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overlapping drugs

G. Gergov! *, A. Alin?, M. Doychinova®, M. De Luca*, V. Simeonov®, Y. Al-Degs®

!Department of Chemistry, Faculty of Pharmacy, Medical University, Dunav St.2, Sofia 1000, Bulgaria.
2Department of Statistics, Dokuz Eylul University, Izmir, Turkey
3Institute of Chemical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl.103, Sofia 1113, Bulgaria
“Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
SLaboratory of Chemometrics and Environmetrics, Faculty of Chemistry and Pharmacy, Sofia University
“St. Kliment Ohridski”, J. Bourchier Blvd. 1, Sofia 1164, Bulgaria.
éChemistry Department, The Hashemite University, P.O. Box 150459, Zarqa 13115, Jordan

Received July 20, 2016; Revised September 26, 2016

The primary aim of the present study was to compare the prediction power of different PLS algorithms as applied to
the quantification of three spectrally overlapping drugs. Four variants of PLS were chosen for multivariate calibration
and prediction of the three components of the drug formulation (paracetamol, propyphenazone and caffeine). NIPALS
and SIMPLS algorithms were the most commonly used algorithms. The other tested algorithms were Kernel and
Bidiagonalization which have been rarely applied in pharmaceutical analysis.

First-order data were created by measuring UV-spectra of drug mixtures over the range 190-300 nm with a
resolution of 2.0 nm (i.e., 56 spectral points/sample). Reduced five-level full factorial design was used and the
prediction power of PLS variants was tested for drugs levels outside the ranges selected in the calibration set.

De Luka method and the confirmative bootstrap method were helpful for the quick selection of the spectral regions.

The external prediction using the PLS-Kernel calibration model showed significant advantages in the analysis of the
common marketed formulation SARIDON. The three drugs in SARIDON were quantified with mean recoveries and
precisions of 96.4 (1.3), 95.1 (2.5) and 96.2 (2.9) for paracetamol, propyphenazone and caffeine, respectively. This
turned out to be the optimal algorithm which could be successfully applied for the routine analysis of analgesic and
antipyretic tablets in the pharmaceutical industry.

Keywords: PLS1 algorithms: NIPALS, SIMPLS, KERNEL, BIDIAGONALIZATION, Spectral overlapping; De Luca

method, Bootstrap method, SARIDON formulation.

INTRODUCTION

Pharmaceutical formulations, in which one
dominant component is combined with other drugs,
are designated to enhance the final pharmacological
effects of each substance and to cover a larger
medical treatment [1]. Formulations containing
paracetamol PAR, propyphenazone PRO, and
caffeine CAF represent a commonly prescribed
combination for pain relief [2]. Paracetamol is a
common antipyretic and analgesic agent used as an
alternative to aspirin (acetylsalicylic acid) in some
countries [1]. Propyphenazone is derived from
pyrazolone with analgesic, antipyretic and anti-
inflammatory effects [2]. It is a non-steroidal
antiinflammatory drug incorporated together with
paracetamol into many analgesic combinations [2-
3]. CAF, a methylated xanthine and potent
stimulant of the central nervous system, has been
added to PAR and PRO in various combinations
[1,3]. Caffeine is also known to synergistically
increase the analgesic effect of paracetamol and
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propyphenazone, providing relief from symptoms
like headache, muscular aches, neuralgia, backache,
joint pain, rheumatic pain, migraine, toothache and
menstrual pain [2,4]. In Eastern Europe, very
common marketed formulations containing PAR,
PRO and CAF are known as SARIDON® and
Pararemin® [3]. On the Bulgarian market the
generic product SARIPHEZON® is also available.

Typical doses of the earlier preparations are 250
mg PAR, 150 mg PRO and 50 mg CAF, however,
different levels are also available in the market.
NeoOptalidon® is a common formulation with
lower drug-doses 200 mg PAR, 125 mg PRO and
25 mg CAF, while Veramon® is available with
higher PRO dosage: 200 mg PAR and 285 mg PRO
[8].

The aforementioned ternary-drug formulations
are of great challenge for pharmaceutical analysts
to develop reliable and simple analytical procedures
avoiding expensive chromatographic separation and
characterized by low-consumption of organic
solvents and short analysis time.

Quantification of PAR, PRO and CAF in
different pharmaceutical preparations was carried
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out using liquid chromatography [3,5]. Derivative
spectroscopic methods were also suitable for
resolving such complex mixtures. Derivative ratio
zero-crossing spectrophotometric determination of
the three analytes was demonstrated by Dink et al.
[5]. However, the applicability of derivative
spectroscopic methods for handling overlapped
spectra would be limited. More powerful
multivariate calibration and UV spectrophotometry
for accurate assaying marketed formulations has
been well documented [1,8]. Among the
multivariate calibration methods, classical least
squares CLS, principal component regression PCR,
and partial least squares regression PLS have been
intensively applied [6].

Dink et al. proposed UV chemometric
determination of a ternary mixture containing PAR,
PRO and CAF in pharmaceutical preparations [7].
De Luca and co-workers have applied several
chemometric methods using zero and derivative
spectra to get better external prediction for PAR-
PRO-CAF [8] .The same authors proposed a new
procedure for wavelength selection based on the
cumulative regression coefficients.

