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Abstract. A convection-diffusion mathematical model is adopted to describe the chemical contamination dispersion
problem in the joint of artificial lake. We consider the problem into 2-dimensional discussion limited to the surface of the
joint. Under this assumption, the mathematical formulation of the pollution model comprises the mass conservation,
which describes convection, turbulent diffusion and emission of the pollutant, illustrated by a convection-diffusion
equation. We construct and analyse (discrete) boundary conditions for an implicit difference scheme. The finite element
method is used to get the numerical solution of the convection-diffusion equation to insight into the variation of
temperature and concentration fields. Especially, different with other similar research, a stochastic model of Lévy flights
is employed to calculate the dispersion tensor coefficients, which heavily relies on the soil orography, stability class,
distance of pollutant source and surface roughness. Consider the degradation of chemicals, we can also get form the
concentration of time and space distribution by the instantaneous source of pollution. The experimental result of
simulation shows that the progress of chemical pollutant dispersion in the joint of artificial lake is not only related to the
velocity of water fluid, degradation rate, dispersion coefficient, and initial concentration, but also to the geometrical shape
of the a horn mouth to the main body of the artificial lake. It also can be concluded that the Finite Element Method of
Convection-Diffusion model is suitable, accurate and efficient for this kind of pollution problem.

Key words: Environmental Impact, Chemical Pollutant Dispersion, Convection-Diffusion Problem, Finite Element
Method

related to the upstream pollution detection, but also
INTRODUCTION affects the human and animal health downstream.
Nowadays, the common fact that the release of
waste materials from chemical and industrial
facilities into water bodies could harm heavily the
human health and the environment is broadly
accepted in both academia and industry. According
to literature [1,2] one typical environmental problem
in current due to the dispersion of solutes in water
bodies is the fate of the total residual chlorine in
rivers. Unfortunately, in most developing countries,
this kind of phenomenon is very common especially
in inland rivers and lakes.
An artificial lake, sometimes called reservoir, is
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Fig. 1. The landscape of the joint of artificial lake.

often a storage pond or impoundment from a dam
which is used to store water. Artificial lakes may be
created in river valleys by the construction of a dam
or may be built by excavation in the ground or by
conventional construction techniques such as
brickwork or cast concrete. It is characterized by the
neat geometric shapes that composed by a
rectangular cavity connected to the river and a horn
mouth to the main body reservoir as shown in Fig. 1.
Due to the trait of large capacity and decreasing
velocity of the fluid, the pollution is usually very
serious in the joint of artificial lake [3]. In this
research our aim is to investigate the dispersion of
chemical contamination in the joint which is only
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Then, we should establish the strict mathematical
model for the proposed problem. In general,
modeling of contamination dispersion often plays an
important role in environmental science, not only
because of its capability to assess the importance of
the relevant processes, but also to describe the
deterministic relationship between emissions and
concentrations/depositions. Typical modeling and
techniques include non-reactive (e.g., dispersion
modeling) and reactive (e.g., photochemical
modeling); deterministic models (e.g., Gaussian,
Lagrangian and Eulerian ones) and stochastic
models [4,5].

Among these models, convection- diffusion
problem [6-11], launched by the research in fluid
science, also concentrate on the physical/chemical
guantities carried by mass points in fluid flow, such
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as the concentration of the substance in the dissolved
fluid flow in the process of change rule. These
changes generally include convection, diffusion, and
its attenuation of physical measurement of some
physical and/or chemical causes or growth process.
Convection diffusion phenomenon in the research of
environmental protection is often met in fluid
mechanics. In the research of fluid science,
convection-diffusion equation is a consolidation of
the diffusion and convection equations, and
describes physical /chemical phenomena where
particles, energy, or other physical/chemical
quantities are transferred inside a physical/chemical
system due to two processes: diffusion and
convection. Under some contexts, it could be also
called the advection-diffusion equation, drift-
diffusion equation, Smoluchowski equation [12] or
scalar transport equation [13].

