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New heterocycle analogues of resveratrol were designed and synthesized as potential anticancer agents. The 

compounds contain 3,5-dimethoxy- or 3,5-dihydroxystyryl fragment attached to the C5 or C6 position of a 

benzoxazolone ring. The compounds were tested for their cytotoxic activity against three human cancer cell lines (HL-

60, MGF-7 and MDA-MB-321) and some of them were found to exhibit significant antiproliferative effect. Generally, 

the obtained 5-styrylbenzoxazolones were more active in compare to the corresponding 6-styrylbenzoxazolone 

positional isomers. 

Key words: resveratrol; benzoxazolone; stilbene; cytotoxicity 

INTRODUCTION 

Resveratrol (Fig. 1) belongs to a group of 

naturally occurring polyphenols possessing the 

trans-stilbene scaffold. Found in more than 70 

plants, the compound has been shown to exhibit a 

variety of health-beneficial properties such as 

antioxidant, anti-inflammatory, anti-diabetic, 

cardio- and neuroprotective activities [1–5]. 

Additionally, resveratrol has been recognized as a 

promising chemopreventive and anticancer agent 

due to its capability to inhibit tumorigenesis by 

modulation of several cellular process including 

apoptosis, cell cycle progression as well as 

angiogenesis [2, 6–9]. A number of methoxy 

derivatives of resveratrol have been also reported to 

exert high cytotoxicity against various human 

cancer cell lines [10–14]. Some of the synthetic 

analogues showed better activity compared to the 

natural compound [10, 11, 14]. 

In search of new anticancer agents, we have 

planned the synthesis of a small series of 

heterocyclic derivatives of resveratrol, in which the 

4'-hydroxyphenyl moiety in the parent molecule 

was replaced with a benzoxazolone (Fig. 1). 

Considered to be a "privileged scaffold" in 

medicinal chemistry, the benzoxazolone 

heterocyclic system has been extensively used in 

drug discovery as a phenol and pyrocatechol 

bioisostere [15]. Тhe 3,5-dihydroxyphenyl fragment 

of the parent resveratrol molecule was left intact or 

replaced with a 3,5-dimethoxyphenyl moiety, with 

the aim to systematically evaluate the role of the 

isolated fragments on the biological activity of the 

compounds. 

 
Fig. 1. Chemical structure of resveratrol, 2(3H)-

benzoxazolone and target 5- and 6-styryl-2(3H)-

benzoxazolones. 

Thus, in continuation of our previous studies on 

the synthesis of heterocyclic stilbenes [16], here we 

report the preparation of 5- and 6-(3,5-dimethoxy- 
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or 3,5-dihydroxystyryl)-2(3H)-benzoxazolones as 

closely related resveratrol analogues. Their in vitro 

cytotoxicity was examined against three human 

cancer cell lines. 

EXPERIMENTAL 

Chemistry 

Melting points (mp) were determined on a 

Boetius hot-stage microscope and are uncorrected. 

Infrared spectra (IR) were recorded on a Specord 

71 spectrometer. 
1
H NMR spectra were obtained on 

a Bruker DRX250 or Bruker DRX400 

spectrometers. Chemical shifts were reported in 

parts per million (ppm, δ) relative to the solvent 

peak (CDCl3, 7.26 ppm; DMSO-d6, 2.50 ppm; 

acetone-d6, 2.05 ppm). Elemental analyses (C, H, 

N) were performed on a Vario III microanalyzer 

and the obtained results were within 0.4% of 

theoretical values. All reactions were monitored by 

thin-layer chromatography (TLC) on silica gel 

plates (Kieselgel 60 F254), using hexane/acetone 

(2:1 v/v) as eluent. Column chromatography on 

Merck silica gel 60 (230–400 mesh) was applied 

for the separation of diastereomers. Phosphonium 

bromides 1a-b were synthesized as described 

previously [16]. 