PLS modeling is the most important multivariate
calibration method in many different fields
including chemical and pharmaceutical analysis.
PLS method has a very important advantage over
other ~ chemometric  methods  for  using
concentrations knowledge directly in calculations.
PLS can deal with collinearity and offers an
interactive diagnostic exploration of the data [9].
Modern instruments can generate a large number of
data points per sample, which needs more advanced
PLS-algorithms to end up with accurate results
within minimum time , numerical stability and
capacity [10,11]. PLS (particularly the nonlinear
iterative partial least squares-NIPALS) is the most
frequently adopted algorithm in chemical and
pharmaceutical analysis [12,13]. Undoubtedly, the
dramatic improvement in software production,
modeling, and programming languages has
positively  reflected on the popularity of
multivariate calibration. The intense applicability of
PLS-NIPALS in pharmaceutical analysis is
attributed to its availability in most commercial
softwares like MVC1® and TOMCAT® [14,15]. For
example, NIPALS is suitable for modeling many
variables-X but it requires long computational time
and more memory-storage [16]. PLS-SIMPLIS is
proposed for increasing calibration speeding [17].
Along with this, there are two versions of the de
Jong's algorithm (SIM-PLS and WIM-PLS), which
are implemented in TOMCAT®[15]. WIM-PLS is
specially designed for wide X matrices . Another

approach, although not as fast, was presented and
called the Kernel PLS algorithm . PLS-Kernel is
considered as an adjustable algorithm which can be
adopted for systems of many variables or even
many mixtures by creating condensed and small
matrices [18,19]. The kernel algorithms were
improved by Dayal and MacGregor [20]. PLS-
Bidiagonalization is an advanced version of another
algorithm which decomposes the X matrix into
three smaller matrices of orthonormal vectors [11]
and this algorithm deserves investigation as it has
no application in pharmaceutical analysis. It is
known that the mentioned algorithms are different
in their mechanisms for running chemical analysis
[10,11,16].

There are two main goals of this work: a)
assessment of the resolving power of four common
PLS algorithms (NIPALS, SIMPLS, Kernel, and
Bidiagonalization) for quantification of three
spectrally overlapping drugs, and b) quick
guantification of the active ingredients (PAR, CAF,
and PRO) in the highly consumed marketed drug
SARIDON® with minimum sample clean up. The
application of the newly proposed De Luca
procedure and bootstrap methods for selecting
informative spectral regions before multivariate
calibration is evaluated.

Theoretical background

PLS is an efficient tool for developing a
guantitative relationship between several predictor
variables X (spectral measurements in this work)
and a property of interest Y (the independent
variables or drugs content in this work).
Mathematically, the relationship between X and Y
or y (for one single independent variable) is given
as [16]: y=Xb, where y, X, and b are drug standard
concentrations in the calibration samples arranged
in a vector, the data matrix containing the
absorbances of standard solutions that are measured
at different wavelengths, and the calibration
sensitivity which is necessary for estimating drug
content in the extracts of SARIDON®. PLS is an
efficient numerical tool to find b which is often
accomplished using different variants of PLS [11].
In general, the dimensions of the mentioned
guantities are X (I samplesxJ variables) and Y (I
samplesxk solutes), y (I samplesx1), and b (J
variablesx1). The tested PLS-variants are NIPALS,
SIMPLS, Kernel, and Bidiagonalization. In the tests
of comparing algorithms only PLS1(one dependent
variable) was considered. The best selection of the
optimum number of PLS-factors (A) is carried out
by using leave-one-out cross-validation technique
[21].
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A Dbrief summary on the PLS-variants is
provided in this section.

PLS-NIPALS

This classical algorithm is suitable for modeling
different sizes of X matrices which containing the
explanatory variables. Therefore, for matrices of
I>J or J>I but the algorithm reported to be not
suitable for many variables X matrices [10-11].
This algorithm decomposes X and y (or Y) into
smaller matrices and vectors to estimate calibration
vector b to be used in the next prediction stages.
The general steps of the algorithm are [10-11,16]:
w: PLS-weight for X: w=u'X/(u'u)

t: PLS-score for X: t=Xw

g: PLS-loading for y: g=t'y/(t't)

u: PLS-score for y: g=yq/(q'q)

p: PLS-loading for X: p=t'X/(t't)

X and optionally y are then deflated before
repeating the above steps for the new PLS-variable:
)(12)(-121p1t and y1:y-t1qlt

The next component is estimated using X; and y:
and proceeding with Xzy».... Xa, ya until an
adequate model is established. Once the earlier
vectors are estimated using the optimum number of
factors (A), then b is estimated as:

b=W'PW"1q

where W is the weights matrix for X, P is the
loadings matrix of X, and q is the loading vector for
y. t and -1 stand for transpose and inverse
operations, respectively. Once b is estimated by
PLS-NIPALS, prediction of the target drug from
the unknown spectrum au, is carried out as
following:

Cun = aunb

PLS-SIMPLS

This algorithm is faster than PLS-NIPALS but it is
not recommended for many variables-X matrices.
To find the useful calibration vector b, the
following quantities are computed [16, 17]:

s=X'y

r: PLS-loading fory: r =s

t: PLS-score for X: t=Xr

p: PLS-loading for X: p=X't

g: PLS-loading for y: g=y't

The quantities r, t, p, and q are stored in R, T, P
and q, respectively. Before estimating the next
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PLS-variable s is projected on a subspace of P. The
above algorithm is stopped once all PLS-variables
are estimated as outlined earlier. Regression vector
is calculated as [17]:

b=Rq

Prediction of the target drug in the new sample
(extract of formulation) is estimated as shown
above. PLS-SIMPLS is faster than classical PLS-
NIPALS as it proceeded without deflation of X and
y and fewer matrices (to find b) are used [16].

PLS-Bidiagonalization

Basically, this advanced algorithm is started by
decomposing X into three matrices [11]:

X=URWV!