In this article, we use the finite element method
to get the numerical solution of the convection-
diffusion equation to insight into the variation of
temperature and concentration field. Specially,
different with other similar research in [5,14], a
stochastic model of Lévy flights is employed to
calculate the dispersion tensor coefficients according
to the concrete stochastic models, which are heavily
rely on the soil orography, stability class, distance of
pollutant source and surface roughness. Consider the
degradation of chemicals, we can also get form the
concentration of time and space distribution by the
instantaneous source of pollution.

PROBLEM FORMULATION
Rationale and assumption

The rationale of the finite element method for
convection-diffusion problem is shown below. First,
denote the physical quantity fields (such as
concentration field, velocity field temperature field,
and so forth) as a finite collection of discrete points.
According the initial and boundary conditions mesh
the grid and generate the boundary conditions. Then
establish and solve the algebraic equation on these
discrete points to acquire the approximate solutions.
Note that the convergence of the solution should be
discussed. When the solution is not convergent, it is
necessary to establish new discrete control equation
to be resolved until the convergent one.

Before formalizing the problem, we should give
some preliminary assumptions. Firstly, we consider
the problem into 2-dimensional discussion limited to
the surface of the lake. Therefore the pollutant's
density has to be lower than the water's to make this
assumption valid, for instance, the oil pollutant often
taken as the example. Moreover, in this article, we
present an Eulerian model of pollutant which on this
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scale never reacts significantly with other
composites similar to the literature [15].

Dispersion of the pollutant

Here we adopt a non-reactive model for one
pollutant in order to simplify the numerical method
proposed, but it is not difficult to generalize to
several reactive pollutants. At last, we assume the
water flows are steady, so the first stage is used to
compute the velocity field of the lake surface, while
the second stage determines the flow of the pollutant
measured by a local and time-dependent
concentration: C(x,y,t).

The mathematical formulation of the water
bodies’ pollution model is the equation of mass
conservation, which describes convection, turbulent
diffusion and emission of the pollutant, illustrated by
the following convection- diffusion equation:

aa—f+ V.(=kVC+VC) = f in02x (0,t)

s.t.

Z—i +7.G=0,Y(x,y)ed, j = —kVC +VC
endowed with proper initial and boundary condition
for the pollutant concentration C(x,y,t), which stands
for the concentration of pollutant [kg] per [m®] water.
The vector g stands for the flow [kg/m2-s]. The
equation g = —kVC + V ¢ demonstrates the flow and
the concentration of the pollutant obeying the
relationship called behavior law, which is a
mathematical relation between the gradients of a
function and its dual function. In this work,
boundary conditions are artificial specified since the
river estuary never owns a nature boundary. The
turbulent diffusivity tensor k could be employed into
Guassian perturbation or Lévy flights which will be
explained in the latter subsection. The contamination
source f is standing for a term of
generation/elimination [kg/m3-s]. The space domain
of water bodies SeR? lays over a given surface, and
t: denotes the final time. The vector V is the local
field velocity of the flow.

Diffusivity tensor using Lévy flights

For the diffusivity tensor, we only consider the
model on the transport and diffusion of pollutants
emitted by industrial wastewater; hence we adopt the
stochastic models (Gaussian perturbation, random
walk and so forth). By diffusion, we understand an
aggregation of dispersive processes which are of
diffusion type in a mathematical sense, i.e. resulting
from a random walk (Brownian motion, Einsteinian
diffusion). For a good introduction into the research,
see e.g. [16].
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Under these premises, the concentration of the
pollutants assumes the form of a stochastic
distribution in two-dimensional space, and let it fit
the coefficients of turbulent diffusivity tensor
hereunder:

k= XX

ke O
5 k)

yy
where x and y are those associated with the
horizontal plane.

The stochastic models could be used to obtain the
empirical coefficients k. and ky, on basis of
orography, fluid stability and so forth. The value of
them could be calculated as,

aidet(V
kx = kyy = %

where r is the distance from the pollutant source and
o is the dispersion tensor coefficients according to
the concrete stochastic models, which are heavily
rely on the soil orography, stability class, distance of
pollutant source and surface roughness (c.f. [17]).