General procedure for the synthesis of stilbene 

derivatives via Wittig reaction 

A mixture of appropriate phosphonium bromide 

1a-b (1.51 g, 3 mmol), 3,5-dimethoxybenzaldehyde 

(0.50 g, 3 mmol), powdered potassium carbonate 

(1.38 g, 10 mmol) and 18-crown-6 (0.01 g) in 

THF/DCM (20 mL, 2:1 v/v) was refluxed for 3 h 

(monitored by TLC). The inorganic salts were 

filtered off and the filtrate was concentrated under 

reduced pressure to obtain a mixture of the 

corresponding E- and Z-stilbenes and 

triphenylphosphine oxide. Both diastereomers were 

isolated by column chromatography using 

petroleum ether/acetone (10:1 v/v) as eluent. 

(Z)-5-(3,5-Dimethoxystyryl)-3-methyl-2(3H)-

benzoxazolone (2a) 

Yield: 48% (0.48 g), colourless oil. IR (capillary 

film, cm
-1

): 1780 (C=O).
 1

H NMR (CDCl3, 250 

MHz): δ 3.27 (s, 3H, NCH3), 3.67 (s, 6H, OCH3), 

6.34 (t, 1H, ArH, J = 2.3 Hz), 6.39 (d, 2H, ArH, J = 

2.3 Hz), 6.57 (s, 2H, =CH), 6.84 (br s, 1H, ArH), 

7.04–7.05 (m, 2H, ArH). 
1
H NMR (acetone-d6, 500 

MHz): δ 3.29 (s, 3H, NCH3), 3.65 (s, 6H, OCH3), 

6.36 (t, 1H, ArH, J = 2.2 Hz), 6.42 (d, 2H, ArH, J = 

2.1 Hz), 6.58 (d, 1H, =CH, J = 12.2 Hz), 6.65 (d, 

1H, =CH, J = 12.2 Hz), 7.04–7.06 (m, 2H, ArH), 

7.12 (d, 1H, ArH, J = 8.0 Hz). Anal. Calcd. for 

C18H17NO4 (311.34): C 69.44, H 5.50, N 4.50. 

Found: C 69.62, H 5.62, N 4.30. 

(E)-5-(3,5-Dimethoxystyryl)-3-methyl-2(3H)-

benzoxazolone (3a) 

Yield: 43% (0.40 g), mp 164–165 °C. IR (nujol, 

cm
-1

): 1760 (C=O). 
1
H NMR (CDCl3, 400 MHz): δ 

3.44 (s, 3H, NCH3), 3.84 (s, 6H, OCH3), 6.41 (t, 

1H, ArH, J = 2.1 Hz), 6.67 (d, 2H, ArH, J = 2.3 

Hz), 6.99 (s, 1H, =CH, J = 16.2 Hz), 7.08 (s, 1H, 

=CH, J = 16.3 Hz), 7.12 (br s, 1H, ArH), 7.17 (d, 

1H, ArH, J = 8.3 Hz), 7.23 (dd, 1H, ArH, J = 1.0 

Hz, J = 8.3 Hz). Anal. Calcd. for C18H17NO4 

(311.34): C 69.44, H 5.50, N 4.50. Found: C 69.21, 

H 5.37, N 4.53. 

(Z)-6-(3,5-Dimethoxystyryl)-3-methyl-2(3H)-

benzoxazolone (2b) 

Yield: 48% (0.48 g), mp 89–91 °C. IR (nujol, 

cm
-1

): 1770 (C=O). 
1
H NMR (CDCl3, 250 MHz): δ 

3.37 (s, 3H, NCH3), 3.68 (s, 6H, OCH3), 6.34 (t, 

1H, ArH, J = 2.3 Hz), 6.39 (d, 2H, ArH, J = 2.3 

Hz), 6.54 (s, 2H, =CH), 6.81 (d, 1H, ArH, J = 8.4 

Hz), 7.09–7.13 (m, 2H, ArH). 
1
H NMR (acetone-d6, 

250 MHz): δ 3.38 (s, 3H, NCH3), 3.67 (s, 6H, 

OCH3), 6.37 (t, 1H, ArH, J = 2.1 Hz), 6.42 (d, 2H, 

ArH, J = 2.1 Hz), 6.56 (d, 1H, =CH, J = 12.2 Hz), 

6.64 (d, 1H, =CH, J = 12.2 Hz), 7.08 (d, 1H, ArH, J 

= 8.1 Hz), 7.11 (br s, 1H, ArH), 7.16 (dd, 1H, ArH, 

J = 1.1 Hz, J = 8.4 Hz). Anal. Calcd. for C18H17NO4 

(311.34): C 69.44, H 5.50, N 4.50. Found: C 69.52, 

H 5.83, N 4.23. 