Where, U(IxJ) and V(IxJ) are matrices with
orthonormal columns (i.e., U'U= V'V=1) and
R(JxJ) is the bidiagonal matrix. It is imprint to
mention that in the earlier algorithms all columns in
the generated matrices must be orthogonal (i.e.,
W'W= P'P=0). Once the U, R and V matrices are
estimated with the optimum PLS-variables, the
calibration vector is estimated as [11]:

b =VRUy

PLS-Kernel

There are two common variants of Kernel
algorithm so far [11, 16, 18, 19]. The first one can
handle matrices of many samples, i.e. | is larger
than J (1>>J), and the other one (which is suitable
for the current drug system) was proposed for many
variables X-matrices (J>>I). In all kernel
algorithms, condensed matrices are created from X
and Y (or y) which is an essential step. In the
adopted algorithm, two condensed matrices are
created XX' and YY! or yy'. Kernel matrix is then
estimated as: XX'YYY' The main steps of the
algorithm are [19]:

1. The eigenvector of the kernel matrix is
taken as the first X score vector ti. The Y score
vector is then estimated as: ui=YY't;

2. The next step is to update the association
matrices by eliminating the explained variable as
follows:

G1 = | - t1t2* (I identity matrix)

)(1)(1t = GlxxtGl

Y1Y1t = Gl YYt Gl

The above operations save us from going back
to the original large matrices and calculation of
association matrices which are necessary at the start
of the algorithm. As can be seen, the matrices
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involved in Kernel algorithm have lower
dimensions than the original matrices.

3. The next t and u vectors are estimated as
outlined above using the updated matrices. The
calibration matrix (containing the calibration
vectors for the target solutes) are estimated from
weight and loading matrices (W, P and Q) as
follows:

W = XU

P = (TX)(T'T)?

Q= (TY)(T'T)*!

Step 3 is repeated until the optimum number of
PLS-variables is estimated.

It should be mentioned that all vectors in W
should be normalized before creating the b vector
[18, 19]:

b = W(P'W)1Q!

The solutes could be predicted from the
spectrum aun of the sample as follows:

Cun = aub

De Luca wavelength selection method

The main steps of the De Luca method [8] are:

1. Firstly, the optimal number of factors (A) for
components in the mixture is found.

2. Secondly, regression vectors for every
component using A are estimated from PLS -
algorithms: B = W(P'W)1Qt.

The regression coefficients for every component
have different values at each wavelength:

C=by + bjd;, + bA, +--+b 4,

where C is the analyte concentration, b the
regression coefficients and X is the wavelengths.

3. The sum of the absolute values of regression
coefficients gives a new vector called curve of
cumulative coefficients (B):

By; =Z|bi|
1

=
4. Finally, the mean of cumulative coefficients is
estimated and so the cutoff values are obtained:

1
_ 1
5-1Y's,
T =
=
5. The appropriate wavelength range includes
the crossing points between cutoff value (E) and
the curve of cumulative coefficients (B).

EXPERIMENTAL

Chemicals and reagents

The drugs (Paracetamol, Propyphenazone and
Caffeine) as shown in Fig 1 with maximum purity
(> 99%) were purchased from Sigma—Aldrich. A

100.0 mg/L standard solution of each drug was
prepared by dissolving 100 mg (+0.0001 g) from
the corresponding pure materials in doubly distilled
water in a 1.0 L volumetric flask. Due to the
modest solubility of PAR and PRO in water, the
initial solutions were mildly heated (50 °C). The
calibration mixtures (22 solutions) and validation
mixtures (12 solutions) were directly prepared from
the stock solutions by appropriate dilution using
distilled water.

)'(JD\ H,C i pH3 R
3L N i
N |
HN CHj A\Jﬁ: /> e 1;.’J
o) N N )
I -
CHs O N“I.‘J' CH
Hie—~  CH,
OH cH,

Paracetamol Caffeine

Fig. 1. Structural formulae of the drugs

Propyphenazone

Apparatus and software

The absorbance measurements were obtained
using a quartz cuvette of 1.0 cm optical path, by a
HP8452A diode-array UV-Vis spectrometer. The
spectra of drugs were recorded over the wavelength
range of 190-300 nm and the digitalized
absorbance values were exported to MATLAB®
for further analysis. Numerical solutions are
calculated using MatLab®2013a (The Mathworks,
Natick, MA, USA). PLS-variants (NIPALS,
SIMPIS, Kernel and Bidiagonalization) were
runned using home-made matlab® codes based on
the algorithms outlined in the former section. The
matlab® codes are available upon request from the
authors. Independently, mathematical calculations
were carried out using MVC1® [14] and
TOMCAT® [15] programs which are freely
available. Cross-validation procedure was carried
out using cross-validation.m function from
TOMCAT®, which is modified to be applicable for
SIMPLS, Kernel and Bidiagonalization algorithms.

Calibration and validation sets

There are many strategies for building a
calibration set which is necessary to run the
calibration model. In pharmaceutical analysis, full
factorial design is often adopted to end up with
accurate multivariate calibration analysis. For n
concentration levels for k solutes, the number of
calibration mixtures | that should be prepared is n*.
Finally, a large reduction in the number of mixtures
is obtained by applying Brereton's table [22]. It is
proposed for multilevel multifactor (multi-solute)
systems. According to Brereton's design, the
number of mixtures is | = n? and the maximum
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number of analyzed solutes is I-1. In our work,
five-level full factorial design was adopted.
Following this design, 25 mixtures should be
prepared and up to 24 solutes analyzed [22]. In this
work, 22 mixtures are found representative and
prepared according to the levels provided in Table
1. The levels of drugs in the calibration set were
randomly selected. As can be seen from Table 1,
the levels of the drugs were carefully chosen to be
comparable to those present in the marketed
formulation (250 mg PAR-150 mg PRO-50 mg
CAF per tablet). For PAR and PRO, the selected
levels are 0, 4.0, 6.0, 8.0, and 10.0 mg/L, while for
CAF, the levels were 0, 1, 2, 4, and 8 mg/L. For the
three drugs, the concentration levels were coded as:
-2 for the lower concentration and +2 for the higher
concentration. In general, the design would show
that the levels of drugs are orthogonal and span a
large variation in levels. The orthogonal design is
necessary for building a stable and robust PLS
model. A 12-mixture validation set was prepared in
order to test the performance of the models. For a
validation set, new concentration levels were
created for the three solutes, and the prediction
power of the PLS model was tested for drugs levels
outside the ranges selected in the calibration set.
For example, 12.0 mg/L (for PAR and PRO) and

Table 1. Composition of calibration and validation sets

16.0 mg/L (for CAF) were selected and these levels
are out of the calibration range.

