

where ii(r,z) and f (r,z) represent the radial non-
uniformity of both the velocity and the temperature
distributions, satisfying the conditions:

2% 25
E!ru(r)drzl, E!rt(r,z)drzl. (41)

An average temperature model may be obtained
if the expressions (40) are put into the model
equations (32) and then multiplied by r and
integrated with respect to r over the interval [0,ro].
The result is:

_dt de, - A dfT,
ou—+ ut = >
dz dz pC, dz
_ dt
z=0, t(0)=t,, —=0
(0)=t, =0, 42)
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where
2%

a, :at(z)zr—zjrutdr. (43)
00

The use of generalized variables:

Z - t
Z=1 T=r a(2)=a(12)=A(2), 44
0
leads to:
dT  dA - A, d°T.
_+_T= 2 2
dz dz pchI dz
_ daT
Z:O’ T:l, —=0.
7 (45)

Similar to (17) the function A«(Z) may be
obtained after solution of the problems (35) and
(36):

s T(RZ)
A(Z)_ZE[RU(R)?dR,
T_(z)zt_t(*z)zszT(R,z)dR_ (46)

TWO-PHASE MODEL

The convection-diffusion models are used [6-11]
for qualitative analysis of the processes in two-
phase columns. A new possibility is the
determination of the interphase distribution of the
mass transfer resistances in gas-liquid systems.

Interphase distribution of the mass transfer
resistances

Let’s consider a physical absorption in a co-
current gas-liquid bubble column with a radius ro
and working zone height I, where the interphase
mass transfer rate across the gas-liquid boundary is
k(ci-yc2) and y is the Henry’s constant. If &1 and &
are the gas and liquid parts of the medium
elementary volume (e1+ &2 =1) in the column (gas
and liquid holdup coefficients), the convection-
diffusion equations have the forms:

ac, o’c, laoc, o
U —L= —2 2+ L -k(c,—x¢,),
o 1[622 ror or (6= xe.)
ac, d’c, loc, o
u,—==¢,D 224+ —2 1+k(c —x¢,), (47
ey T 2(622 ror arzj (6= 7¢:). (47

where ui(r), ux(r) are velocity distributions in the
gas and liquid phases, ci(z,r) and D;(i=1,2) are the
concentration distributions and the diffusivities of
the absorbed substance in the gas and liquid. The
boundary conditions of the model equations have
the form:
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z=0, ¢/(0,r)=c), ulcfzul(r)cf—Dl(aclj ;
z=0

0z
0 — .0 0 602 .
z2=0, c,(0,r)=c;, uzczzuz(r)cz—Dz( j ;
62 z=0
oc, oc oc, oc
:Oa _1:_250; = ] _1:_2_01
o or o or o 48

where i, ¢, i=1,2 are the average velocities and
the input concentrations in the gas and liquid
phases. Practically ¢,°=0.

A qualitative analysis of the model may be
made, using dimensionless (generalized) variables:

R=L, z=2 u =% uy =% -4 -
r,’ g Tt m Y T
(49)

The model (47, 48) in generalized variables (49)

has the form:

2 2
Ul(R)acl_Fl( 0°C,  14C,  &C,

—t=Fo + + -K(C,-C,);
oz ‘' "R R asz (€.-C.)

Uz(R)aCZ—FOZ[g azczz +£&+ 6222J+K‘W(C1_CZ);
oz 82 ROR R &0,
Z =0, Cl(O,R)El, 1:U1(R)_pel—1(%] ;
oZ ),
Z=0, C,(0,R)=0, (&j _o
oz ),_,
oG aC. .
R:O, —'EO, R:]-: — = : |=1’2,
R R (50)
where
K: k(ﬂ 1 FOiZ_DiIZ, Pelzu—ll, i:1,2(51)
&U; u;r, X
If denote:
FAT)
=22 =K p=pip
&,u,
pepl pmp pm 52)
1+ py 1+p,°

the parameters p; and p, can be considered as mass
transfer resistances in the gas and liquid phases and
from (50) it may obtain directly models of the
physical absorption in the cases of highly (y—0,
po—0, p>—0, C=0) and slightly (y—o, po—x,
p1—0, C1=1) soluble gases. The use of model (50)
for prediction of the distribution of mass transfer
resistances allows an optimal organization of the
absorption process, i.e. absorption in gas-liquid
drops systems, when the resistance is in the gas
phase (p,<102,p,<107), or absorption in liquid-



Chr. B. Boyadjiev et al.: Some problems in the column apparatuses modeling

gas bubble systems, when the resistance is in the
liquid phase (o, <102, p, 210%),

THREE-PHASE MODEL

The convection-diffusion models in three -phase
systems [12, 13] are very often characterized by a
fixed solid phase, where there is no diffusion
transfer. As a result, the process in the solid phase
is usually non-stationary. One of the main problems
in these cases is the solution of the set of model
equations.

