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Scattering of solitons from point defects in two coupled Ablowitz-Ladik chains
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The interaction of solitons with point defects in a system of coupled Ablowitz-Ladik (AL) chains is studied numerically. The
system is a discrete analog of coupled nonlinear Schrödinger equations. The interchain coupling which couples opposite sites of
the AL chains includes linear and nonlinear interactions. The soliton dynamics depends on the soliton parameters (width, velocity),
interchain coupling constant and defect strength. It is obtained that solitons which are exited in one of the two chains can be perfectly
switched and at the same time transmitted, trapped or reflected by the attractive impurities. The point defects do not influence the period
of energy transfer and it is close to the period for the homogeneous case.
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INTRODUCTION

The study of nonlinear waves is receiving much
attention due to the potential application within dif-
ferent branches of physics from nonlinear optics to
Bose-Einstein condensate. The interplay between dis-
crete diffraction and nonlinearity leads to the forma-
tion of discrete solitons. They promise an efficient
way to control switching of optical signals in a system
of coupled waveguides. So waveguide-based devices
have received considerable attention in literature and
this field has been extensively explored theoretically
and experimentally [1,2]. A discrete coupler involv-
ing two waveguides which exchange power as a re-
sult of weak overlap of their evanescent fields is the
basic realization of a waveguide switch. The rate of
power swapped back and forth between waveguides
depends on the strength of the coupling, the degree
of similarity of the waveguides and the initial pulse
energy [3-7]. Waveguide arrays are particularly inter-
esting because of their possible applications in signal
processing [8-12]. All considerations regard discrete
soliton switching mainly in homogenous waveguides
with constant or smoothly varying coupling between
them. However in practical applications the proper-
ties of inhomogeneous waveguides are more interest-
ing and rather inevitable for switching [13-17].

Widely investigated are the standard discrete non-
linear Schrödinger (NLS) equation, as well as the
completely integrable discrete Ablowitz-Ladik (AL)
equation [18-20]. Although the two equations have
the same linear properties and yield the same NLS
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equation in the continuum limit, their nonlinear prop-
erties are different. This leads to differences in the
dynamics of narrow solitons (bright or dark) for the
two models. Soliton solutions in two coupled discrete
nonlinear chains were found and their stability was
investigated in [21-24].

In the present paper we study the interaction of
propagating solitons with impurities in two Ablowitz-
Ladik chains with a complicated coupling that in-
cludes linear and nonlinear interactions between the
chains.

THE MODEL

We shall consider two parallel chains of parti-
cles described by the following system of coupled
Ablowitz-Ladik equations:

i
∂αn

∂ t
=M(αn+1 +αn−1)(1+ γ|αn|2)

+2dβn(1+ γ|αn|2)+ εδn,n0αn

i
∂βn

∂ t
=M(βn+1 +βn−1)(1+ γ|βn|2)

+2dαn(1+ γ|βn|2)+ εδn,n0βn

(1)

αn(t) [βn(t)] is the amplitude of an excitation at site
n of the first (second) chain, interacting with an im-
purity of the strength ε localized at the point n0. M
is the coupling interaction between neighboring par-
ticles in one and the same chain. The two chains are
coupled to each other through the real parameter d
which governs the interchain coupling between op-
posite sites (nondispersive) and includes linear and
nonlinear terms. The parameter γ determines the type
of the soliton solution (bright for γ > 0 and dark for
γ < 0) of the AL equation. In what follows we con-
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sider only bright solitons and set γ = 1 due to the scal-
ing property of the AL system.

First we shall consider the homogeneous case (ε =
0). We briefly outline the influence of the coupling
between opposite sites on the soliton properties [24].
Equation (1) can be derived from the Hamiltonian

H = ∑
n

[
M(αnα

∗
n−1 +α

∗
n αn−1 +βnβ

∗
n−1 +β

∗
n βn−1)

+2d(αnβ
∗
n +α

∗
n βn)

]
(2)

using the deformed Poisson brackets [19,20]

{αn,α
∗
m}= i(1+ |αn|2)δn,m ,

{αn,αm}= {α∗n ,α∗m}= 0 ,

{βn,β
∗
m}= i(1+ |βn|2)δn,m ,

{βn,βm}= {β ∗n ,β ∗m}= 0

(3)

and the equations of motion

∂αn

∂ t
= {H,αn} ,

∂βn

∂ t
= {H,βn} . (4)