Preparation of the formulation before analysis

The drugs were safely extracted from
SARIDON following a simple procedure.
Pharmaceutical formulations were assayed by
weighing the content of five tablets, grinding to a
fine powder, and storing in a cold place. A great
care was taken to ensure safe extraction of the three
drugs from the complex extract of the formulation.
Extraction by hot water was found useful, as will be
shown later. An amount exactly corresponding to
the average tablet weight was suspended in water or
hot water (50 °C) and made up to a volume of 1000
ml. The final suspension was sonicated for 10 min
and then filtered through a PTFE 045 pm
membrane filter. Samples were scanned after
proper dilution using a spectrophotometer over the
spectral range 190-300 nm. The initial examination
of the spectra indicated the existence of co-
extracted components (mainly excipients) which
needs application of multivariate calibration for
more accurate  quantification. Derivative
spectroscopic methods were found of limited
application for this complex system.

Calibration set (mg/L)

Validation set (mg/L)

Number Paracetamol Propyphenazone Caffeine Paracetamol Propyphenazone Caffeine
1 4.0 (-1) 6.0 (0) 2.0 (0) 12.0 6.0 2.0
2 6.0 (0) 6.0 (0) 2.0 (0) 10.0 12.0 2.0
3 8.0 (1) 6.0 (0) 2.0 (0) 10.0 6.0 8.0
4 4.0 (-1) 6.0 (0) 2.0 (0) 10.0 6.0 16.0
5 8.0 (1) 0(-2) 0(-2) 0 0 8.0
6 10.0 (2) 4.0 (-1) 0(-2) 8.0 6.0 1.6
7 10.0 (2) 6.0 (0) 2.0 (0) 6.0 4.8 1.6
8 10.0 (2) 8.0 (1) 4.0 (1) 6.0 4.0 0.8
9 10.0 (2) 10.0 (2) 8.0 (2) 8.0 4.8 1.6
10 0(-2) 8.0 (1) 0(-2) 0 4.8 1.6
11 10.0 (2) 6.0 (0) 1.0 (-1) 8.0 4.8 0
12 10.0 (2) 6.0 (0) 2.0 (0) 8.0 0 1.6
13 10.0 (2) 6.0 (0) 4.0 (1)

14 10.0 (2) 6.0 (0) 0(-2)
15 0(-2) 6.0 (0) 2.0 (0)
16 10.0 (2) 0(-2) 2.0 (0)
17 0(-2) 0(-2) 2.0 (0)
18 10.0 (2) 6.0 (0) 1.0 (-1)
19 10.0 (2) 6.0 (0) 2.0 (0)
20 8.0 (-1) 0(-2) 0(-2)
21 0(-2) 8.0 (1) 0(-2)
22 0(-2) 0(-2) 8.0 (2)

a.  Five-level full factorial design according to orthogonal Brereton's design [22]. Values in parentheses are the codes

necessary for building orthogonal mixtures.
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RESULTS AND DISCUSSION
Spectral overlapping

The UV absorption spectra of the three drugs
along with the typical SARIDON extract are given
in Fig 2.

As indicated in Fig 2, the drugs exhibited strong
UV absorption over the studied range (190-300
nm). Both PAR and CAF showed their typical
spectra with suitable wavelengths for detection at
244 and 274 nm, respectively. In fact, the
absorption spectrum of PRO has irregular shape
where the drug has stable absorption over the range
210-270 nm. The spectra of the drugs are highly
overlapped over the studied range. Net analytical
signal (NAS) is a suitable method to characterize
the analytical figures of merit and spectral
overlapping related to the multivariate calibration
[23]. NAS analysis indicates that PAR, PRO and
CAF would be detected down to 0.21, 0.37 and
0.15 mg/L™* respectively. On the other hand, NAS
calculations indicate a high degree of spectral
overlap with other signals for PRO (80% spectral
overlap). PAR and CAF showed lower spectral
overlapping (71 and 55%). The absorption
spectrum of the mixture indicated the additive
nature of the individual signals of the drugs and the
linearity of the current system. In fact, the
experimental spectrum and the one estimated from
the single-drug spectra were almost identical
indicating the additive nature of the generated
signals. The claimed values of the three drugs in the
formulations indicated that PAR and PRO are more
dominant than CAF (250 mg PAR, 150 mg PRO
and 50 mg CAF per one tablet). This fact clearly
reflected on the shape of the recorded spectrum
(dilution factor 1:25) of drug extract where the final
shape is very close to that of PAR. The similarity of
the extract spectra with PAR would indicate that
the extraction procedure was effective as the drugs
were selectively obtained among other constituents
like excipients.

2.50

. PAR (8.0 mg/L)
200 === PRO(BOmE)

Absorbance

250 270 200 310
‘Wavelength (nm])

Fig. 2. Absorption spectra of the studied ternary drug
system

In fact, simultaneous determination of the
ternary drug system is not possible by univariate
calibration which is due to intense spectral
overlapping. In our view, the main analytical
problem in the current system is the intense spectral
overlap where the influence of unexpected
interference is also high, as indicated from the
spectrum of the drug extract.

