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New models of industrial column chemical reactors
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A new approach to modeling the industrial column chemical reactors is presented. A theoretical analysis of the effect
of the radial non-uniformity of the axial velocity component in the industrial column chemical reactors is presented. A
numerical analysis shows, that average concentration model, where the radial velocity component is equal to zero (in the
cases of a constant velocity radial non-uniformity along the column height), is possible to be used in the cases of an axial
modification of the radial non-uniformity of the axial velocity component. The use of experimental data, for the average
concentration at the column end, for a concrete process and column, permits to be obtained the model parameters, related
with the radial non-uniformity of the velocity. These parameter values permit to be used the average concentration model

for modeling of different processes.
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INTRODUCTION

The fundamental problem in the column
apparatuses modeling is result of the complicated
hydrodynamic behavior of the flows in the columns
and as a result the velocity distributions in the
columns are unknown.

The industrial column chemical reactors is
possible to be modeled, using a new approach [1-4]
on the base of the physical approximations of the
mechanics of continua, where the mathematical
point is equivalent to a small (elementary) physical
volume, which is sufficiently small with respect to
the apparatus volume, but at the same time
sufficiently large with respect to the intermolecular
volumes in the medium. As a result, a convection-
diffusion type model (for qualitative analysis) and an
average concentration type model (for quantitative
analysis) are possible to be used in the cases of
isothermal chemical reactions [1-4].

CONVECTION-DIFFUSION MODEL

The physical elementary volumes will be
presented as mathematical points in a cylindrical
coordinate system (r,z), where r and z [m] are radial
and axial coordinates. The concentrations [kg-
mol.m~] of the reagents are c,(r,z), i=12,...i,,

i.e. the quantities of the reagents (kg-mol) in 1 m® of
the column volume.

In the cases of a stationary fluids motion in
cylindrical column apparatus, when the radial non-
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uniformity of the axial velocity component u(r)

[m.s7!] is permanent along the column height, the
radial velocity component is equal to zero.

The homogeneous chemical reaction, as a
volume source or sink in the column volume is

Q(c) [kg-mol.m3s?], i=12,..,i, (i,- reagent
number). They lead to different values of the reagent
(substance) concentrations in the elementary
volumes ¢ (r,z), i=12,...,i; and as a result, two

mass transfer effects exist — convective transfer
(caused by the fluid motion) and diffusion transfer
(caused by the concentration gradient).

The mathematical model of the processes in the
column apparatuses, in the physical approximations
of the mechanics of continua, is mass balances in the
elementary volumes between the convective
transfer, the diffusive transfer and the volume mass
sources (sinks) (as a result of the chemical reaction).
In the stationary case, the convection-diffusion
equations (as a mathematical structures of the mass
transfer process models in the industrial column
chemical reactors) [1-4] are:
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where u°, c® are the inlet

: velocity and
concentrations, D, [mZs?] - diffusivities, r,[m] -
column radius.

In the cases of a two components complex

chemical reactions =12, Q =-kcc,, where
m, n are the reaction orders. For big difference
between inlet concentrations of the reagents
(¢! ¢3) and m=1, from (1) follows the pseudo-

first-order reactions case (i0 =l ¢=¢c¢C= cg):

ac o’c loc o% .
U—=D| S +=—+— |-kg¢
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AVERAGE CONCENTRATION MODEL

The average values of the velocity and
concentration, at the column cross-sectional area is
possible to be presented [1-4] as:

ag=u° =—jru(r)dr, E(z):%jrc(r,z)dr. (3)
oo o 9
The functions u(r), c(r,z) in (2) can be
presented by the help of the average functions (3):

w(r)=00(r). c(r2)=c(z)c(rz). @

where G(r),¢(r,z) present the radial non-

uniformity of the velocity and concentration and

satisfy the next conditions:

fo ~ 2 o ~

—Jr a(r) dr=1, r—zjr ¢(r,z)dr=1. (5)
0

r-O 0 0

The average concentration model may be
obtained if put (4) into (2), multiply by r and
integrate over r in the interval [0, ro] . As aresult, the
following is obtained:
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GENERALIZED VARIABLES

In (2) and (6) is possible to be introduced the
generalized variables [2]:

r=rR, z=1Z, u(r)=uU(R),
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and as a result is obtained:
2 2
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R=0,

Z=0, C=1 1=U-Pe" —.

dz
where Fo, Da and Pe are the Fourier, Damkohler and
Peclet numbers, respectively:
DI al kl

Fo=—, Pe=—, Da=— (11)
ar, D u

The convection-diffusion model (9) permits to be
made [1-4] a qualitative analysis of the process
(model) for to be obtained the main, small and slight
physical effects (mathematical operators), and to be
rejected the slight effect (operators). As a result the
process mechanism identification is possible to be
made. On this base are possible different

approximations for high column (0 =€ 310’2) , big

average (0=Fo<10?),  small

(0=Da<10?) or big (0=Da™"<10") chemical

reaction rate.

