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Efficient parameter estimation for spectral sensor data by a linear transformation
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In this contribution we introduce and evaluate a new approach for solving inverse problems in proximity of a
working point with very low computational effort. The non-linear, multi-parametric, complex function will be
approximated and inverted by a set of decoupled single parametric, linear equations originating from a sensitivity
analysis. The used linear projection condenses the knowledge of the transfer characteristic of the system and provides
an alternative to model based and look-up table approaches. The fast estimation of multiple parameters in a limited
parameter range is suitable for control applications or investigation of aging and other degeneration processes.
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INTRODUCTION

To increase the amount of information that can
be obtained in a single measurement, multi-spectral
measurement techniques have been introduced in
the recent decades. Multiple influences on a sensor
signal can be separated on a frequency scale due to
the fact that different effects or mechanisms that
sum up to the sensor signal act in different
frequency ranges. Common approaches for data
analysis of such multispectral data involve a model
for regression and a nonlinear optimization process
[1]. In many cases the optimization is done by an
iterative algorithm [2]. The repeated calculation of
the model and the evaluation of some loss functions
consume a large amount of computational resources
and time. For embedded system solutions, high
demands on the dynamics of the measurement and
data evaluation speed or models that require high
computational effort in the nonlinear regression
make the classical approaches unsuitable [3].

The introduced approach is inspired by the
Tasselled-Cap-algorithm [4], which is projecting
spectral information into a new subspace where
quantities of interest are linear independent. The
Gram-Schmidt  orthogonalization ~ within  the
Tasseled-Cap-algorithm performs a compensation
of independent components in the data set to
project the data in subspace. This projection is
decoupling the influence by compensation of cross-
sensitivities of  desired quantities [5].The
orthogonalization uses a pre-defined set of vectors
as basis for the new subspace. The possibility to
choose these basis vectors based on the sensitivity
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of the different quantities of interest, is a useful
property in the applications with inverse problems.
In the decoupled subspace the desired quantity is
then obtained by solving the resulting linear
system. The projection formula condenses the
knowledge on the systems transfer characteristic in
a certain working point and is used to estimate the
guantity of interest instead of using models or look
up tables. Instead of using the full spectral data the
projection uses only two data points selected in a
way that they contain maximum information on the
guantity of interest. With the presented conditions
for these points, they can be chosen in an
automated and objective way. The limitation of the
measurement to these selected frequency points
reduces the measurement time and hardware
requirements.

LINEAR PROJECTION

Usually the transfer characteristics of a sensor
are described by some model. This model is defined
by a set of parameters x. The goal now is to derive
the model parameters based only on the
measurements performed with the sensor. This is
called an inverse problem and usually the
calculation of the parameters is challenging as noise
in the measurement makes the inversion process ill-
posed. With a sensor application in mind one of
these parameters is usually of interest and is
therefore called a measurement quantity or
measurand.

Let us consider that the measurement is
performed in some working point (WP) of the
sensor. In the proximity of a WP any continuously
differentiable function Z characterized by a
parameter set x; to xm can be expressed as linear
approximation Z:
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Z:Ek 16 Axk+ZWP’ (1)

This approximation consists of m products of
the sensitivity with respect to the parameters and
their corresponding distance from the working
point Ax; and one constant term as working point
offset Zy,p.In the next step a weighted sum of n of
these approximations with weighting factors from
a: to ap, can be made and rearranged to obtain
equation (2). The expression on the right side
consists now of m weighted sums of (1). In the case
of spectral data each of the p used approximations
represents one measurement at a certain frequency:

he1nZn = SRy (20052 Ae) +
Zﬁ:l anZWP,n ' (2)

The sensitivity of the entire sum of linear
approximations is defined by a suitable set of
weighting factors a,. To obtain the weights a, we
have to introduce a constraint on the sensitivity. In
most sensor applications it is useful to set the
sensitivity of the wanted parameter X, (e.g. X1) to the
non-zero value S; and all other to zero:

p

0z,
Z dn = — = Sl
o] 0%,
0Z, .
g=1 na_X2 =0: (3)
p 0Zy =0

n=1%n 5,

For the case of spectral data solving the linear
system of equations (3) will result in a sum of one
guantity at different frequencies, which is now
depending on only one parameter:

ne1 nZy = Sy (x1 — Xyp) +

Zfl=1 anZWP,n ' (4)
Rearranging equation (4) and solving for the
desired parameter gives:

P AnZn

X1,est = 2un=1 S +xoffsetv (5)

The additional constant Xoffset is calculated
with the parameter value at the working point Xwe:
anZwpn
Xoffset = Xwp — Z=1%- (6)
The defined sensitivity of the weighted sum to
the wanted parameter S; in equation (3) results in a
linear scaling of the weighting factors that are
removed by inverting equation (4). For the reason
of numerical simplicity it is recommended to
choose 1 for the sensitivity.