Non-stationary processes modeling

Let’s consider a non-stationary absorption-
adsorption process in column apparatuses in a
cylindrical coordinate system (z,z,r), where 7 (S) is
the time. A co-current liquid-gas bubbles flow
moves through a fixed solid adsorbent particles
bed. A component of the gas phase absorbs
physically in the liquid phase and after that adsorbs
physically in the adsorbent particles. A chemical
reaction takes place in the adsorbent particles
between adsorbed component and the active centers
(AC) in the adsorbent.

The concentrations of the absorbed component
in the gas (i=1) and liquid (i=2) phases are ci(z,z,r),
while c3(z,z,r) and co(z,z,r) are the concentrations of
the absorbed component and AC in the solid phase,
respectively. The interphase mass transfer rates of
the physical absorption and adsorption are k(Ci-yc2)
and kq(C2-C3).

The chemical reaction rate in the solid phase is
KoCsCo. As a result the convection-diffusion model
of this absorption-adsorption process has the form:

ac,

oc
& a—l + glul a— =
T Z

o’c, 1aoc, oO%
—eD | =24+ 71 k(e - ye,),
! 1(822 ror arzj (6~ xc)

&,—2+gU,—2= —2
20 272 oz oz ror or?

+k (¢, — x¢c,) -k, (c,—¢,),

2 2
ac, acz_gzDz(a c, 1oc, 0 czj+

oc
&y 6_2'3 =k, (Cz - Cs)_ KoCsCo

oc,
& P —K,CsCo, & + 8, + &, =1,

with initial and boundaries conditions

0

— — 0 — — — 0.
=0, ¢=c, ¢,=0, ¢;=0, c,=¢;;

_ oc
c,=c’, Tc zul(r)clO - Dl(a—zlJ ;
z=0

2=0, ¢, =0, (%j —0;
oz z=0
r=0 %:aiz' = %:%E
or or  or or
(54)

In the presented model (53, 54) &, D; are phase

part and diffusivity in the solid (i=0), gas (i=1) and
liquid (i=2) phases (Do=0), k,kqko- absorption and
adsorption interphase mass transfer coefficients and
a chemical reaction rate constant, respectively.
The use of dimensionless (generalized) variables
permit a qualitative analysis of the model (53, 54) to
be made, where as characteristic scales average
velocities, initial concentrations, characteristic time
70 (S) and column parameters (ro,h) are used:

Tzi,RzL,z=£'Ui( )_U.Er),
7, r, I U,
0
c(TzR)=402l) o o
G X
c,(z,2,r c,(z,z,r
Ca(T,Z,R)Z 3(C0 ),CO(T,Z,R)— (CO ),
. 3 0
1=12.
(55)

The convection-diffusion model in dimensionless
variables can be written in the following way:

_I 6C1+U1 _
Uz, OT oz
2 A2 2
TP A RIS
ury \ I 02 R OR  OR &l
_I oC, U, aC, _
u,z, Ot oz
DI (rf8°C, 1aéC, o°C,
== 272 A2 T Tt
wry\1©° 0Z° R OR ©OR

kl y k| xCo
+—_(C1—C2)— L LCZ - 03 C, |
&U, &)U, C,
oC, krz, [ c k,7,C.
3 _a’0 loCZ_Ca __0%0 0C3C0’
oT & \ XC; 0
oC k,z,Co
—0__0703 C,C,.
orT &

(56)
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T=0, C=1 C,=0, C,=0, C,=1

D, ( oC
C.=1 1Eul(R)_U_}(a_le
1

Z =0,

Z=0, C,=0, & =0;
oL
R =0, a—Clza—czso; R=1, aC a—CZEO.
oR OR R ¢R

(57)

The presented model (56, 57) is the basis for a
gualitative analysis of the mass transfer processes in
three- phase column apparatuses, i.e. the role of the
different physical effects in the complicated
absorption-adsorption process.