In an industrial column (1 >1 [m]), the average
velocity is T>1 [m.s?] and the diffusivity is
D, <10 [m2s™]. In these conditions is possible to

velocity
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be obtained the order of magnitude of the parameters
values:

Pet <10, % >10", Fo<107, (12)

and the models (9), (10) have convective forms:

UL - pac; z=0, c=1 (13)

oz

A(z)d—c+d—A6=—DaC; Z=0, C=1.(14)
dz dz

The average concentration models allow a
guantitative analysis of the processes in column
apparatuses. The theoretical analysis of the models
(13), (14) shows [1-4], that the function A(Z) is

possible to be presented as a linear approximation:
A=a,+aZ, (15)

where the model parameters a,, a, is possible to be
obtained, using experimental data for a short column
(Z=0.1).

The presented theoretical analysis shows that the
basic approximation of the convection-diffusion
model (13) and average concentration model (14) is
ol
= =0
oz

MODELING OF THE INDUSTRIAL COLUMN
CHEMICAL REACTORS

Very often in industrial conditions, an axial
modification of the radial non-uniformity of the
velocity, is realized. The radial non-uniformity of the
axial velocity component in the column apparatuses
is caused by the fluid hydrodynamics at the column
inlet, where it has as maximum and decreases along
the column height as a result of the fluid viscosity.
The theoretical determination of the change in the
radial non-uniformity of the axial velocity
component in a column is difficult in one-phase
processes and practical impossible in two-phase and
three-phase processes. For a theoretical analysis of
the effect of the axial modification of the radial non-
uniformity of the velocity, this difficulty can be
circumvented by appropriate hydrodynamic model,
where the average velocity at the cross section of the
column is a constant, while the maximal velocity
(and as a result the radial non-uniformity of the axial
velocity component too) decreases along the column
height.

Let’s considers the velocity distribution

u,(r,z,)=00,(r,z,) (16)
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Fig.1. Velocity  distributions ”( ' ”)’

Z,=01(n+1), n=0,1,...,9.

and an axial step change of the radial non-uniformity
of the axial velocity component in a column (Fig. 1):

a,(r.z,)=0,(nR,1Z,)=
=U,(R,Z,)=a, —b,R?,

(17)
a,=2-0.1n, b =2(1-0.1n),
0.In<Z,<01(n+1) n=0.L..9,
where T, (r,z,) satisfy the equation:

iifr a,(r,z,) dr=1, (18)
r02 0 " "
l.e. O =const.

If put (16), (17) in (13), the convection-diffusion
model has the form;

u ‘;;n =-DaC,; 0.n<Zz, <0.1(n+1);

n
n

z,=0.1n, C,(RZ,)=C,,(RZ,); (19)
n=0,1,...,9;
Z,=0, C,(RZ,)=1.

MODEL EQUATIONS SOLUTION

The solution of (19)
c(R.z)=C,(R.Z,), Z,=0.1(n+1), n=0,1...,9
in the case Da=1 is presented on the Fig. 2. This
solution C(R,Z) permits to be obtained in (8) the
average (“theoretical”) concentration distribution
C(z)=C,(z,), Z,=0.1(n+1), n=01..9 in
the column (the points on the Fig. 3) and function
A(Z) (the points on the Fig. 4) on every step:
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1

C(2)=C,(2,)=2[RC,(R,Z,)dR,

L C,(RZ,)
WolR, (20)

Z,=0.1(n+1), n=01,..,9,

which are presented on the Figs. 3, 4. From Fig. 4 is
seen, that the function A(Z) is possible to be

presented as a quadratic approximation:

~
|
|
|

NNNNNNNNN
|

0 0.1 02 0.3 04 05 0.6 07 0.8 09 1
R

Fig. 2. Concentration distributions
C, (R,Zn), Z = O.l(n +1), n=0,1..,9.
1%
7 .
Fig. 3. Average concentration distribution:

“theoretical” values (as solution of (19) and (20)
C.(Z,),Z,=0.1(n+1),n=0,1,...,9 (points); C(Z)
as a solution of (22)(22) for “experimental” values of
a,, a,, a, (line).
A(Z)=a,+aZ+a,Z%, 21)
where the (“theoretical”) values of a,,a,,a, are

presented in the Table 1. As a result, in the case of axial
modification of the radial non-uniformity of the velocity,
the model (14) has the form:

dC =
(ao +a,Z +a1222)d—z+(a1 +2a,Z)C = 22)

=-DaC; z2=0, C-=1

where the parameters a,, a;, a, must be obtained,
using experimental data.

Fig. 4,
A(Zn ) Z = 0.1(n +1), n=01,..,
approximation (21) (line).

Function A(Z):

9:as a quadratic

PARAMETERS IDENTIFICATION

The obtained value of the function C, (1) (Fig. 3)
permit to be obtained the artificial experimental data
Co (1) for the column end (Z, =1):

exp

Co (1)=(0.95+0.1B,)C, (1),

exp

m=1...,10,

(23)

where 0<B_ <1, m=0,1,..,10 are obtained by a
generator of random numbers.