In this study, three matrices were created:
calibration matrix (22x56), validation matrix
(12x56) and matrix of drug extracts (18x56).

Selection of the optimum spectral ranges before
PLS calibration

In fact, the performance of multivariate
calibration would be improved if calibration is
carried out over certain informative ranges instead
of the entire spectrum. There are many procedures
for selecting those informative regions prior to
multivariate  calibration, including statistical
analysis related to the external validation [24],
genetic algorithm [25], changeable size moving-
window [26], and De Luca's procedure [8]. In the
latter procedure, the absolute values of the
calibration vector b (obtained by the PLS model)
for the three solutes were numerically summed to
find the cumulative coefficient B. Another
important line called cutoff line is estimated. This
line is necessary for the final selection of the
spectral ranges of the studied drugs. The De Luca
plot is given in Fig 3.

As indicated in the plot, the best spectral ranges
which are included in the calibration are those
located under the De Luca line and above the cutoff
line. The best regions for analyzing drugs are: 202-
220, 234-254, and 266-284 nm. In fact, the purpose
of the cutoff line was to help the analyst to select
or locate the informative spectral ranges [8].

4.0

£ 30 -

3 De Lyca Line

f 20

:_f \ f Cutoff line

z A

£ 10 \ f /

2 W/ AN R

S 00N / r

E 19077 1hi :

4oy '

o / Wavelengths (nm) FaR
2.0

Fig. 3. De Luca plot generated from PLS-calibration
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Table 2. Prediction of drugs in the validation set before and after applying De Luca’s procedure for selecting the

informative spectral regions.

Spectral region (nm) 190-300 nm
(56 points/spectrum)?

De Luca wavelength selection
(31 points/spectrum)?

PAR PRO CAF PAR PRO CAF
PLS-NIPALS variables 8 10 7 8 6 7
REP%P 59 14.3 12.2 4.9 7.9 6.7
RMSEP® 0.45 0.78 0.40 0.37 0.67 0.39
Mean Recovery® 98.5 90.7 96.1 99.0 90.8 96.4

a.  Based on De Luca procedure, the optimum spectral regions for drugs are: 202-220, 234-254, and 266-284 nm (31 spectral

points/sample).

b.  Statistical analyses were applied to the non-zero concentration of the drugs. REP%: Relative error of prediction and

RMSEP: root mean square error of prediction.

The regions that left over would account for the
serious overlapping between drugs (220-230 nm,
258-266 nm, as shown in Fig 3). Although the first
region (190-194 nm) would be included in the
regression, it was excluded, as it is close to the
extreme limit of the instrument. One more
interesting point in the procedure is including the
maximum wavelengths of absorption of drugs like
244 nm for PAR and 208/274 nm for CAF. It was
interesting to notice that 196 nm (a significant
wavelength for PAR) was excluded by the
procedure. Now, the numerical analysis by PLS
(NIPALS variant) was repeated to quantify the
drugs in the validation set using selected regions.
The main results are compiled in Table 2.

Application of De Luca method for selecting the
informative spectral regions has improved PLS
regression in certain aspects. For PRO, the number
of PLS-variables was reduced from 10 to 6 which
will reflect on the computation time. Moreover, the
prediction power of the model was improved by
applying De Luca procedure. Another important
method that would be used for finding the optimum
spectral ranges is the bootstrap method [16]. In this
method, bootstrap sampling is used to estimate the
standard errors in the PLS-calibration vectors b (for
each drug) and from these errors an assessment of
each explanatory variable on modeling y is carried
out. Usually 1000 bootstrap samples are enough to
estimate the standard error in b. From bootstrap
samples (taken from X and y), the standard errors
of b, j=1,...,A (ovj) are estimated and are used to
calculate the standardized coefficients bj /ov. The
standardized coefficient larger than 1.96 is
considered important at 0.05 significant level
meaning this variable is essential for modeling .
The bootstrap procedure was repeated for each
drug. Bootstrap analysis indicated that the best
spectral regions for PAR are 212-220, 230-252, and
258-282 nm. For PRO: 190, 194-196, 206, 212-
228, 232-242, 248-280 nm. For CAF: 190, 194-
198, 204-206, 212-228, 244-272, and 282-290 nm.
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For PAR, the results of De Luca were comparable
to the bootstrap ranges. However, for the other two
drugs, more spectral regions were obtained by
bootstrap compared to De Luca. Accordingly, PLS-
NIPALS calibration was repeated using the regions
of bootstrap and the optimum PLS-variables were
also estimated by the cross-validation technique.
The overall results were comparable to those
obtained by De Luca/PLS-NIPALS.

Comparison between PLS variants for drugs
guantification

MVC1 and TOMCAT are the most commonly
used software package in the pharmaceutical
analysis [14,15]. MVCL1 uses only NIPALS [14],
but in TOMCAT, except for NIPALS, there are
additional two variants of the SIMPLS algorithm:
the WIM-PLS and SIM-PLS algorithms [15]. Nine
PLS-algorithms are available for handling different
kinds of data, but application of Kernel and
Bidiagonalization is rather limited [11].

For the current drug system, the size of the X
matrix is 22x56. From a practical point of view, the
size of X is an adjustable parameter and is
dependent on the system under investigation.

The current analytical system was subjected to
different PLS-variants and the assessment strategy
was based on two items: a) number of PLS-variants
needed to build the model, and b) the prediction
power of different PLS-variants. Model of lower
PLS-variables with better prediction is the best
choice. Other important criteria including
computational time and memory-storage were not
investigated [16].