One of the main problems in three-phase systems
is the long-time process. In this case approximations
must be used:

|

U7, ' U,7,

<107

(58)
and the model (56, 57) has the form:
1 oC, 6‘2

ReR R
_3(
oC

—1=0; R=1, iE.
oR oR

- C C
‘91U1

J .

(59)
16C, o°%C,
+= |+
ROR 0R

oz Ve "

o, _ol 12 9%C,
Yoz o ur?

Z=0, C=1 1=U,(

R=0,

U2

oC, _ D)l (17 °C,
oz wrZ| 12 az?

Mz ¢,y K [c 25 ng,
&U, &, Cl
Z =0, CZEO,(aCZJ =0;
oL ),

R=0, Q—O R= 1£50.
oR oR

dC, K,z 10C _¢,
dT g, | gcC2 0

T=0 C,=0. (61)

aC __ '”“cco, T=0 C,=L
dT &

(60)
k o7oC 0

C.C,;

(62)
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Considering problems (59, 60) T is parameter,
while in (61, 62) the parameters are Z and R.
The presented convection-diffusion model (59-62)
may be used for qualitative analysis only, but it is
the base for the creation of average concentration
model.

Average concentration model

Using the dimensionless form of average
concentrations the concentrations in (59-62) can be
written as:

C/(T.Z,R)=C,(T,Z)C,(R),
1
C/(T.Z)=2[RC,(T,Z,R)dR,
° (63)
1
2[RC (R)dR=1,1=0123
0

The average concentration model can be
obtained if the expressions (63) are put into the
model equations (59-62) and then multiplied by R
and integrated with respect to R over the interval [0,
1]. The result is:

dC, dAl _1d2C = =\,
A— 4z dZ C =Pe L 472 _Kl(Cl_CZ)’
- dC,
Z=0, C =1 —/=0.
=1 (64)
dC, dA, =
+—=C, =
Pzt @
LG, e = -
=Pe;’ d222 +K2(Cl_ 2)—Ka(C2—K3 3)’
dC.
Z=0 C, =0, —2=0
=0 — (65)
dC. K./, 1=~ = —_—
d_T3= Kok—O(K31C2 —C,)—KoCBC,Cy;
T=0 C,=0. (66)
dC,
—0=-K,§BC,C,; T =0, C,=1.
dqT 0 (67)
In the problems (64-67) the expressions are used:
_ 1 Ci(T,Z,R) _lT_iI 3
A(z)_leu(R)—é(T,Z) dR, Pe = - i=12,
B(Z)=2_[RC3;(T’Z'R)C"_(T’Z'R)dR, K, =l
. Cy(T.Z) Cy(T,Z) &0,
0
Kozkorov Klzk_l_v K2:k|_£(, K3:XC03'
& &l &, C,
(68)
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In the problems (64, 65) T is parameter, while in
(66, 67) the parameter is Z and for solution of the set
of equations (64-67) will be used a numerical
iterative algorithm.

Iterative algorithm

The solution of (64-67) may be obtained as four
matrix forms:

C(T.2)=|Cus|. C.(7.2)=Cuu
Co(T.2)=[Coc| Co(T.2)=Couc|:
T=0016, 6= 1,2,...,100, Z=0014, ¢=12,..,100

(69)

A multi-step approach for different values of
7'=0.0160, (#=12,..,100) will be used, where

the upper index (6) will be the step number too. As a
zero step (6=0) will be used:

61O (T , Z) = HC C320 (T ' Z) = Hé(z)ogu’
C: =[Cpnc |20 €3 (T.2)=|Cpop] =1
Z=001¢, ¢=12,..100, (70)
P N I

ane|

solutions of (64, 65) for Cs = C(s)o;HEO:
dCO dA- 0 ,l dzélo ~0 ~0).
Azt TR ~Ki(C-C):
~0
Z=0, C’=1, 9GC
dz
dc? dAz L, d*C? - 0.
A g O =P g (G -G) K
- dc’
Z=0, C2=0, 2 =0. 71
;=0 (1)
The first step is the solutions of (66, 67)
C; (T Z) ()9: Cé(T’Z): C(lo)agH for
C,=C3(T.2)=|Cpp; ~1,2,..,100:

dC' K, ame = =

T; =K, k—:(K31C2° —~C3)—-KosBCC;