The system (1) is nonintegrable but has two integrals
of motion, the Hamiltonian H and the total number of
particles

N = ∑
n
[ln(1+ |αn|2)+ ln(1+ |βn|2)] . (5)

For d = 0 and the symmetric reduction αn(t) ≡
βn(t) the system (1) turns in an AL equation with the
well known bright soliton solution:

αn(t) = βn(t) = sinh
1
L

sech
n− vt

L
ei(kn−ωt) (6)

v =−2MLsinh
1
L

sink, ω = 2M cosh
1
L

cosk

The parameters k (wavenumber) and L (width) deter-
mine the velocity v and frequency ω of the soliton. In
this case the conserved quantities have the form

H = 8M sinh
1
L

cosk, N = 4/L (7)

and it holds ω = ∂H/∂N.
In the continuum limit αn(t)→ α(x, t), βn(t)→

β (x, t) which holds for wide solitons (L� 1) and for
α(x, t) ≡ β (x, t) the system (1) reduces to the stan-
dard NLS equation of the form

i
∂α

∂ t
= 2(M+d)α +M

∂ 2α

∂x2 +2(M+d)|α|2α (8)

with the bright soliton solution

α(x, t) = ϕ0sech
x− vt

L
ei(kx−ωt) (9)

ϕ0 =
1
L

√
M

M+d
, v =−2Mk,

ω = 2(M+d)−Mk2 +
M
L2 .

An attempt to include the discreteness effects
which become important for narrow solitons (L ∼ 1)
will lead to a correction of the velocity of the form
∆v∼ ϕ2

0 .
Fig. 1 shows the propagation of two narrow soli-

tons with equal amplitudes [αn(t)≡ βn(t)] excited si-
multaneously in the two chains for different coupling
constants. As can be expected the coupling between
opposite sites in the two chains d which besides the
linear term has also a nonlinear term changes sig-
nificantly the soliton’s amplitude through the factor√

M/(M+d) as well as the velocity with the amount
∆v. For positive values of d the amplitude ϕ0 and the
velocity become larger [figures 1(a)] while for nega-
tive values of d they become smaller [figure 1(a′)].
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FIGURE 1. Propagation of equal narrow (L = 2) solitons in the two chains with M = −1, k = 0.1 and (a): d = 0.628; (a′):
d =−0.628. The time is in units of 1/|M|.

αn(t) [βn(t)] is the amplitude of an excitation at site n of the first (second) chain, interacting with an impurity of the
strength ε localized at the point n0. M is the coupling interaction between neighboring particles in one and the same
chain. The two chains are coupled to each other through the real parameter d which governs the interchain coupling
between opposite sites (nondispersive) and includes linear and nonlinear terms. The parameter γ determines the type
of the soliton solution (bright for γ > 0 and dark for γ < 0) of the AL equation. In what follows we consider only
bright solitons and set γ = 1 due to the scaling property of the AL system.

First we shall consider the homogeneous case (ε = 0). We briefly outline the influence of the coupling between
opposite sites on the soliton properties [24]. Equation (1) can be derived from the Hamiltonian

H = ∑
n
[M(αnα∗

n−1 +α∗
n αn−1 +βnβ ∗

n−1 +β ∗
n βn−1)+2d(αnβ ∗

n +α∗
n βn)] (2)

using the deformed Poisson brackets [19,20]

{αn,α∗
m}= i(1+ |αn|2)δn,m , {βn,β ∗

m}= i(1+ |βn|2)δn,m

{αn,αm}= {α∗
n ,α∗

m}= 0 , {βn,βm}= {β ∗
n ,β ∗

m}= 0 (3)

and the equations of motion

∂αn

∂ t
= {H,αn} ,

∂βn

∂ t
= {H,βn} . (4)

The system (1) is nonintegrable but has two integrals of motion, the Hamiltonian H and the total number of particles

N = ∑
n
[ln(1+ |αn|2)+ ln(1+ |βn|2)] . (5)

For d = 0 and the symmetric reduction αn(t) ≡ βn(t) the system (1) turns in an AL equation with the well known
bright soliton solution:

αn(t) = βn(t) = sinh
1
L

sech
n− vt

L
ei(kn−ωt)

v =−2MLsinh
1
L

sink , ω = 2M cosh
1
L

cosk (6)

The parameters k (wavenumber) and L (width) determine the velocity v and frequency ω of the soliton. In this case
the conserved quantities have the form

H = 8M sinh
1
L

cosk , N = 4/L (7)

and it holds ω = ∂H/∂N.