For each drug, PLS-variables needed for
calibration (A) were estimated by the leave-one-out
method. The final PRESS-PLS-variable plots are
shown in Fig 3a, 3b and 3c and the performance for
drug prediction is summarized in Table 3.
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Fig 3 a) PRESS-Latent variables plots for different
PLS-variants as obtained by cross-validation technique
for CAF
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Fig 3 b) PRESS-Latent variables plots for different
PLS-variants as obtained by cross-validation technique
for PAR

In fact, typical PRESS-Latent variable plots
were obtained for all wvariants (except
Bidiagonalization). In all cases, a large reduction in
PRESS is observed with increasing variables.
Generally speaking, from 6 to 10 variables are
needed in all variants to explain the variances in the
data. Except for PLS-Bidiagonal, the models
exhibited a stable performance at high latent
variables. The interesting point in Fig 3 is the
abrupt jump in PLS-Bidiagonalization behavior

where PRESS is suddenly increased at 7 variables
and this is true for the three drugs. The optimum
number of factors needed for optimum prediction is
shown in Table 3.

PRO

—0o— Bidiagonal PLS
—— Kernel

—o— NIPALS
—*—SIMPLS

4 5 6 7 8

PLS Latent variables

Fig 3 ¢) PRESS-Latent variables plots for different
PLS-variants as obtained by cross-validation technique
for PRO

The performance of PLS-variants was
comparable for PAR prediction in the validation set
with an overall recovery of 97.2-99.7 and excellent
REP% 1.6-4.9. Although the NIPALS model used
fewer variables (compared to SIMPLS and Kernel)
for prediction, the model needs longer computation
time, particularly for many variables-X matrices
[16]. For all variants, poor prediction was observed
for PRO and this is attributed to intense spectral
overlap of this drug with other components. Due to
its unstable performance and poor prediction for
PRO  (16.2%) and  CAF(8.5%), PLS-
Bidiagonalization (see Fig 3 ¢) was not appropriate
algorithm. Kernel model, in fact, outperformed
other variants for PAR, PRO and CAF prediction
which is expected, as this algorithm is perfectly
designed for the current analytical system.
Compared to the other variants, PLS-kernel is
known for its shorter computation time and less
computer storage [18,19].

Table 3. Prediction of drugs in the validation set using several PLS-variants

PLS-variant? PAR PRO CAF

AP REP% RSD A REP% RSD A REP% RSD

<% <% <%

58] > [35] > 3] >

Lo Lo L5

= 2 = 2 = 2
NIPALS 8 99.0 49 3.4 6 90.8 7.9 2.9 7 96.4 6.7 4.0
SIMPLS 9 97.4 3.2 2.9 10 89.0 12.5 35 9 90.3 11.8 2.8
Kernel 9 97.2 3.3 2.8 8 955 5.4 2.5 9 96.4 55 27
Bidiagonal 6 99.7 1.6 1.1 6 820 16.2 6.5 6 109.8 13.7 8.5

a. See "Theoretical background" section for more details on the algorithms.
b. PLS-factors needed for optimum modeling was estimated using cross-validation technique [21].
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Drugs quantification in SARIDON formulation
and comparison with other methods

Although PLS-variants were workable for
simultaneous analysis of PAR-CAF-PRO in their
pure mixtures, the performance of the models was
further tested for SARIDON® formulation. In real
preparations, excipients are present along with the
drug component which may negatively interfere
with drugs quantification by PLS-regression. The
extraction experiments indicated that distilled water
is an efficient extractant for the three drugs.
Accordingly, the consumption of expensive and
toxic organic solvents is avoided. Moreover, hot
water (50 °C) was also tested for drugs extraction.
After extraction, the extracts were directly scanned
by UV and the obtained spectra were analyzed by
PLS calibration. As Kernel model was the optimum
model for drugs prediction, the model was used for
drugs quantification in real extracts. The overall
results are summarized in Table 4.

The analytical performance of the Kernel-PLS
method should be tested against a standard
analytical procedure to asses the overall accuracy
and precision. The levels of drugs in the marketed
formulation were accurately measured by an
independent chromatographic procedure and this
was carried out by the manufacturer at earlier
stages. The following main conclusions are drawn
from Table 4: a) the proposed Kernel-PLS is
workable for quantifying drugs with stable
performance. No advanced cleaning procedures like
solid phase or liquid-liquid extraction are applied in
the current case and no chromatographic

procedures are applied; b) extraction by hot water
(50 °C) clearly ended up with better results and this
is attributed to the enhanced solubility of drugs at
higher temperature. Extraction at still higher
temperatures is not recommended due to the
unexpected influences on the chemical structure of
drugs; c) the estimated recoveries £ RSD (96.4
(1.3), 95.1 (2.5) and 96.2 (3.0) for PAR, PRO and
CAF, respectively) reflected the applicability of the
Kernel-PLS method for drugs quantification. In
fact, many analytical methods were proposed for
PAR-PRO-CAF quantification in commercial
pharmaceutical formulations. The reported methods
extended from laborious matrix cleaning-liquid
chromatography to non-separative ones including
partial least squares PLS calibration.

For further assessment, the current method was
compared with published methods as summarizes
in Table 5.

Most of the reported methods are using either
ethanol or methanol for drugs extraction, however,
other aqueous solvents are also applicable. For
chromatographic methods, the main steps of
extract-cleaning were centrifugation and filtration.
In general, all chromatographic procedures were
found efficient for drugs quantification with
acceptable accuracy and precision. The best
detection of the ternary system was reported by
Soponar and co-workers [3]. Using micellar
electrokinetic capillary chromatography with DAD
detection, the drugs were quantified in SARIDON®
with very low detection limits of 42, 194, and 74
ng/ml for PAR, PRO and CAF, respectively [3].