S1=1, (7

To successfully perform this procedure, the
sensitivity of the desired quantity must be high and
the difference to the sensitivity of other system
parameters must be maximal. In the simplest case
of p=m the parameter vector of all used frequencies
needs to be linear independent. This property has to
be ensured by the selection of used frequency
points like it will be demonstrated. The analyzed
transfer characteristic can be any frequency
dependent transfer parameter like gain, phase, real
or imaginary part. Also a mixed support of those
guantities, as two linked real quantities, may be
possible if it is required by the application [5]. A
generalization for complex transfer functions by the
use of complex weighting factors might be a future
improvement of the approach. The used quantity as
base for the algorithm in the example is the
imaginary part of the impedance as real scalar
value. For the estimation of other parameters
similar formulas like equation (5) can be obtained
by adjusting non-zero sensitivity on the right hand
side of the system of equations (3).

DEMOSTATION FOR ONE ESTIMATED
PRAMETER

Generic model

In this section, the introduced algorithm is tested
and evaluated using generic data to avoid
uncertainties of the measurement process. The data
is generated from a model for the complex
impedance of a solid state electrolyte including
electrode effects. The electrodes are represented by
the serial resistance Rs, the parallel resistance R,
and the electrode capacitance Ci. The ionic
contribution is represented by the Warburg-
impedance Z. with reflecting boundary condition
[6]:

1

Z=R+—1—
= N . 1 1
](A)C1+E+E

(8)

RT .
ZW = W(l —]) coth (5(1 +
Nm). ©

The aim of the data analysis is to estimate thé&jon
concentration ¢, while the diffusion coefficient D is
unknown. The structure of equation (9) ensures that
parts of the impedance spectra have different
sensitivity with  respect to both unknown
parameters. The working point is chosen according
table I but it does not refer to a special application.
The model represents a general problem in
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impedance spectroscopy, when a systematic
behavior to the parameters like in figure 1is
observed and a multi parametric interpretation is
needed.
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Fig. 1. Transfer characteristic of the generic model
due to 10% variation of the two non-constant
parameters.

Table 1. Working Point Model Paramters

Name Symbol Value
Serial Resistor Rs 100Q
Capacitance of the 9
Electrodes = 500 107°F
Paralel Resistance Rp 5kQ
Universal Gas J
Constant R 8,31447 mol K
C
Faraday Constant F 96485,34 —
. ; mol
Distance o -6
Electrodes 8 107"m
Elecrtrode Area A 10~*m?
Charge per lon | 1
Temperature T 298 K
lon Concentration c _, mol
WP X 10 ey
Diffusion Coefficient D _,m?
WP 10—~ —

Selection of data support

The first step is the selection of a suitable
spectral representation of the system response. Since
some representations are more sensitive to certain
physical effects this selection is based on the
knowledge of the investigated physical system. In
this example the targeted effect is the frequency
dependent capacitance of the double layer which is
represented by the imaginary part of the impedance
in equation (8). Due to the reduced influence of the
resistive effects caused by the serial and parallel
resistance, the entire data analysis focuses
exclusively on the imaginary part of the impedance
of the entire system.
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To estimate the ion concentration in a set of two
unknown parameters at least two points in the
spectrum of the imaginary part are needed as data
support. These points must have a strong sensitivity
to the parameter of interest and a linear independent
sensitivity vector to solve (3). The presence of a
high absolute value of sensitivity is represented by
the first criterion K, for each possible combination
of the spectral data at frequencies index d and e:

0Zg4
0xq

0Z,
0xq

K1=

, (10)

The independence of the sensitivity information
is checked by the second criterion Ky, in the form of
a normalized difference of the sensitivity with
respect to the other parameter:

_0Zg0xy 0Zp 0xq
Ky =-—-————=—,
0x, 0Zg 0x, 0Z,

Both criteria have a high absolute value for
suitable combinations and tend to zero for unsuited
combinations. This numerical property can be used
to combine both criteria to one common criterion by
multiplication:

_ __ (0Zg 0xq 0Z, 0x1 0Zg
ngs - KIKII - (____e_) ( Y

(11)

0x, 0Zg 0x, 0Z, 0xq
0Z, )
ox.l) (12)

20
-50 \
-100

-150 |

Re(Z)in Q
g

100 4 = S 6 7
10 10 10 10 10 10 10
Frequency in Hz

Im(Z)in Q

-200 \

\
-250 ‘\ -100
\
\ = 200
-300 \
-350 \

50 100 150 0
Re(Z)in Q

Im(Z)in Q

100 100 10 100 10° 100 10°
Frequency in Hz

Fig. 2. Selected data support in the spectrum at
working point conditions

The common criterion has only a high absolute
value for combinations of data from different
frequencies that match both criteria. The
sensitivities are obtained by numerical derivation
with a variation of the parameters of +£1% in
equation (13) and (14):

07, Im{Zn(1,01x1)—Zn(O,99x1)}
9 _ Mn = L 13
0x1 0,02x4
9z, 1m{Zn(1,012,)~25(0,99x,)}
— = . (14)
0x, 0,02x,

The analysis of all possible combinations in the
spectrum reveals a maximum for the indices 1 and
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11 at the frequencies f; at 100 Hz and f, at 1001 Hz
illustrated in figure 2. The imaginary part of the
impedance Z; and Z; at those frequencies is used as
data support for the linear transformation to separate
and estimate the parameters.