Fig. 1. Propagation of equal narrow (L = 2) solitons in the
two chains with M =−1, k = 0.1 and (a): d = 0.628; (a′):
d =−0.628. The time is in units of 1/|M|.

SCATTERING OF
BRIGHT SOLITONS FROM POINT DEFECTS

The inhomogeneous static case ε 6= 0, k = v = 0 is
investigated in detail in [25]. Now we shall study the
propagation of an AL soliton which at the initial time
is launched in one of the chains

αn(0) = sinh
1
L

sech
|n−ns|

L
eikn , βn(0) = 0 (10)

solving numerically the system (1). The simulations
are carried out for 250 sites of each chain and periodic
boundary conditions. ns is the place where the soliton
is launched initially and is far enough from the defect.
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FIGURE 2. Perfect switching of a narrow soliton (L = 2) in the homogenous case with d = 0.628 for (a): k = 0 and (b): k = 0.4.
The time is in units of 1/|M|.

In the continuum limit αn(t) → α(x, t), βn(t) → β (x, t) which holds for wide solitons (L À 1) and for α(x, t) ≡
β (x, t) the system (1) reduces to the standard NLS equation of the form

i
∂α
∂ t

= 2(M+d)α +M
∂ 2α
∂x2 +2(M+d)|α|2α (8)

with the bright soliton solution

α(x, t) = ϕ0sech
x− vt

L
ei(kx−ωt)

ϕ0 =
1
L

√
M

M+d
, v =−2Mk , ω = 2(M+d)−Mk2 +

M
L2 . (9)

An attempt to include the discreteness effects which become important for narrow solitons (L ∼ 1) will lead to a
correction of the velocity of the form ∆v ∼ ϕ2

0 .
Figure 1 shows the propagation of two narrow solitons with equal amplitudes [αn(t)≡ βn(t)] excited simultaneously

in the two chains for different coupling constants. As can be expected the coupling between opposite sites in the two
chains d which besides the linear term has also a nonlinear term changes significantly the soliton’s amplitude through
the factor

√
M/(M+d) as well as the velocity with the amount ∆v. For positive values of d the amplitude ϕ0 and the

velocity become larger [figures 1(a)] while for negative values of d they become smaller [figure 1(a′)].

SCATTERING OF BRIGHT SOLITONS FROM POINT DEFECTS

The inhomogeneous static case ε 6= 0, k = v = 0 is investigated in detail in [25]. Now we shall study the propagation
of an AL soliton which at the initial time is launched in one of the chains

αn(0) = sinh
1
L

sech
|n−ns|

L
eikn , βn(0) = 0 (10)

Fig. 2. Perfect switching of a narrow soliton (L = 2) in the
homogenous case with d = 0.628 for (a): k = 0 and (b):
k = 0.4. The time is in units of 1/|M|.

The width of the solitons is L = 2, which underline
the discreteness of the system. For wide solitons we
can use the continuum approximation and (1) turns in
a system of coupled NLS equations. We have chosen
M =−1 which determines that impurities with ε > 0
are repulsive while impurities with ε < 0 are attrac-
tive.