Table 4. Quantification of active ingredients in marketed SARIDON® formulation by Kernel-PLS

Extraction 2 PAR PRO CAF
Content Rec %® RSDP® Content (mg/ Rec RSD Content Rec%  RSD
water extraction  (mg/ tablet) % (mg/tablet)
(25 °C) tablet)
S1 239.3 127.8 44.0
S2 229.8 1375 34.3
$3 2338 93.8 1.7 120.0 86.7 6.1 420 80.2 104
S4 235.2 135.0 40.0
Hot water extraction (50 °C)

S1 240.0 144.1 48.5
S2 241.0 140.5 46.5
s3 2375 96.4 1.3 1390 95.1 2.5 485 96.2 2.9
S4 245.0 146.8 49.3

a.  Inall extractions, 5.0 g tablets of SARIDON® were grinded and a mass equivalent to one tablet was directly extracted with
water. The extract was centrifuged and finally filtered through a 0.45 pm filter. Before spectral analysis, 1:25 dilution was carried out

with distilled water. Four identical extractions were carried out (n=4).

b.  The overall accuracy (mean recovery) and precision (RSD) were estimated against the actual or claimed values (250 mg

PAR, 150 mg PRO and 50 mg CAF) provided by the manufacturer.
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Table 5. Comparison of the analytical characteristics of Kernel-PLS with published methods for PAR-PRO-CAF
quantification in commercial pharmaceutical formulations

Chromatographic methods

Formulation . R . . LOD Spike Rec. RSD
(mg/tablet) Extraction solvent Matrix purification Analytical technique (mg L) %) ) Ref.
N‘ggg’;’é‘éed PAR1002  PARO.2
Methanol Centrifugation HPLC-DAD Not provided PRO 99.8 PRO 0.2 27
PRO 150 CAF 99.3 CAF 0.2
CAF 50 ' '
N‘gxg’;’gfd PAR1024  PAR14
Methanol Centrifugation HPLC-DAD Not provided PRO 97.5 PRO 1.2 28
PRO150 CAF 99.6 CAF 0.8
CAF 50 ' '
Not provided Micellar electrokinetic
PAR 250 . Centrifugation and membrane capillary PAR 0.6 PAR 100.3 PAR 0.2
Distilled water I CAF0.8 PRO 99.9 PRO0.2 29
PRO 150 filtration chromatography- PRO0.8  CAF1000 CAFO04
CAF 50 MECK-DAD ' ' '
SARIDON®
N o HPLC-UV PAR 0.042
PAR 250 Methanol Filtation by pore-size filter oy relaed drugs were  PRO0.194  97.2-1023 0511 3
PRO 150 paper (no centrifugation)
also detected) CAF 0.074
CAF 50
Pararemin®
A e HPLC-UV PAR 0.042
PAR 250 Filtration by pore-size filter : )
PRO 150 Methanol paper (no centrifugation) (other related drugs were  PRO 0.194  97.9-101.1 1.8-2.6 3
also detected) CAF 0.074
CAF 50
m'f‘ PAR030  PAR1000 PARO.4
PRO 150 Methanol Filtration and dilution HPLC-UV PRO 0.25 PRO 100.0 PROO0.6 5
CAF 0.36 CAF 100.0 CAF 1.8
CAF 50
Non-Chromatographic methods
';’AE Derivative UV- PAR 0.29 PAR 99.8 PAR0.3
PRO 150 0.1 M HCI Filtration and dilution Spectrophotomet PRO 0.35 PRO 100.1 PRO 0.5 5
pectrop Y CAF010  CAF99.0  CAF16
CAF 50
Minoset plus® -
PAR 250 gastric juice Shaking, and filtration by '\él:llitl;\lf:trigirt]e Not provided 2’;%1909090 ESCR) (1); 7
PRO 150 solution 0.20pm membrane filter PLS-NIPALS CAF 1016 CAF27
CAF 50
. Sonication and filtration by A
Neo&éﬁ%gh@ 0.45mm  membrane filter. Mull_ttl)vatr_late PAR1051  PAR375
Ethanol Final extract diluted calibration Not provided ~ PRO 105.5 PRO- 8
PRO 125 ; PLS-NIPALS
(1000 time) by CAF 126.9 CAF -
CAF 25 s (absorbance)
distilled water
Sonication and filtration by L
Sﬁi‘é}%ﬁ@ 0.45pm  membrane filter. Mull_tt;vatr_late PAR103.1  PAR375
Ethanol Final extract diluted catibration Notprovidled ~ PRO1066  PRO- 8
PRO 150 (1000 time) by PLS-NIPALS CAF1295  CAF-
CAF 25 . (absorbance) '
distilled water
Sonication and filtration by Multivari
Veramon® 0.45mm membrane filter. UI _ttl)vatﬁlate
PAR 200 Ethanol Final extract diluted bLoNipALs  Notprovided  PAR959  PAR375 8
PRO 285 (1000 time) by PRO 88.5 PRO -
. (absorbance)
distilled water
SAPIXIF?ZOS%(@ Shaking, centrifugation, and Multivariate calibration PAR 0.21 PAR 96.4 PAR 1.3 This
PRO 150 Hot water (50 °C) filtration by 0.45 pm PLS-Kernel PRO 0.37 PRO 95.1 PRO 2.5 work
CAF 50 membrane filter (absorbance spectra) CAF0.15 CAF 96.2 CAF2.9

The drugs were quantified after separation by
Cis column with excellent recoveries 97.2-102.3
and precision 0.5-1.1 [3]. In general, the reported
chromatographic methods manifested an excellent
analytical performance for quantifying commercial
tables containing PAR, PRO and CAF [5, 27-29].