In recent related researches, Gaussian models are
used to be the stochastic model to generate the
empirical coefficients in paper [5]. However,
compared to Gaussian distribution, Lévy distribution
is advantageous since the probability of returning to
a previously visited site is smaller than for a
Gaussian distribution, irrespective of the value of p
chosen. So in our research, another random walk
method, Lévy flights, is employed to this work. Lévy
flights, named after the French mathematician Paul
Pierre Lévy, are Markov processes [18]. After a large
number of steps, the distance from the origin of the
random walk tends to a stable distribution. Lévy
flights, which can be characterized by an inverse
square distribution of step length, may optimize the
random search process when targets are scarce and
scarcity of resources. In contrast, Brownian motion
is usually suited for the case when there is a need to
locate abundant prey or targets.

Mathematically, Lévy flights are a kind of
random walk whose step lengths meet a heavy-tailed
Lévy alpha-stable distribution, often in terms of a
power-law formula, L(s)~| s| "/ where 0<p<2isan
index. A typical version of Lévy distribution can be
defined as according to reference [19]

L(s,y, )

Y Y 1
— \/%exp[—z(s_ﬂ)] (s—,u)3/2'0 <u<s<oo;
0,s <0.

As the change of f, this can evolve into one of
Lévy distribution, normal distribution and Cauchy
distribution. Taking the 2D-Lévy flights for instance,
the steps following a Lévy distribution as in Fig.

2(b), while the directions of its movements meet a
uniform distribution as in Fig. 2(a). As shown in Fig.
2(c), an instance of the trajectory of 500 steps of
random walks obeying a Lévy distribution. Note that
the Lévy flights are often efficient in exploring
unknown and large-scale search space than
Brownian walks. One reason for this argument is that
the variance of Lévy flights &*(t) ~ t*7 increases
faster than that of Brownian random walks, i.e., &*(t)
~1.
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Fig. 2. 2D Lévy flights in 500 steps

\elocity field of the water body

The following assumptions are made in order to
compute the water speed field: one is incompressible
flow and the other is non-viscous flow. These could
result into the consequence described by the
following equations:

VV = 0,0tz = 0
where the unit vector Z is the direction vector normal
to the lake. Now, we assume another function i,
called stream-function, defined by :
G o

4 ay"'__ﬁ
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where u and v are the two horizontal components of
the water speed field. Thus, if such a potential exists,
then insertion into the rotational equation gives a
single governing equation (Laplace equation) to be
solved:
AP =0,V (x,y)€A

For a steady-state flow, the trajectories of the
fluid-particles are within the streamlines.
It is possible to demonstrate that these streamlines
are simply described by the equality:

v=y

Coming from this last relationship, the boundary
conditions are easily set when prescribing a different
value to each boundary limited by two successive
mouths similar to a ‘wall' forbidding any crossover
(the shore for instance). One of the boundary has to
be prescribed as a zero value for y. The value of
will be defined according to the inflow/outflow of
the relevant separating mouth in nearby boundaries.
To each inflow and to each outflow corresponds a
jump' of the value of y. A constant value for
defines a streamline

Variational form

The finite element method is based on the
discretization of a variational form corresponding to
each equation of the problem.

Based on the Eq. (1), the Galerkin variational
problem [20] is corresponding to the mechanical
principle of virtual work, i.e., for a static equilibrium
of the system, the virtual work about the forces of all
external forces along with the virtual displacement
could be expressed as the following equation,

W= ff o(x,y) (V. (—kVC + VC) + E) dxdy
s

=Zf kV(p(x,y).(l?C)dxdy
Se

—f k(p(x,y).(ﬁC) nds
as
+Z-U<p(x,y) (l7 (VC)) dxdy
Se
+fo<p(x,y)g—idxdy
Se

where ¢(x,y) stands for any trial function, S is the
total lake surface and oS the limit of the lake. Once
the division of the domain (called meshing) into
elementary surfaces (called finite elements) is done,
then the weak form is discretized and appears as a
sum of elementary terms. Because the numerical
solution of the above pollution model is critical to
use accurate and stable numerical methods. In our
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work, we use a combination of Galerkin and upwind
finite element method to simulate the chemical
pollutant dispersion in river estuary.