In the homogeneous linear case (ε = 0, γ = 0) the
excitation will transfer from one chain to the other
and back with a period

t0 = π/2|d| , (11)

where 2d is the linear coupling. For our compli-
cated homogeneous model (ε = 0, γ = 1), which is
not linear we observe that an energy exchange be-
tween the two chains take place with nearly the same
period t0 and the energy exchange rate depends on
the strength of the coupling. For small values of the
coupling constant the soliton is only partially trans-
ferred. When the coupling increases the transferred
rate grows. This behavior is due to the nonlinear cou-
pling terms. We obtained that a soliton can transfer
(perfect soliton switching) when the simple condition

4|d|L2� 1 (12)

is fulfilled. Fig. 2 shows perfect soliton switching
for the homogenous chains (ε = 0) and different soli-
ton velocities. The process does not depend on the
sign of the coupling d. The period from the numer-
ical simulations for the static case [k = v = 0, figure
2(a)] as well as for the propagating soliton [k = 0.4,
v = 0.81, figure 2(a)] is approximately 2.5 and is in a
good agreement with the value calculated from (11).

For large values of the coupling constant between
opposite sites of the chains d the soliton switching is
preserve.

In the case of perfect soliton switching (|d| =
0.628) the scattering pattern depends strongly on the
initial soliton velocity and the strength of the defect.
For repulsive defects (ε > 0) the soliton can by only
transmitted or reflected. The evolution is more com-
plex in the case of attractive defects (ε < 0). Fig. 3
shows the dynamics of a soliton with a given small ve-
locity (v = 0.146) when it interacts with an attractive
impurity. Depending on the strength of the impurity
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FIGURE 3. Scattering of a soliton launched initially in one of the chains at ns = 100 with k = 0.07 from an attractive defect
placed at n0 = 125 for (a): ε =−0.01; (b): ε =−0.1; (c): ε =−1.

solving numerically the system (1). The simulations are carried out for 250 sites of each chain and periodic boundary
conditions. ns is the place where the soliton is launched initially and is far enough from the defect. The width of
the solitons is L = 2, which underline the discreteness of the system. For wide solitons we can use the continuum
approximation and (1) turns in a system of coupled NLS equations. We have chosen M = −1 which determines that
impurities with ε > 0 are repulsive while impurities with ε < 0 are attractive.

In the homogeneous linear case (ε = 0, γ = 0) the excitation will transfer from one chain to the other and back with
a period

t0 = π/2|d| , (11)

where 2d is the total linear coupling. For our complicated homogeneous model (ε = 0, γ = 1), which is not linear
we observe that an energy exchange between the two chains take place with nearly the same period t0 and the energy
exchange rate depends on the strength of the coupling. For small values of the coupling constant the soliton is only
partially transferred. When the coupling increases the transferred rate grows. This behavior is due to the nonlinear
coupling terms. We obtained that a soliton can transfer (perfect soliton switching) when the simple condition

4|d|L2 À 1 (12)

is fulfilled. Figure 2 shows perfect soliton switching for the homogenous chains (ε = 0) and different soliton velocities.
The process does not depend on the sign of the coupling d. The period from the numerical simulations for the static
case [k = v = 0, figure 2(a)] as well as for the propagating soliton [k = 0.4, v = 0.81, figure 2(a)] is approximately 2.5
and is in a good agreement with the value calculated from (11).

For large values of the coupling constant between opposite sites of the chains d the soliton switching is preserve.

Fig. 3. Scattering of a soliton launched initially in one of
the chains at ns = 100 with k = 0.07 from an attractive de-
fect placed at n0 = 125 for (a): ε =−0.01; (b): ε =−0.1;
(c): ε =−1.
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FIGURE 4. Evolution of the trapped soliton shown in figure 3(b) for the initial time interval (a) and the time interval after the
soliton interaction with the impurity (b).

In the case of perfect soliton switching (|d| = 0.628) the scattering pattern depends strongly on the initial soliton
velocity and the strength of the defect. For repulsive defects (ε > 0) the soliton can by only transmitted or reflected.
The evolution is more complex in the case of attractive defects (ε < 0). Figures 3 shows the dynamics of a soliton
with a given small velocity (v = 0.146) when it interacts with an attractive impurity. Depending on the strength of the
impurity the soliton can be transmitted [Figure 3(a), ε =−0.01], trapped [Figure 3(b), ε =−0.1] or reflected [Figure
3(c), ε = −1]. We have obtained that in all three cases the soliton transfers from one chain to the other and back
periodically. The period of the energy transfer is the same as for homogeneous chains and has a value close to 2.5.
Figure 4 demonstrates in detail the period of the soliton transfer for the parameters when the soliton is trapped. The
soliton period before the interaction with the defect [figure 4(a)] and after the interaction with the defect [figure 4(b)]
remains the same.

