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Numerical analysis of surface cracks of spherical explosive with a cushion
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Explosive components are widely used in military engineering. In view of the characteristics of the crack in the
explosive component, the stress intensity factor and the J integral of the PBX component were studied. This paper
studies the mechanism of crack damage under different conditions. The results show that the shape of the crack opening
at different position of the components is different, together with the crack strength.

The crack intensity factor will be affected by the location of the crack, crack length, crack depth and crack direction.
The study of the explosive components provides engineering with theoretical support.
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INTRODUCTION ANALYSIS OF THE INFLUENCE OF THE
The explosive components in nuclear structure CRACK ON THE EXPLOSIVE COMPONENTS

are an important component of the explosive Analysis of conforming spherical contact
detonation structure. The main component of the
explosives is Octogen (HMX), which is a white
crystal with the chemical formula CsHgNgOs. The
chemical structure is shown in Figl.

Study on the interaction of multiple cracks
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Fig.1. Schematic diagram of the chemical structure

The PBX explosive is formed by the main
component and the binder. Under the action of the
stress of the structure of PBX, it is easy to crack,
which directly affects the performance of the
explosive component. Therefore, it is necessary to
study the mechanical properties of the explosive
component. This article discusses the studies of the
law of the crack of the explosive component.

Fig. 2. Two cracks
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Fig. 3. Three cracks.

Fig. 4. Four cracks.
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Fig. 5. K1 of stress intensity factor.
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Fig. 6. K2 of stress intensity factor.

Figures 1 to 4, respectively illustrate one to four
cracks. It can be seen from the picture, that stress
intensity factors are not the same when the surface
of an explosive component is subjected to one
crack or a plurality of cracks. As observed in Fig.5
to Fig.8, when the explosive component is affected
by the two cracks, the K1 influence factor of the
crack on the top of the explosive component is
different. When the number of cracks increase the
stress intensity factor is not significantly different.
The stress intensity factor K2 is similar to the
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starting position, but the strength of the crack is
very different in the end position. At the same time,
the stress intensity factor K2 and K3 can be seen to
be a wave shape fluctuation from Fig. 6 and Fig. 7.
The figures show that the sliding force and tearing
force of the crack are more complex. As can be
seen in Fig. 8, the J-integral of the crack has the
same trend for the stress intensity factor.
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Fig. 7. K3 of the stress intensity factor.
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Cracks on the inner surface or outer surface of the
explosive without a cushion

It can be seen from Fig.9, that the stress
intensity factor at the top of the inner and outer
surface is negative, so the crack is in the closed
state and is not extended. Observing the stress
amplitude, the stress intensity factor of the inner
surface is greater than that of the outer surface and
illustrates that the force of the inner surface is
greater than that of the outer surface.
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The stress intensity factor on the inner surface of
the top appeared suddenly changed and the crack
stress of the inner surface appeared attenuated at
the middle of the crack length. The more closed the 5274 Max
joint forces are at both ends of the crack, the more 4583

the crack will not occur. Cre
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along with the change in crack length e
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Fig. 10. A crack at the top of the explosive.

5.5+ _ 010
B 8
S 5.0+ < 0.08
< <
£ £
£ 45 € 0064 st ) .
o & O —=— Stress intensity factor K2
o o
< 40 = 004+
5 S
g 359 o 3 002
8 —=—Stress intensity factor K1 &
2 304 2 000
[ .00
5 g
= 254 c
= = -0.02
3 123
9 2.0 4
Z &7 -0.044

15 T T T T T T T 1 T T T T T T T 1

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Crack Length (mm|
Crack Length (mm) 0.00014 - gth (mm)

Boos 0.00012 4 -~
=2 o -
€ . _ £ 0.00010- / Y
£ —a— Stress intensity factor K3 5 a \_
© £ n
< < 0.00008 ./ —=—J-Integral \.
=4 g / \'
2 © 0.00006 - \
o
& 0004 2 / .\
2 <
@ © 0.00004 ] \
c =
1] k= / \
£ .
- ™ 000002 g .
3
7] T T T T T T T 1 0.00000 . . . . . . . .
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Crack Length (mm) Crack Length (mm)

Fig. 11. The major axis radius is 3mm.
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The analysis of this section is the case of the
outer surface of the explosive component with a
cushion layer without a clearance and contact. The
crack is located outside the top of the explosive
component and the crack length is 3mm, 4mm,
5mm, respectively. Seen in Fig. 11 to Fig.13, the
stress intensity factor and J-integral will change
along with the length of the crack. With the crack
length increasing, the stress intensity factor K1 at
some crack positions appear attenuated, meanwhile
with the length of the crack increasing the stress
intensity factors K2 will increase a lot. The stress
intensity factor K3 change is not too obvious and
the J- integration curve and the K1 curve are
consistent.