Discrete forms of FEM

Let us discuss the Discrete forms of FEM. Firstly,
T is a collection of continuous piecewise linear
function under triangulation, which is a linear space
on real number field. Every function T(x,y) in T could
be expressed as:
Np Tl
T(X,J’) = Z TiNi(x'.V) = (NllNZINS)y;Z}' (xIY) € §
i=1 3
where T is the value of T(x,y) on the spot of Pi. Ni(x,y)
are called the linear interpolation functions on
element e. The linear interpolation function Ni(x,y)
get the value 1 on the spot of Pi, but around P; get
nonzero values.. Based on these interpolation
function, any trail function ¢(x,y) could be expressed
linearly as below:

Ny
0 (x,y) = {P1, 92, P3) {Nz}
Ny
Then the linear interpolation functions on element
e have the solution as follows:

1
(M0, 9) = 55 32 G2 = ) = %3200 = )]

1
N,(x,y) = 24 [y13(x3 = x) — x13(y3 — y)]

1
N3(x,y) = 24 V21061 = x) — %21 (y1 — Y]

Thus, the gradient vector of T could be expressed

as.
aT [aN1 JON, 6N3] R
. ol o ax ax|(M
— —_ — e .
VT =4ar(=|on, an, aN, ;2 =[BT} ;

) Loy oy oyl

N N M
7=l 0y =| dy ay 9 |ly2
oY Ny N, N |[y3
"o T T Tl
B(2,:)
—_ e
=0 S50
AN, AN
dx 0dy
, o, an,|
Vo = (@1, 92, 93) % dy = (p)¢[B]
ON; N,
| 0x Oy |

Besides, we can write the gradient matrix [B] as
follows:

[B] = [ Ox O0x Ox ] _ 1 V23 Y1 J’12]

- laN1 oN, a1V3J T 24e X3z X3 Xoq

ay dy ay
Hence, the elementary weak form, which is
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necessary to calculate the speed field, can be
discretized as follows:

nelt

Wo = 2 Wy = E ﬂ kVo(x,y).(VC))dxdy
e=1 Se
B Z ﬂ ()°[BI"k[BI{C}® dxdy

= Yoy f [1"k[B] dxdy {C}*
Z«p)em €y

with the elementary stiffness matrix being defined by
the relation :
[K1y = A°k[B]"[B]

where A¢ is the surface of the relevant element.

The weak form corresponding to the equation of
diffusion-transport can be discretized as

We =Wer + W,

Where:

= || ) (T.(7 c)asay
Se

=fo o y)V.(V C)dxdy
Se

-y f f (o)° {%g} e BEAT

—B(1,:)
= o) ff {%5} dxdy (§)°
= Nor’ H«p)e[m b

B(i, )] ey
= (p)°[K]¢{C}¢

Then the definition of the transport matrix [K]g
could be written as following:

. _Ae 1 . B(2,%)
e = ?{1} 18T T

The components of the vector ()¢ are the nodal
values of the triangular element, which outputs are
resulting from the first step of the solving procedure
(water velocity field).

B2, 1"
—-B(1,:)

[BJ{C}*dxdy

| ey

nelt

We, = ZW& =Zﬂ oY) 3 dxdy
Se
= > (o) ff
2 1 1

= > oy me(cy ‘ZW—} f %]{c'}

where the mass matrix is relevant to the temporal
term and defined by :

gef2 11
[M]¢ = |t 21
1 1 2

What's more, the components of the

vector {C}° are the temporal derivatives of the
concentration value at the nodes.

At the end of the assembly step, which consists in
summing up the whole set of elementary
contributions for the global system, we can write the
two equations systems hereunder:

(1) Solving the water speed field:

Wll,:()

N2 (N1,N2,N3)dxdy{C}°

(2) Transport of the pollutant with the help of the
water field speed:

WC=O

Considering stablility of function, we use an
explicit schema to the diffusion of the pollutant in
the lake corresponds one equations system. There
are no boundary conditions of the Dirichlet's type for
this equations system. The necessary and boundary
condition for the pollutant is over the whole contour
of the lake: there must be a reflexion of the pollutant
over the whole contour. This is a Neumann's type of
boundary condition.