The obtained artificial experimental data (23) are
used for the illustration of the parameters (a,, a,, a,

) identification in the average concentrations model
(22) by the minimization of the least-squares
function:

Q(ao’alyaz):
Z[ 1 aO ai a2 exp (1)] ! (24)

where the value of C(La,,a,,a,) is obtained after

the solution of (22) for Z=1. The obtained
“experimental” parameter values are presented on
the Table 1.

The obtained (“experimental”) parameter values
are used for the solution of (22) and the result  (the
line) is compared with the average (“theoretical”)
concentration values
C(z)=C,(2,).Z,=0.1(n+1),n=0,1,..,9.
(points) (as solution of (19) and (20)) on the Fig. 3.
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INFLUENCE OF THE MODEL PARAMETER

The model (22), with “experimental” parameters
values of a,, a,, a, in the Table 1, is used for the
calculation the average concentrations in the case

Da =2 and the result (line) is compared (Fig. 5)
with the average (“theoretical”’) concentration

19
08}
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0.2 - T— q

0.1

Fig. 5. Effect of the chemical reaction rate (Da = 2)

average  (“theoretical”’)  concentration  values
C.(Z,),Z,=0.1(n+1),n=0,1,...,9. (as solutions of
(19) and (20) (points)); solution of (22) (line) values
C.(Z,).Z,=0.1(n+1),n=0,1,...,9. (as solutions of
(19) and (20) (points)) for this case.

Table 1. Parameters a,a, a,

“Theoretical” “Experimental”
Parameters
values values
a, 1.0387 0.8582
a 0.3901 0.4505

1

—0.4230
CONCLUSIONS

The presented numerical analysis of the industrial
column chemical reactors shows, that average
concentration model, where the radial velocity
component is equal to zero (in the cases of a constant
velocity radial non-uniformity along the column
height), is possible to be used in the cases of an axial
modification of the radial non-uniformity of the axial
velocity component. The use of experimental data,
for the average concentration at the column end, for
a concrete process, permits to be obtained the model
parameters (a,, &, 8, ), related with the radial non-

uniformity of the velocity. These parameter values
permit to be used the average concentration model
for modeling of different processes (different values
of the parameter Da, i.e. different values of the
column height, average velocity, reagent diffusivity
and chemical reaction rate constant).
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HOBU MOJEJIN HA UTHAYCTPUAJIHU KOJIOHHU XUMWYHU PEAKTOPU

b. bosmxues, Xp. bosmxuen

Hncemumym no unoicenepna xumus, Bvacapcka akademus na naykume, yiu. ,,Axao. I'. Bonues*, 6n. 103, 1113,
Cogus bvreapus

[Monydena Ha 13 ronu, 2017 r.; npuera Ha 21 romu, 2017 .

(Pesrome)

Hpe,I[CTaBeH € HOB ITOAXO0/ 3a MOJICJIMPAHE HA NPOMUIIIJIICHU KOJIOHHU XUMHWYHH PEAKTOPH. Hpez[nomeﬁ € TCOPCTUYCH
aHaJIu3 Ha C(bCKTa Ha paJauaJiHaTa HCPABHOMEPHOCT Ha aKCHUaJIHATA KOMIIOHCHTAa Ha CKOPOCTTa B MPOMUIIJICHU
KOJIOHHU XUMUYHU PEAKTOPH. YucleHUAT aHaau3 IMoKa3Ba, 4€ MOJCIbT HA CPCAHUTEC KOHLECHTpaluH, KOrato
paanajiHaTa KOMIIOHCHTA Ha CKOPOCTTAa € paBHAa Ha HyJla (B CJIy4auTe Ha IOCTOSIHHA pajuaiHa HEPABHOMEPHOCT Ha
CKOpOCTTa IO BUCOYMHATA Ha KOJ'IOHaTa), € BB3MOXKHO Ja 6T>H€ HM3I0JI3BaHa B CIIY4YaUTC HAa aKCHAJIHO U3BMCHCHUC Ha
paanaiHaTa HCPaBHOMCEPHOCT Ha aKCHaJIHaTa KOMIIOHEHTA Ha CKOPOCTTaA. H3nomsBaneTo Ha CKCIICPUMEHTAJIHU JaHHU
3a Cp€aHaTa KOHIOCHTPAIIWA Ha U3X0Jia Ha KOJIOHATa, 3a KOHKPETCH ITPOLEC U KOJIOHA, ITO3BOJIABA 1a 61)}13T HaMCpPEHHU
MOACIHUTE MapaMETPH, CBbP3aHU C paJuajIHaTa HEPABHOMEPHOCT Ha CKOPOCTTA. Te3u cToifHOCTH Ha mapamMmeTpuTe
TIO3BOJIABAT M3IIOJI3BAHETO HA MOJICTIa HA CPEIHUTE IMMOHICHTPAIIUKU 3a MOJCIIMPAHE HA pa3JIMUHU IIPOILICCH.
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