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Phase recovery from fringe patterns with global carriers: approach based on Hilbert
transform and wavelet de-noising techniques
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Fringe pattern analysis is an important task in optical metrology. Fringe patterns can be formed by optical
interference, by projection techniques, by overlapping two similar wave structures, etc. Patterns with constant global
angular carriers represent straight lines in the field-of-view. The presence of an object under investigation distorts the
fringes. Analysis of these distortions is called also phase recovery and it is widely used in many applications of science
and engineering, i.e. for retrieval of surface topography of 3D objects. Usually, three steps are discerned: pre-processing
(noise reduction, background zeroing), phase retrieval (extraction of the phase distribution), and post-processing
(unwrapping, smoothing and ‘cleaning’).

Herein we present an approach based on a combination of Hilbert transform for phase recovery and different
wavelet techniques for de-noising and smoothing. By numeric simulations we show that this technique is effective and
robust. Different types of noise are considered: Gaussian additive noise, multiplicative intensity dependent (speckle)
noise, high frequency environmental noise, jitter, fringe distortion due to non-sinusoidal modulation (presence of
second and third harmonics in the fringes). Each type of noise can be considered separately or all of them -

cumulatively.
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INTRODUCTION

Fringe pattern analysis is an important task in
optical metrology. Fringe patterns can be formed by
optical interference, by projection techniques, by
overlapping two similar wave structures, etc. [1].
Patterns with constant global angular carriers
represent straight lines in the field-of-view. The
presence of an object under investigation distorts
the fringes. Analysis of these distortions is called
also phase recovery and it is widely used in many
applications of science and engineering, i.e. for
retrieval of surface topography of 3D objects [1,2].
Usually, three steps are discerned: pre-processing
(noise reduction, background zeroing), phase
retrieval (extraction of the phase distribution), and
post-processing  (unwrapping, smoothing and
‘cleaning’).

Herein we present an approach based on a
combination of Hilbert transform [2] for phase
recovery and different wavelet techniques for de-
noising and smoothing. Different types of noise are

considered: Gaussian additive noise, multiplicative
intensity dependent (speckle) noise, high frequency
environmental noise, jitter, fringe distortion due to
non-sinusoidal modulation (presence of second and
third harmonics in the fringes). Each type of noise
can be considered separately or all of them -
cumulatively.

The effectiveness of the Hilbert transform is
compared to that of complex Gabor transform [1],
which can be used for phase retrieval, too. Wavelet
de-noising is compared to that of windowed Fourier
filter [2] and others filters, as well (see below).

In all simulations the phase unwrapping is done
by the Itoh approach [3]. The smoothed final result
is ‘cleared’ by an adaptive Wiener filter [1].

PHASE AND NOISE MODELS; FRINGES AND
COMPUTATIONAL PROCEDURES

The phase model (pm) in the simulations below
is the function “peaks”, which is more or less
accepted as a standard in surface profile analysis:
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p=3+1-x)?*exp(-(x)* - (y + 1)?) -
1/3 xexp(—(x + D* = (»)?*) -
10 * (x/5 — x* — y°) * exp(=x* — y*);
pm(x,y)=3.5*p; 0<x,y<b11
The difference between the absolute maximum
and absolute minimum of the phase model is ~50

radians. In Fig. 1 pm(x, y) is shown.
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Fig. 1. Phase model function

The reference fringes 10(X, y) are simulated as
greyscale images with 8 bits per pixel with
background intensity of 0.5 and amplitude
modulation of 0.3. A certain and an avoidable
degradation of any registered image is due to noise
N(x, y). By ‘noise’ we mean any unwanted
component of the image, including jitter, non-
sinusoidal waveforms, speckle, etc. In the
simulations we consider additive Gaussian or
uniform noise; multiplicative noise; fringe
deformation and stochastic jitter of CCD rows.
Each noise can be considered separately or all of
them - cumulatively.

I, = 255 {0.5 + 0.3 * cos(w, * x)}
I, = 255 % {0.5 4+ 0.3 * cos(w, * x + pm)} + N(x,y)

where w, =2*m/T; T is the fringe period (in
pixels). N(x, y) is the noise, additive in this case. To
treat the case of fringes with constant global
carriers, it is considered that fringes lie parallel to
Oy axis. In Fig 2. the computer generated fringe
pattern, corrupted with cumulative noises (with
multiplicative noise) is shown.
The presented approach runs as follows:

1). Pre-process the input pattern. If
multiplicative  noise is present, make a
homomorphic transformation [1]. Smooth the

pattern with wavelet techniques. We do it with the
2 level discrete reverse bi-orthogonal wavelet [1,
2].

2). Phase evaluation is fulfilled with 1D Hilbert
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transformation on  row-by-raw  basis.  First,
eliminate the background illumination by
averaging, if the intensity is constant. We use also
an adapted envelope approach for illumination with
Gaussian distribution [2]. The four-quadrant
arctangent function supplies the wrapped phase. We
unwrap it, following Itoh approach [2, 3].

3). Smooth the estimated phase function by
wavelet techniques. We use 4 level symlet wavelet
[1] of 4-th order, followed by adapted Wiener
filtering [1].

Fig. 2. Computer generated fringe pattern, corrupted
with noise.

In order to evaluate the efficiency of the
processing, we define a Figure of Merit (FM) as the
ratio of the Euclidean norm of the difference
between the estimated phase function and the
model phase function, to the Euclidean norm the
phase model.