The system to be solved is therefore the
following:

[M]{C} + [Klll + K (€} = {F¢}

where vector {F} results of the introduction of the
initial condition.

n+1 __ n
T 4 ket = o
{cy* = (1] - At[M] 7Ky, + K]
+ At[M]~H{F "
[G] = [I] — At[M]~*[Ky + K]
We put [;
[M]7*[Ky + Kc], with ;
the stable scheme if

the eigenvalues of the matrix
> 0. Therefore: A;=1—1l; is
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To the diffusion of the pollutant in the joint
corresponds one equations system. There is no
boundary condition of the Dirichlet's type for this
equation system. The necessary and boundary
condition for the pollutant is over the whole contour
of the joint surface: there must be a reflexion of the
pollutant over the whole contour. This is a
Neumann's type of boundary condition.

eq n=-75W/m (Neumann)
f ke @(x,y). (VT) nds = z f @(—=75)ds

z(cpl P2)f ——— le( 75) {1}

However, in the other cases, the Cauchys type of
boundary condition is considered.

eq "1 = he(T — Tair)
So the last component of Eq. (3) could be written
as:

— ¢ ke @x,y). (VT) nds
as

= z f ¢he (T — Tair)ds
e
f (cp)e
f @ {¥

Y Whe;j; ()
el®Tair (1
—2(@1 @2)¢ ———
ezle 2{1} T1)¢
=t (52 3](73)
hel®T
_he i alr{1}>

SOLVING STAGES

To calculate the solving procedure, the transport
modeling of the chemical pollutant by the speed field
has to satisfy the following stages:

Step 0. Preprocessing of the parameters.

Step 1. Soling the speed field equation:

[Ky 1003} = {Fy}
Step 2. Regulating the initial condition on C:
C(x0,¥0,t =0) =Cy

he (N1 N2){T}¢ds

heTalr ds
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Step 3. Choosing the time step At.
Step 4. Iterating on the discrete time.
Step 4.1 Resolution of the concentration
increment between time 'n' and time 'n+1":
{IM] + At[Ky + K| HACH}
= At({Fc} — [Ky + Kc]{C™Y)
Step 4.2 Update the solution:
e = {c"y + {acyth}

Step 5. Postprocessing of the results.

EXPERIMENTAL RESULTS AND ANALYSIS

Time and space distribution of pollutant
concentration formed by transient source

In this simulation, we investigate the time and
space distribution of pollutant concentration formed
by transient source. As shown in Table 1, the
experiment is divided into two groups. Group |
presents the case with a low flow velocity of
0.05km/h, while Group Il with a high flow velocity
of 0.5km/h. Each group consists of two tries with
different pollutants degradation rate constant, i.e.,
0.16 and 0.84. The initial concentration CO is fixed to
1.63mgl/L.

Table 1. Time and space distribution of concentration
by transient source.

u Co

Group  TYPe  neyl P [mgiL
G| @ 005 016 163
P () 005 084 163
oy @ 05 016 163

(b) 05 084 163

Fig. 3 (a)-(d) illustrates the time and space
distribution of pollutant concentration formed by
transient source. The vertical coordinates denote the
pollutant concentration. From Fig. 3 (a) and (b), we
can clearly see that concentration shocks up and
down about 0, and declines rapidly with the time
elapses, regardless of degradation rate constant.
However, in the Fig. 3 (c) and (d), the concentration
varies with the change of distance obviously.
Moreover, the fluid may carry the pollutant
downstream fast so that the concentration is large
when far from the transient source.

Concentration of suspended particles increases
near the bed with increase of settling velocity, as it
proceeds towards downstream. It is interesting to
note that with increase of settling velocity the
elongation in the concentration profiles is mostly
prominent near the bed surface. This is because the
heavier particles travel most of the time very close to
the bottom, where the velocity gradient is greater than
any other region; this means, that the greater the
velocity gradient, the larger the longitudinal
dispersion [27].
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2

Fig. 4. Dimensionless, steady, concentration profiles at various downstream distances from the source.
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Fig. 3. Time and space distribution of pollutant concentration formed by transient source.
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Temperature transport and heat flow of chemical
pollutants

In this subsection, we are investigating the joint
geometry’s the influence for the temperature
transport of chemical pollutants. This facet of
research is meaningful as the downstream creature
such as fishes and other stream biota are very
sensitive to the variation of temperature. On the
other hands, the chemical pollutants in industrial
wastewater, such as, metallurgical or chemical fibre
wastewater, always take higher temperature than the
water bodies.