Analysis of the influence of the crack parameters
along with the depth of the inner surface
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Fig. 14. The location of the crack.

The crack is located at the top of the inner
surface of the explosive component without a
cushion layer. The locations of the three cracks are
as follows: at a depth of the top of the inner surface

220

Crack Length (mm)

of the explosive component, at a depth of the inner
surface of the explosive component below 1mm
and at a depth of the surface of the explosive
component below 2mm.

=4
o
)

&maa e ‘ﬂi 998 221s ta,,
N

5
X

o
s

&
@

5
o

Ly
L Y L

L]
L

r's
—a— Crack at Inner Surface
—=— Crack at 1 mm Deep of Inner Surface 'y
—a— Crack at 2 mm Deep of Inner Surface

Stress intensity factor k1{ MPa-mm*"(0.5))

T T T T T
o 1 2 3 4 5

Crack length{mm)

Fig. 15. The stress intensity factor K1 along with the
depth.
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The crack stress intensity factor and J integral
are different in three different depths from Fig.15.
Generally speaking, the stress intensity of the crack
on the surface is greater than the stress intensity
factor of the crack at a depth of 1mm and 2mm. As
can be seen from Fig.16, the J-integral of the
surface crack is greater than that at a depth of 1mm,
and the J-integral at the depth of 1mm is greater
than that at a depth of 2mm. From Figure 15 and
Figure 16 we observe, that the stress of the surface
crack is greater than that of the internal crack.

Analysis of the surface crack of a sphere with a

clearance contact

Stress intensity factor analysis without a cushion

Effect of the crack length on the stress intensity
factor of the inner surface top of the explosive
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Effect of crack length on the stress intensity
factor of the outer surface top of the explosive

From Fig.21 compared with Fig.21, the stress
intensity factors at major radii of 2mm, 2.5mm,
3mm and 3.5mm of the outer surface crack are
much larger than those for radii of 1mm, 1.5mm
and 2mm. Because there is no cushion on the outer
surface to protection the crack, the stress intensity
factor of external surface cracks is much larger than
that of the inner surface crack. The stress intensity
factor of K2 and K3 increases with the increase of
crack in length.
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Analysis of the stress intensity factor of the
crack of the inner surface along with the depth

The cracks at four different depths (Omm,
0.5mm, 1mm, 1.5mm) were analyzed in this case. It
can be seen that the crack stress intensity factor
decreases with the increase in depth of the crack.
Especially, when the crack depth is 1mm and
1.5mm, the stress intensity factor attenuation is
especially obvious. At the same time, with the
increase of depth, the stress intensity factor K2 and

K3 also have different degrees of attenuation.
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parameters.

Stress intensity factor analysis with a cushion

Analysis of the stress intensity factor of the crack
of the outer surface along the depth

The stress intensity factors K1, K2, and K3 are
shown in Fig.34 to Fig.36, where the locations are
at the outer surface of the top surface depths of
below 1 mm, 2 mm and 6 mm of the explosive
component crack with a cushion. As can be seen,
attenuation suddenly appeared at the stress intensity
factor of K1. It can be seen that the deeper the
crack is below surface, the smaller the stress
intensity factor is. At the same time, it can be seen
that the stress intensity factor with the cushion is
smaller than that of the stress intensity factor
without a cushion given the crack is in the same

place.
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Fig. 33. The crack location.
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Compared with the stress intensity factor of the
inner surface, the stress intensity factor of the outer
surface is very different. First, the stress intensity
factor increases, because there is no cushion on the
outer surface. When the outer surface of the metal
shell is constrained, the stress intensity factor is
larger than that of the inner surface; Second, after
the depth of the crack below the surface is
increased, the intensity factor of the crack is
reduced. The stress intensity factor is especially
obvious when the crack depth is Imm and 1.5mm.
On the whole, the crack parameters of the outer
surface are very similar to the inner surface crack
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Fig. 34. Stress intensity factor K1.
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Fig. 36. Stress intensity factor K3

Crack at the bottom of the explosive component
near the outer steel shell
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Fig. 37. Two cracks at different directions and the
simulation results.

It can be seen that the stress intensity factor is
less than zero in two directions, indicating the
cracks in the closed state. But the stress intensity
factor in both directions vary greatly in size, the
stress intensity factor perpendicular to the radial
direction is greater than that parallel to the radial
cracks. The simulations show that the cracks are
perpendicular in the radial direction rather than
parallel to the radial cracks and are more
susceptible to the effect of the closing force.
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A crack at the bottom of the explosive component
near a cushion
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Fig. 38. Two cracks at different directions and
simulation results.