(E)-6-(3,5-Dimethoxystyryl)-3-methyl-2(3H)-

benzoxazolone (3b) 

Yield: 35% (0.33 g), mp 164–165 °C. IR (nujol, 

cm
-1

): 1770 (C=O). 
1
H NMR (CDCl3, 400 MHz): δ 

3.42 (s, 3H, NCH3), 3.84 (s, 6H, OCH3), 6.41 (t, 

1H, ArH, J = 2.2 Hz), 6.66 (d, 2H, ArH, J = 2.2 

Hz), 6.92–6.99 (m, 2H, =CH, ArH), 7.07 (s, 1H, 

=CH, J = 16.2 Hz), 7.31 (dd, 1H, ArH, J = 1.2 Hz, 

J = 8.1 Hz), 7.40 (br s, 1H, ArH). Anal. Calcd. for 

C18H17NO4 (311.34): C 69.44, H 5.50, N 4.50. 

Found: C 69.38, H 5.37, N 4.53. 

General procedure for the demethylation of the 

methoxy groups with BBr3 

Boron tribromide (1.7 M in DCM, 0.53 mL, 0.9 

mmol) was added to a stirred solution of 

corresponding 3,5-dimethoxysubstituted (E)-

stilbene 3a-b (0.16 g, 0.5 mmol) in anhydrous 

DCM (10 mL) at –10 °C. The resulting mixture was 

stirred for 1 h at –10 °C, allowed to warm to room 

temperature, and stirred for another 48 h. Then, 
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water (15 mL) was added and the obtained 

precipitate was filtered off and air-dried. The 

product was purified by recrystallization. 

(E)-5-(3,5-Dihydroxystyryl)-3-methyl-2(3H)-

benzoxazolone (4a) 

Yield: 70% (0.10 g), mp 252–254 °C (ethanol). 

IR (nujol, cm
-1

): 3200-3400 (OH), 1720 (C=O). 
1
H 

NMR (DMSO-d6, 400 MHz): δ 3.38 (s, 3H, NCH3), 

6.16 (t, 1H, ArH, J = 2.1 Hz), 6.43 (d, 2H, ArH, J = 

2.1 Hz), 7.08 (s, 2H, =CH), 7.29 (s, 2H, ArH), 7.58 

(s, 1H, ArH), 9.26 (s, 2H, OH). 
1
H NMR (acetone-

d6, 500 MHz): δ 3.43 (s, 3H, NCH3), 6.30 (br s, 1H, 

ArH), 6.57 (d, 2H, ArH, J = 1.9 Hz), 7.09 (d, 1H, 

=CH, J = 16.3 Hz), 7.13 (d, 1H, =CH, J = 16.3 Hz), 

7.21 (d, 1H, ArH, J = 8.2 Hz), 7.29 (dd, 1H, ArH, J 

= 1.3 Hz, J = 8.2 Hz), 7.47 (br s, 1H, ArH), 8.46 (br 

s, 2H, OH). Anal. Calcd. for C16H13NO4 (283.28): C 

67.84, H 4.63, N 4.94. Found: C 67.54, H 4.81, N 

4.71. 