In reality, according to the different geometrical
morphology, the joint of artificial lake can be
classified as into two types, i.e., Parabolic Joint and
Hyperbolical Joint, which own different kind of horn
mouth to the main body reservoir.

The parameter setting of simulation is shown in
Table 2, where Ny is the number of nodes, Nei the
number of elements, and Nbares the number of
barriers elements. It also presents the numerical
solutions of pollutants temperature in PJ and HJ.

Table 2. Numerical solutions of diffusion of pollutants
temperature

Minimum Maximum

Joint Type Nre  Nett  Noares g1y solution field solution

Parabolic

Joint(p) 1496 2990 181 25 25
Hyperbolical ) e 673 202 25.00859600 26.37535877
Joint (HJ)

0.065

25
0.06
25
25
25
25
25
25
25
25

25

25

(b)
Fig. 5. Temperature transport of chemical pollutants in
PJ and HJ

Fig. 5 describes the temperature transport of
chemical pollutants in PJ and HJ. In Fig. 5(a), the
temperature field is non-gradient because the
chemical pollutants present a different diffusion and
the diversity of directions. It also can be seen that the
temperature in the horn mouth of PJ is higher than
the rectangular cavity. Therefore, in this kind of
joint, the temperature transport and heat flow of
chemical pollutants may seriously affect the survival
of the downstream creature. Whereas in the case
depicted by Fig. 5(b), the temperature field of
pollutants decrease rapidly because of the uniform
thermal plume. Hence, the water body of this kind of
horn mouth is not easy to be affected by the variation
of temperature. The Fig. 6 illustrates the heat flow of
chemical pollutants with isothermal in PJ and HJ.

0.065

0.06

0.055

0.05

0.045

0.04

0.035

0.03

0.025

0.02

0.015 L L L L L h
0.03 0.04 0.05 0.06 0.07 0.08

(b)
Fig. 6. Heat flow of chemical pollutants with
isothermal in PJ and HJ.

Consider for the coefficients of turbulent
diffusivity under the cases of PJ and HJ, the
landscape of the global stiffness matrices are shown
in Fig. 7(a) and (b) respectively. Note that the
matrices are block-tridiagonal, clearly showing the
random distribution on the Npns. It can be seen that
the block before Nbarres (with green diagonal line)
is sparser than the block after NpareS (with red
diagonal line) in both Fig. 7(a) and (b). Moreover, in
Fig. 7 (a), there exist some discontinuous blocks but
continuous in Fig. 7(b). According to our treatment
to the coefficients of turbulent diffusivity, the
matrices should follow a distribution by Lévy
flights.
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Fig. 7 .Heat flow of chemical pollutants with
isothermal in PJ and HJ.

This can be verified in both Fig. 8 (a) and (b),
where the temporal residue vectors are illustrated. In
this figures, the coefficients of turbulent diffusivity
is transformed as the 1-dimesion steps.

L, x 1D

Fig. 8. Coefficients of turbulent diffusivity following
a distribution by Lévy flights.

CONCLUSIONS

In this paper, we investigate the chemical
contamination dispersion problem in the joint of
artificial lake; a convection-diffusion mathema- tical
model is adopted to describe it. We consider the
problem into 2-dimensional discussion limited to the
surface of the joint. Firstly, for the diffusivity tensor,
we only consider the model on the transport and
diffusion of pollutants emitted by industrial