Calculation of the transformation formula
With two parameters to separate the system of
equations (3) is reduced to:

9Zy 0z, .m0

U 9%, G ta dx; 1 mol’ (15)
621 BZZ _ s

a5 +a, o 0 — (16)

Similar to equations (13) and (14) the required
numerical derivative at the working point conditions
can be obtained as:

4 2 =31298-10577 iy (17)
3—1—56343 10‘”’”2 (18)
Z—Zz ~1,0913-1032 (19)
9% 2 = 3438710 s (20)

Solving the system of equations (15, 16) results
in the weighting factors a; =3,1769-
10~%and a, = 1,0082- 1077,

To estimate the ion concentration Cyest the
weighting factor a; has to be multiplied with the
imaginary part of the impedance at 100 Hz and
added to the imaginary part of the impedance at
1001 Hz multiplied with the weighting factor a..
The correct offset value can be calculated with

equation 6.
2.}
7 mol

22 Im {é} ~1,6973 -
(21)

3,1769 10_

+
1,0082 - 10~

X1,est = Cxest —

4 mol

107% —
EVALUATION AND DISCUSSION

The evaluation of the procedure is performed by
varying the ion concentration as well as diffusion
coefficient by £50 % in steps of 1% of the working
point value and subsequent calculation of one
spectrum for each combination of those two values.
Equation 21 was used to estimate the ion
concentration out of the resulting 10201 spectra.
The result of all 10201 estimations is plotted in 101
graphs in figure 3. The red dashed line represents
the perfect estimation of the ion concentration with
no systematic error. The strong change in the
diffusion coefficient is affecting the estimation in a

very low degree and the 101 graphs nearly overlap
each other perfectly. For a high variation of the ion
concentrations the estimation error can reach large
values due to the nonlinearity of the system and the
linear approximation.
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Fig. 3. Estimated ion concentration versus the true value
for varying diffusion coefficients (blue graphs). An ideal
estimation procedure would produce the red dashed line
(red)
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Fig. 4. Estimation error of the ion concentration relative
to the actual input value.

Despite of the large error, figure 4 reveals an
area with low relative estimation error in the
proximity of the working point. In this area an
estimation of the parameters can be performed
successfully and used in control application or for
tracking various aging effects.
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OLEHKA HA EOEKTUBHU ITAPAMETPU HA CITEKTPAJIHU CEH30PHU JAHHM YPE3
JIMHEVMHA TPAHCOOPMAILIMA

®. Bennnep, I1. bromen, O. Kanoyn

Texnuuecku ynugepcumem Kemnuy,09107 Kemnuy, Tiopuneep Bee 11, I'epmanus

(Pesrome)

B Ta3u myOsuKkanus HUEe BhBEKIAME U OIICHsABaMe HOB IMOJIXOJ 3a PEIllaBaHe HA 0OpaTHMH MPOOJIEMH B OJIU30CT 10
pa60THa TOYKa NOpU TBBPAC 3aHMKCHU HUBYUCIUTCIIHU YCUIIHA. HeﬂHHeﬁHaTa, MYJITU-TITapaMETpUIHA, KOMIIJICKCHA
GyHKIMS IIe ce anpoKCMMHpa WM HMHBEPTHpa C IOMOINAa Ha Ha0Op OT B3aMMHO HECBBP3aHH MOHOIApaMETPUYHH
JIUHEHHH YPaBHCHUA,U3BCACHNU MPHU aHAJINW3 HAa YYBCTBUTCIHOCTTA. H3nosns3Banara nuHEHHA MPOCKIUA KOHLCHTpHPA
3HAHHETO 3a MpeaBaTeIHATA XapaKTePUCTHKA Ha TpaHC(ep M OCUTYpsiBa AITEPHATHBEH MOJIEN, OCHOBAH Ha TIOIXO0/4;
BWJKTE TAOJNIMYHUTE JaHHW. Bhp3aTa olleHKa Ha MHOKECTBO MAPaMETPH 3a OTPaHWYEH KPBI' OT TTapaMETPH € IOIXO I
croco6 TMpH yIpaBlicHHe Ha TIPUIOKEHHS WM 3a W3CIeJBaHe Ha MPOLECHTE HA CTapeeHe W JIPYrH JeTeHEpaTHBHU

mpouecu.
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