(E)-6-(3,5-Dihydroxystyryl)-3-methyl-2(3H)-

benzoxazolone (4b) 

Yield: 77% (0.11 g), mp 281–283 °C 

(acetone/water, 1:1 v/v). IR (nujol, cm
-1

): 3150-

3400 (OH), 1740 (C=O). 
1
H NMR (DMSO-d6, 400 

MHz): δ 3.35 (s, 3H, NCH3), 6.14 (t, 1H, ArH, J = 

2.1 Hz), 6.42 (d, 2H, ArH, J = 2.1 Hz), 7.05 (d, 2H, 

=CH), 7.23 (d, 1H, ArH, J = 8.1 Hz), 7.42 (dd, 1H, 

ArH, J = 1.1 Hz, J = 8.1 Hz), 7.65 (d, 1H, ArH, J = 

1.1 Hz), 9.23 (s, 2H, OH). 
1
H NMR (acetone-d6, 

500 MHz): δ 3.41 (s, 3H, NCH3), 6.29 (t, 1H, ArH, 

J = 2.0 Hz), 6.57 (d, 2H, ArH, J = 2.0 Hz), 7.05 (d, 

1H, =CH, J = 16.3 Hz), 7.12 (d, 1H, =CH, J = 16.3 

Hz), 7.16 (d, 1H, ArH, J = 8.1 Hz), 7.40 (dd, 1H, 

ArH, J = 1.2 Hz, J = 8.1 Hz), 7.52 (d, 1H, ArH, J = 

1.1 Hz), 8.43 (br s, 2H, OH). Anal. Calcd. for 

C16H13NO4 (283.28): C 67.84, H 4.63, N 4.94. 

Found: C 67.68, H 4.57, N 4.73. 

Biology 

Cytotoxicity tests were carried out on three 

tumor cell lines with different origin, namely HL-

60 (human promyelocytic leukemia), MCF-7 

(human breast cancer) and MDA-MB-231 (human 

breast adenocarcinoma). The cells were maintained 

as suspension type cultures (leukemia and 

adenocarcinoma) or as adherent culture (breast 

cancer) in controlled environment: RPMI-1640 

medium, supplemented by 10% FBS and 2 mM L-

glutamine at 37 °C in a "Heraeus" incubator with 

humidified atmosphere and 5% CO2. In order to 

keep cells in log phase, the cultures were refed with 

fresh RPMI-1640 medium two or three times a 

week. 

Tested compounds were dissolved in DMSO 

and the solutions were diluted with RPMI-1640 

medium to yield the desired final concentrations. 

Cytotoxicity of the compounds was assessed using 

the MTT-dye reduction assay [17], with minor 

modifications [18]. Exponentially growing cells 

were seeded in 96-well plates (100 μL/well at a 

density of 1 × 10
5
 cells/mL). After 24 h incubation 

(37 °C, 5% CO2 and maximum humidity), they 

were exposed to various concentrations of the 

tested compounds (200, 50, 25, 12.5, 6.25 μМ) for 

72 h. Then, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide) solution (10 mg/mL 

in PBS) was added (10 μL/well). Plates were 

further incubated for 3 hours at 37 °C. To dissolve 

the formazan crystals formed, 5% solution of 

formic acid in isopropanol (100 μL/well) was used. 

Absorption was measured on an ELISA reader at 

580 nm. A mixture of 100 μL RPMI-1640 medium, 

10 μL MTT stock and 100 μL 5% formic acid in 

isopropanol was used as control. For each 

concentration tested a set of six separate wells was 

used. The IC50 value (the concentration that inhibit 

50% of cell growth) for each compound was 

calculated using OriginLab program. 

RESULTS AND DISCUSSION 

As depicted in Scheme 1, the synthesis of target 

stilbene derivatives 2a-b and 3a-b was achieved by 

applying the Wittig methodology on 3,5-

dimethoxybenzaldehyde and the appropriate 

heterocyclic ylide, in turn obtained from the 

phosphonium bromides 1a-b in the presence of 

potassium carbonate and 18-crown-6. The reactions 

were carried out in THF/DCM at reflux for 3 h and 

produced the corresponding 3,5-

dimethoxystyrylbenzoxazolones as mixtures of π-

diastereomers. The pure Z- and E-stilbenes (2a-b, 

respectively 3a-b) were separated by column 

chromatography. As the natural resveratrol is in the 

E-configuration, the obtained methoxy substituted 

E-stilbenes 3a-b were subjected to a reaction of 

demethylation with boron tribromide to afford 4a-b 

in high yields. The demethylation of the Z-isomers 

2a-b in these conditions led to a mixture of 

products caused by additionally isomerization of 

the double bond. 