RESULTS AND DISCUSSIONS

The specific features of the noise models are as
follows:

e Additive noise with Gaussian probability
density function (PDF) with zero mean and
standard deviation (STD) of +/- 10 intensity
gray levels (out of 256)

e Multiplicative noise with Rayleigh PDF mean
value of 1 and STD = 0.2732 (maximum for
this PDF, which corresponds to two fully
developed correlation cells within one pixel of
the CCD detector)

e Non-sinusoidal modulation with  second
harmonic (ratio 2-nd to 1-st harmonic is equal
to 0.25) and third harmonic (ratio 3-rd to 1-st
harmonic is equal to 0.15)

e Noise due to stochastic high-frequency
(environmental) vibrations with uniform PDF
and values within +/- w/20 for each pixel, or



P. Sharlandjiev et al.: Phase recovery from fringe patterns with global carriers...

jitter noise for each row of the phase model
(same PDF, same value)
The corrupted fringe pattern is processed with our
approach. The presented results are for
multiplicative noise. The obtained FM is 99.7%.
The difference between the model phase function
and the evaluated phase is presented in Fig. 3.

Hilbert: Phase Error = 0.022752
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Fig. 3. Difference between model and evaluated phase
function.

In Fig. 4 we present the histogram of that
difference. The result of de-noising and phase
evaluation and unwrapping is very satisfactory.
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Fig. 4. Histogram of the difference model and evaluated
phase function.

Also, we extracted the phase with 1D complex
Gabor wavelet and compared it to the Hilbert
transform, keeping all the rest of the approach

intact. The results are similar, but somewhat better
for Hilbert (FM = 99.7% to 95.7% for Gabor).

We compared and analyzed the performance of
different pre-processing algorithms and methods.
To name a few: windowed Fourier filters, Frost
filter, adaptive weight Wiener filter, anisotropic
diffusion method [1, 2, 4]. Their performances were
similar, but anisotropic diffusion had the highest
figure of merit - FM = 99.8%.

CONCLUSIONS

We presented an approach for phase recovery
from data, obtained from experiments in optical
interferometry, by projection techniques, etc. The
approach is based on a combination of Hilbert
transform and different wavelet techniques for de-
noising and smoothing. In our numeric simulations,
we introduced different types of noise in order to
get as close as possible to the physical reality. Our
results on patterns with constant global angular
carriers show that this approach is effective and
robust. It is competitive with other methods, which
are more complicated to implement and demand
sophisticated software.

We intend to apply this approach for
comparative analysis of single frame phase
recovery and the well-known multiframe phase
shifting algorithms.
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BB3CTAHOBABAHE HA ®A3ATA OT CTPYKTYPU C UBULIM: TIOAXO/, BASUPAH HA
XNJIBEPTOBA TPAHCO®OPMAILIMA 1 OBE3LIYMABAHE YPE3 BBJIHUYKU
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(Pestome)

AHaIM3BT Ha CTPYKTYpPH C UBHILM € Ba)KHA 33jJaya B ONTHYECKAaTa METPOJIOTHs. VIBUYHU CTPYKTypu ce ¢popMupat
Yype3 ONTUYHA WHTEp(EPOMETpPHs, NPOSKIHMOHHU TEXHHKH, NPHUIIOKPHBAHE Ha IOJOOHM BBIHOBH IIOJIeTa M Jp.
CTpyKTypH C TIOCTOSIHHA BIJIOBA YECTOTA MPEACTABISBAT IIPABH UBUIIM B T0JIETO Ha HaOmoaeHue. M3cnensanusaT o0exT
nedopmupa uBHIMTE. AHAIM3BT HA TE3M M3KPUBSBAHUS Ce HapH4a M3BIMYaHE Ha (a3ara U ce M3I0JI3BA LIMPOKO B
HayKaTa M TeXHHKaTa, Hamp. 3a IoJlydaBaHe Ha Tonorpadusara Ha 3/ obextn. To3u aHamu3 OOMKHOBEHO MMa 3 erama:
mpegBapuTenHa oOpaboTka (HamansdBaHe Ha ITyMa B W300pakeHHETO, HyNHpaHe Ha (oHa), M3BIMUaHe Ha (hazaTta
(mamupane Ha (a30BOTO pasmpeeNicHne) U KpaitHa o0paboTka Ha pe3ynraTute (pa3omakoBaHe Ha (hazaTa, H3TIIAXKIAHE,
,,TOUNCTBaHE”).

B Ta3u craTHs mpeacTaBsiMe IMoaxoA, OasupaH Ha KOMOMHAIMS OT mpeoOpa3oBaHue Ha XWiOepT 3a M3BIMYaHE Ha
¢hazaTa M pasIMYHN TEXHUKH C BBIHWYKU 32 00C3LIyMsBaHE W CIVIAXAaHE Ha JaHHUTE. Upe3 4MCICHO MOACIUpaHe
MOKa3BaMe, Y€ Ta3u METOJO0JIOTHs € e(peKTUBHA U CTaOMiIHA. Pa3nuyHu BHIOBE LIyM ca MOJEIUPaHU U aHAIM3UPaHU:
raycoB J00aBbYEeH, HHTEH3UTETHO 3aBUCHM MYJITHUIUIMKATUBEH (CHEKBJ), [DKUTEDP, HAINYME HA BUCOKU XapMOHUYHU B
WBULIUTE JIP.
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