T=0, C;=0.

dC; =
T":—Kocgscgc;; T=0, Ci=1. (72)

As a result the solutions for T=0.01 — C,'(Z) and
the polynomial approximation Cs'(Z) may be
obtained:

2 _c _ - 17 -
Cé(Z)—Cé(0.0l,Z)— :12:1 «91.12‘1,
Ci(2)=C3(0.00.2)=|Cly
Z=0.01¢, ¢ =12,..,100. (73)
The solution of (64, 65) at the first step leads to:
dC; d/s& — ,1d261 ——
Az Pz @ P dzzl‘Kl(Cl‘Cz)’
~1
Z=0, C =1 9 _o.
dcC; dA2 =
C, =
AZdZ dz
dZCl — 5
=Pe;' %K, (Ci-C})-K ( ,Z‘ J z”}
~1
Z =0, CT;EO, dC, =0. (74)

The step (8) is the solutions of (66, 67)
G (1.2)=[Ch]. €I (7.2)=[Clu] for
C,=CiM(T.2)=[Cpy0
Z=0.014, ¢=12,..100.

désg ka -1~6-1 ~ 0 OproQo.

T Kok—(K3 /™t —CJ)—KoeBC/Cy’;
0

T=0, CJ/=C*(2).

~ 0
dCTO =-K,cJBC/CY;

T=0, C/=Ci*(2).

(75)
As a result the solutions for T=0.01 - (,°(Z) and

the polynomial approximations C:%(Z) may be
obtained:

5 _C _lc > p)7 -

€ (2)=C{(0.012)=|C,; -3 80z

C!(2)=CJ(0.012)=|C .
Z=0014, £=12,..100 (76)
At the step 6 the solution of (64, 65) leads to:

~0 ~0
dC, dAlCe Peld C2
dz dz dz
dc?
dz

A——-

Kl(C_:f—Cf);

=0.

Z =0, 619 =],
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dC; dA =
=2 (el =
g T @
-1 dzc_f ~0 ~0 ~0 > 70 j-1 |.
=Pe, - +K2(c1 —(:2)—|<a cz—éej z;
- dC/
Z=0, C/=0, de =0. (77)
The stop criterion is 6=100.
The obtained results can be presented as:
~ —lc© ~ —c®
[Cusie| =[G |- ICrae ] =|CE%
~ —lc® ~ _lc@ |-
|G | =16 [Cooe | =

6=1,..,100; ¢ =1..,100.
CONCLUSIONS

The solutions of some theoretical problems of
the column apparatuses modeling in the cases of
one-, two- and three-phase processes are presented
in the approximation of the mechanics of continua.
In the cases of one-phase processes the effect of the
radial non-uniformity of the velocity distribution,
the effect of the tangential flow and the
simultaneous mass and heat transfer processes are
shown.

A possibility to obtain the interphase
distribution of the mass transfer resistances in two-
phase columns is shown.

The modeling of three-phase processes in
column apparatuses is analysed. An iterative
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numerical algorithm for non-stationary processes
modeling is presented.

The presented approach is used for solution of
the SO, problem in power engineering [14, 15].
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(Pesrome)

B npubnmkeHusTa Ha MEXaHHKATa HA HENPEKbCHATHTE CPEAU Ca MPEACTABCHH TCOPETHYHH PELICHHsS MpH
MOJICIIUPAHETO HA KOJOHHH amapaTd B CJIyYyauTe Ha €1HA, JBe W Tpu (a3u. AHanmu3UpaHH ca ePeKTHTe OT
pasmpe/ieicHUeTo Ha pajraiHaTta HePAaBHOMEPHOCT Ha CKOPOCTTA, HATMYUETO Ha TAHTCHIUWAJICH MOTOK, KAKTO U TOILIO
M MacoMpPEHOCHHUTE MPOLECH B KOJMIOHA ¢ eaHa (a3a. [lokazaHa € Bb3MOXKHOCTTA 3a MOJy4aBaHE Ha CHIPOTHBICHHUATA
npu MexnayhasHO MacompeHacsHe B KOJoHa ¢ jaBe (asu. [IpeicTaBeH € YHCICH aJrOPUTBM 3a MOJCIHpaHe Ha
HECTAL[MOHAPHH IIPOLIECH B KOJIOHA C TPH (a3u.
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