CONCLUSION

We have studied the interaction of discrete bright solitons with impurities in a system of two coupled Ablowitz-Ladik
chains. Perfect soliton switching can be obtained for large enough values of the coupling constant. We have investigated
the interaction of propagating solitons with point defects. The numerical simulations have shown that solitons which
are excited in one of the two inhomogeneous chains with a given velocity can be perfectly switched and at the same
time transmitted, trapped or reflected by the attractive impurities depending on the impurity strength.
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Fig. 4. Evolution of the trapped soliton shown in figure
3(b) for the initial time interval (a) and the time interval
after the soliton interaction with the impurity (b).

the soliton can be transmitted [Fig. 3(a), ε =−0.01],
trapped [Fig. 3(b), ε =−0.1] or reflected [Figu. 3(c),
ε =−1]. We have obtained that in all three cases the
soliton transfers from one chain to the other and back
periodically. The period of the energy transfer is the
same as for homogeneous chains and has a value close
to 2.5. Fig. 4 demonstrates in detail the period of the
soliton transfer for the parameters when the soliton
is trapped. The soliton period before the interaction
with the defect [figure 4(a)] and after the interaction
with the defect [figure 4(b)] remains the same.

CONCLUSION

We have studied the interaction of discrete bright
solitons with impurities in a system of two coupled
Ablowitz-Ladik chains. Perfect soliton switching
can be obtained for large enough values of the cou-
pling constant. We have investigated the interaction
of propagating solitons with point defects. The nu-
merical simulations have shown that solitons which
are excited in one of the two inhomogeneous chains
with a given velocity can be perfectly switched and
at the same time transmitted, trapped or reflected by
the attractive impurities depending on the impurity
strength.
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РАЗСЕЙВАНЕ НА СОЛИТОНИ ОТ ТОЧКОВИ ДЕФЕКТИ В СИСТЕМА ОТ ДВЕ СВЪРЗАНИ ВЕРИЖКИ НА
АБЛОВИЦ–ЛАДИК

Р. Камбурова, М. Приматарова

Институт по физика на твърдото тяло, Българска академия на науките,
бул. “Цариградско шосе”№72, 1784 София, България

(Резюме)

Изследвана е еволюцията на дискретни солитони в система от две свързани чрез параметъра d нехомогенни (ε 6= 0) ве-
рижки на Абловиц-Ладик. Тази система представлява дискретен аналог на системата от две свързани нелинейни уравнения на
Шрьодингер. В хомогенния случай (ε = 0) тя е неинтегрируема, но има два интеграла на движение.

i
∂αn

∂ t
= M(αn+1 +αn−1)(1+ γ|αn|2)+2dβn(1+ γ|αn|2)+ εδn,n0 αn

i
∂β n
∂ t

= M(βn+1 +βn−1)(1+ γ|βn|2)+2dαn(1+ γ|βn|2)+ εδn,n0 βn .

Разгледано е разпространението на светъл солитон (γ > 0), който първоначално е формиран само в едната от хомогенни-
те верижките. Определени са периодът на прехвърляне на възбуждението и условието за пълно солитонно превключване. За
линейния случай прехвърлянето е с период t0 = π/|d|. Числените изследвания показват, че този период е почти същият за из-
следвания модел, който не е линеен и пълно прехвърляне на енергията на солитона от едната верижка в другата и обратно има
при условие 4|d|L2� 1, където L е ширината на солитона.

Процесът на превключване се запазва при големи стойности на d. Той не зависи от знака на свързващия коефициент и
скоростта на солитона остава непроменена.

Солитонната динамика в нехомогенната система зависи от параметрите на солитона (ширина и скорост), свързващата кон-
станта и стойността на дефекта. Линейните точкови дефекти не влияят върху периода на енергиен обмен и той е близък по
стойност на този за хомогенния случай. Числените изследвания показват, че когато в едната верижка е формиран солитон с оп-
ределена скорост той запазва периодичната си динамика на преминаване от едната верижка в другата и обратно, като в същото
време в зависимост от стойността на дефекта на привличане може да премине, да се захване или отрази от него.
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