wastewater; hence we adopt a new kind of stochastic
models, Lévy flights, to model it. The latter
simulation proved this the correctness of the random
distribution. Then we also investigate the time and
space distribution of pollutant concentration formed
by transient source and found that the fluid may
carry the pollutant downstream fast so that the
concentration is large when far from the transient
source. Concentration of suspended particles
increases near the bed with increase of settling
velocity, as it proceeds towards downstream. It is
interesting to note that with increase of settling
velocity the elongation in the concentration profiles
is mostly prominent near the bed surface. At last, we
investigate the joint geometry’s the influence for the
temperature transport of chemical pollutants. In the
kind of PJ, the temperature transport and heat flow
of chemical pollutants may seriously affect the
survival of the downstream creature. Whereas, the
water body of the kind of horn mouth of HJ is not
easy to be affected by the variation of temperature.
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MOJIEJIMPAHE 10 METOJIA HA KPAHUTE PA3JIUKA HA KOHBEKTUBHATA
JIUDY3USI [TPU PA3CEMBAHETO HA XUMUUYECKU 3AMBPCUTEJIN B U3KYCTBEH
BOJIOEM

He-1llenr JIn

Hayuen xonesc, Ynusepcumem 3a nayka u mexnonoeus “Anyu”, @eneuane 233100, Kumaii
Tlocreruna va 12 mait, 2014 r.
(Pesrome)

Pa3zpaboTeH e MareMaTWdeH MOJIEN 3a ONHMCAHWETO Ha IHCHEpPCHATAa HA XUMHYHHA 3aMBPCHUTENN B YCTHETO Ha
M3KYCTBEH BOJIOEM, OCHOBAaH Ha KOHBEKTHMBHara qudys3usa. Pasrnenana e nBymepHara 3ajada B 001acT, OrpaHUYEHA 10
MOBBPXHOCTTA Ha KaHana. [Ipyu Te3u mpennocTaBKu MOJETBT CE OCHOBABA HA YPAaBHEHHETO 33 ChXPAaHEHHE HAa Macara ¢
OTYHMTaHE HAa KOHBEKTHMBHATa M TypOynaeHTHata nu¢dysns. CbCTaBeHM ca M ca aHAIM3UPAHU TPAHUIHU YCIOBHS C
MIOMOINTa Ha HesiBaHA AnW(EepeHYHA cxema. MeToabT Ha KpallHWTE €JIEMEHTH € H3IION3BaH 3a J1a CE IOIYYH YHCICHO
pelleHne Ha ypaBHEHUETO HA KOHBEKTHBHATA AN(Y3Us ¥ 1a Ce [oJTydar rojerara Ha pasIpeeieHie Ha KOHIIGHTPaIunuTe
Y Ha TeMIieparypara. YCIopeIHO C TOBa € U3IOJI3BaH CTOXaCTUYHUSAT MeTO/ Ha LEVY 3a ompeiensiHeTo Ha KOe(DUIUEHTHTE
B JIUCIIEPCUOHHMS TEH30p, KOMTO CHIIHO 3aBUCH OT oporpadusira Ha [0YBaTa, Kjlaca Ha CTAOMIIHOCT, Pa3CTOSIHUETO OT
M3TOYHUKA HAa 3aMbPCABaHE U NMOBBPXHOCTHATa rpanaBuHa. OT4HUTAlKU pas3slaraHeTo Ha XMMHYECKUTE BEIECTBA MOXE
Jla ce OTKpHe BPEMEBOTO M MPOCTPAHCTBEHOTO pAa3Npe]esieHHe Ha MOMEHTeH H3TOYHMK Ha 3aMBbpCSABaHe.
CHUMyNallMOHHUTE eKCIIEPUMEHTH MOKAa3BaT, Ye Pa3sIpOCTPAaHEHUETO Ha 3aMbPCSIBAHETO B YCTUETO HA BOAOEMA 3aBUCH HE
caMo OT CKOpOCTTa Ha (uIynaa, CKOPOCTTa Ha pasjaraHe, JUCIEPCHOHHUS KOS()UIIMEHT U HayallHaTa KOHICHTpAIHs, HO
U reoMeTpudHara (opma Ha yCTHETO.

Moske f1a ce 3aKiIouH, Y€ METOABT Ha KpaiHUTE €JIEMEHTH € MOAXOIIN B CIydas HAa KOHBEKTHBHA AnQY3us; TOH €
TOYEH U e(pUKaceH B TO3M KJIac MpoOIeMH Ha 3aMbPCABAHETO.
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