The structures of all newly synthesized 

benzoxazolone-containing stilbene derivatives 2a-b 

– 4a-b were confirmed by 
1
H NMR spectroscopy. 

The geometry of the double bond was assigned on 

the basis of the coupling constants of the olefinic 

protons signals (J = 12.2 Hz for Z-stilbene 2a-b,  
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Scheme 1. Synthesis of 5- and 6-styryl-2(3H)-benzoxazolones. 
 

and J = 16.2 or 16.3 Hz for E-stilbene 3a-b and 4a-

b). Consistent with the coupling constant data, both 

doublets for the olefinic protons of the Z-isomers 

appeared at 6.54–6.65 ppm whereas those for E-

stilbenes shifted downfield to 6.99–7.13 ppm. 

The synthesized heterocyclic analogues of 

resveratrol were tested in vitro for their cytotoxicity 

against three human cancer cell lines (HL-60, 

MCF-7 and MDA-MB-231), using MTT-dye 

reduction assay. As presented in Table 1, the 

obtained results showed that most derivatives exert 

weak antiproliferative effects on the studied cancer 

cells lines. Compound 2a bearing (Z)-3,5-

dimethoxystyryl fragment on C5 position of 

benzoxazolone ring exhibited the highest activity 

with IC50 of 19 μM against HL-60, 42 μM against 

MCF-7 and 76 μM against MDA-MB-231 cells. 

The corresponding E-isomer 3a was inactive, but 

the hydroxy substituted E-stilbene 4a exerted a 

similar cytotoxic potential as 2a. 

Table 1. Cytotoxic effects (expressed as IC50) of 

compounds 2a-b – 4a-b on HL-60, MCF-7 and MDA-

MB-231 cell lines. 

Compd 

IC50 (μM)±SD 

HL-60 MCF-7 
MDA-

MB-231 

2a 19±1.1 42±2.1 76±3.2 

2b 13±1.3 > 200 > 200 

3a > 200 > 200 > 200 

3b > 200 40±2.2 > 200 

4a 38±1.7 42±1.8 105±3.7 

4b > 200 84±2.9 > 200 

 

These results showed that the biological activity 

of the compounds 2a-b – 4a-b was influenced by 

the position of the styryl fragment in a 

benzoxazolone ring as the obtained 5-

styrylbenzoxazolones were generally more active in 

compare to the corresponding 6-styryl-

benzoxazolone positional isomers. Disregarding the 

configuration of the double bond in tested 

derivatives, the introduction of 3,5-dimethoxystyril 

or 3,5-dihydroxystyril moiety on C5 position of the 

heterocyclic system led to compounds closely 

resembling resveratrol. 

CONCLUSION 

In this study we reported the synthesis of six 

heterocycle analogues of resveratrol, containing a 

benzoxazolone ring. Evaluation of the cytotoxicity 

of the stilbene derivatives on HL-60, MCF-7 and 

MDA-MB-231 cancer cell lines showed that (Z)-3-

methyl-5-(3,5-dimethoxystyryl)-2(3H)-benzoxazo-

lone (2a) and (E)-3-methyl-5-(3,5-dihydro-

xystyryl)-2(3H)-benzoxazolone (4a) were the most 

active in the series. 
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(Резюме) 

Синтезирани са нови хетероциклени аналози на ресвератрол като потенциални противоракови средства. 

Съединенията съдържат 3,5-диметокси- или 3,5-дихидроксистирилов фрагмент, въведен в позиция С5 или С6 

на бензоксазолонов пръстен. Цитотоксичната активност на съединенията е изследвана върху три туморни 

клетъчни линии (HL-60, MGF-7 and MDA-MB-321) и получените резултати показват, че някои от тях проявяват 

добър антипролиферативен ефект. В повечето случай, 5-стирилбензосазолоните са по-активни в сравнение с 

техните позиционни изомери, съответните 6-стирилбензосазолони. 