The above simulation is the stress intensity
factor K1 of the bottom of the explosive component
without gap contact. Compare Fig.38 with Fig.37,
the stress intensity factor of outer surface crack is
much larger than that of the inner surface crack. It
can be seen that the cushion has a very good
protective effect on the explosive components.

A crack at the bottom of the explosive component
near the cushion with a gap contact
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Fig. 39. Two cracks in different directions and the
simulation results.

The stress from the crack can be observed with
the stress in parallel direction to the radial crack
being much larger than the stress perpendicular to
the radial crack. Comparing Fig. 38 with Fig.39
shows that the stress of the radial crack is very
different for the two contact states. This is the
reason that the crack in the radial direction is the

most susceptible to the thermal stress caused by the
heat released from the nuclear components. When
the initial boundary conditions are set, the bottom
surface is fixed in the Y and X directions, so the
crack can't be displaced in the plane direction.
Since the crack is not moving in the plane direction,
the crack is in a closed state.
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Fig. 40. Two cracks at different directions and
simulation results.
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Fig. 41. Two cracks at different directions and
simulation results.

A crack at the top of the outer surface of the
explosive in two vertical directions

Through the analysis of the external surface
crack of the explosive components, it can be seen
that the stress intensity factor curve of the two
kinds of cracks is similar, which shows that the
stress characteristics of the two kinds of cracks on
the outer surface are relatively close. It can be seen
that the stress intensity factor K1 of the crack on
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the outer surface is greater than zero, which
indicates that the crack in the outer surface is
affected by the opening force. Between 0.4 mm and
4 mm in length, the two kinds of crack intensity
factors have a mutation, which shows that the stress
is relatively small between 0.4 mm and 4 mm.

A crack at the top of the inner surface of the
explosive in two vertical directions

There are differences between the stress
intensity factors of the cracks in the two directions
at the top of the inner surface. The crack intensity
factor in the direction of the short radius is larger
than that in the direction of the long radius. This
shows that the intensity factor of the crack with a
gap is larger than that without a gap. In accordance
with Fig. 40 and Fig. 41 the outer surface of the
crack occurred mainly due to the simulation of the
crack being too long and the stress not enough to
support the stress in such a long crack.

CONCLUSION

1 After adding a crack, first the crack stress
intensity factor will obviously increase. Continuing
to increase the cracks, the stress intensity factor did
not change significantly.

2 Under the same condition, the stress intensity
factor at the inside and outside surface is not the
same. The stress intensity factor at the inner surface
is larger than that at the outer surface and the stress
intensity factor in the middle of the crack at the
outer surface appears a "broken™ phenomenon.

3 Once the crack length increases, the crack
intensity factor K1 can be mutated. It is shown that
the stress of the crack is not enough to support the
crack at the corresponding length, so the length of
simulation assumes that the crack should shorten.

4 The stress intensity factor K1 of the cracks in
the two perpendicular directions at the inner top
surface of the explosive with a clearance in contact
is different. Generally speaking, the crack stress
intensity factor which is perpendicular to the radial
direction is larger than that which is parallel to the
radial direction.
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UMCJIEH AHAJIM3 HA ITOBbPXHOCTHU ITYKHATHUHU [TPY COEPUYHU EKCIIJIO3UBU
C AMOPTHUCBHOP

. Kemxu*?, X. bunt, I'.3. Munrt

Kcuan Xaii-Tex uzcredoeamencku uncmuntym
2N0O.96401 Force

ITocreimia va 30 hespyapu, 2016 r.; kKopurupana Ha 26 okTomMBpH, 2016 T.

(Pesrome)

Excruto3uBuTe ce M3MON3BAT IMMPOKO BBB BOCHHOTO WH)KEHEPCTBO. TyK ca W3CIEIBAHH XapaKTEPHCTUKUTE Ha
ITyKHATUHUTE B €KCIUIO3UBUTE, ()aKTOPHT HA MHTEH3MBHOCT Ha HampekeHHeTo u J-nHTerpana Ha PBX-kommonenTure.
W3cnenBan e MeXaHM3MBT Ha BIUSHHUE Ha MyKHATHHUTE TIPY Pa3IUYHU yCJIOBHS. Pesynrature mokasart, ye ¢popmara Ha
IMyKHAaTHHATA TPH Pa3IMYHO TOJI0KEHNE Ha KOMITOHEHTHUTE € pasimyHa, 3aeHO ChC 3/IpaBHHATA HA ITyKHATHHATA.

®DakTOphT HAa WHTCH3MBHOCT 3aBHCH OT IIOJIOKEHWETO Ha ITyKHATWHATA, ABIDKHHATA,  JBJIOOYMHATA U
HaIPABJICHUETO W.
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