As can be seen from table5, chromatographic
procedures have shown a better precision compare
to multivariate calibration methods. Interestingly
and as depicted in this table , multivariate
calibration methods do not apply any extra
purification or preconcentration step and
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manifested a comparable stable analytical
performance to chromatographic methods. As
indicated in Table 5, the proposed multivariate
calibration has achieved better detection for drugs
without using advanced instruments. Although
derivative spectrophotometry was workable for
analyzing PRO, CAF and PRO in commercial
tablet (Minoset®), the overall precision seems to
guestionable [5]. As shown in Table 5, PLS-
NIPALS is the most adopted algorithm for drugs
guantification in commercial tables. Indeed, PLS-
NIPALS was effective for analyzing the current
ternary-drug system in different commercial
formulations with optimum accuracy and precision.
Din¢ and co-workers showed that the results
obtained by derivative spectrophotometry and
liquid  chromatography for PAR-CAF-PRO
quantifications are statistically comparable [5]. De
Luca and co-workers showed that application of
PLS NIPALS on absorbance spectra gave good
recovery only for PAR, but for PRO and CAF
satisfactory quantifications were obtained using
third derivative spectra [8]. Our results demonstrate
that recovery can be improved especially for CAF
using only absorbance spectra and Kernel-PLS
algorithm. Besides the reported detection limits,
accuracy, and precision of Kernel-PLS method is of
comparable quality to laborious and time-
consuming chromatographic methods. Another
advantage of the proposed method is that no
extensive matrix-cleaning procedures are adopted.

CONCLUSIONS

The following main conclusions are deduced

from the current pharmaceutical-chemometric
study:
o Modeling many variables-X matrices is less

time-consuming and very safe using Kernel-PLS
method.

o Selection of informative spectral regions by
De Luca's method has improved the overall
regression which was also in agreement with
bootstrap method.

o Extraction of the ternary drug mixture by
hot water instead of using ethanol or other toxic
organic solvents is a good practice.

o The reported recoveriestRSD [96.4 (1.3),
95.1 (2.5) and 96.2 (3.0) for PAR, PRO and CAF,
respectively] proved the applicability of Kernel-
PLS method for drugs quantification in commercial
SARIDON®,

The proposed multivariate calibration procedure is
applicable for other formulations and, in the same
time indicated the adequacy of Kernel-PLS for
pharmaceutical analysis.
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OLIEHKA HA PA3JIMYHU PLS AJITOPUTMU 3A KOJIMYECTBEHO OIIPEAEJISIHE HA
TPU CIIEKTPAJIHO ITPUITOKPUBAIIU CE JIEKAPCTBA
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(Pesrome)

OcHOBHaTa IieN1 Ha HACTOSILIOTO M3CJIEBAaHE € Jla Ce€ CPaBHU IPOTHO3HATa Moll Ha pasnuyHu PLS anropurwmu,
NpWIaraHy 3a KOJMYECTBEHO OIpEJeissHE Ha TPU CIEKTPaJIHO NPHUIIOKPUBALIM ce JieKapcTBa. bsxa n3OpaHu yetnpu
Bapuanta Ha PLS 3a MHoOroBapmanmoHHO KanmOpupaHe ¥ IpeJcKa3BaHe Ha TPUTE KOMIIOHEHTa Ha JieKapcTBeHaTa
¢dopma (mapaueramon, npornudpenazon U kogpeun). Anropurmure NIPALS u SIMPLIS ca naii-uecto cpemanure u
W3MONI3BaHN anroputMmu. J[Ipyrure TtectBanm anmroputmu ca Kernel m Bidiagonalization, komro ce mpmmarar
CPaBHHTEITHO PSAAKO BBB (papMarieBTUUHHS aHAIN3.

JlaHHWTE OT IBPBH paHr Osixa reHepupaHu dupe3 m3MepBaHe Ha UV-CHEKTpUTE Ha JICKAPCTBEHHTE CMECH B
muamazoHa 190-300 nm ¢ pazgenuTenHa crocooHoCT OT 2,0 nm (T.e. 56 crekTpamHu Toukw / mpoba). M3mon3san Oe
penyiupan meJieH (pakTopHajeH JU3aiiH Ha IeT HUBA M MIPOTHO3HaTa MomHOoCT Ha PLS BapuanTnTe Ocmie TecTBaHa 3a
KOHIICHTPAILMIOHHN HMBA HA JICKAPCTBATa U3BbH JNANa30HUTE, N30paHN B KAIMOPUpPAIIMOHHATA MAaTPHUIIA.

Meronst Ha [le Jlyka u noTBbprkaaBaius OyyTcTpan MeToa 0sxa M30paHu KaTo YJauHHU 332 ONTHMallHa CEJIEeKLUs
Ha CHEKTPAJIHUTE PETHOHHU.

BhBHIIHOTO Banuanpane M3MOJI3Baiikuk KannOparmonuus momaen PLS-Kernel mokasa 3HaunTenHu mpeidMCTBa OpH
ananu3a Ha tadnaetku SARIDON. Tpure nekapctBa B SARIDON 6sixa KOJIMYESCTBEHO OMPEICICHU ¢ aHATUTHYCH TOOUB
u mpenmsHoct 96.4 (1.3), 95.1 (2.5) and 96.2 (2.9) cwoTBeTHO 3a mapaieTamort, nponudenazon u kodeun. Tosa ce
OKa3Ba OINTHMAJIHHUSA QJITOPUTHM, KOWTO MOXE YCIEHIHO Ja C€ MPWIOKH 332 PYTHHEH aHallM3 Ha aHAITeTUYHH W
AHTUNMPETHYHN MHOTOKOMITOHEHTHH Ta0JIeTKH BbB (papMarieBTHUHATa HHAYCTPHUSI.
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