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Net analyte signal-based methods for the simultaneous determination of paracetamol, 
propyphenazone and caffeine by UV spectrophotometry 
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Three different net analyte signal-based (NAS) methods - NAP CLS, HLA/GO and HLA XS were successfully applied 
for the determination of ternary mixtures of paracetamol (PAR), propyphenazone (PRO) and caffeine (CAF). The methods 
used absorbance UV-spectral data for resolving this complex system with overlapping drug spectra. A reduced five-level 
orthogonal design was used for the formation of a calibration set including the three compounds. The chemometric models 
were tested on an external validation dataset with concentrations within the calibration range. All proposed chemometric 
algorithms could be successfully applied for the determination of the above compounds in the pharmaceutical tablet 
formulation Saridon®. The obtained results showed that the NAS performance was similar compared to partial least-
squares method (PLS-1). In addition, the use of the net analyte signal concept allowed the calculations of the analytical 
figures of merit. A moving window wavelength selection strategy was used, which significantly reduced the number of 
factors and improved the analytical recoveries. 
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NTRODUCTION 

The area of spectroscopy is one of the most 
promising fields in pharmaceutical analysis. 
Processing of the measured spectra is therefore 
needed to extract information about the components 
of interest. Chemometrics contribute to the 
processing of the spectra by delivering algorithms to 
find differences between spectra (classification) [1-
8] or to link spectra to concentrations of compounds 
(calibration) [9,10]. In recent years the resolution of 
highly overlapped spectra has advanced 
dramatically due to the development of robust 
numerical methods.  

The application of multivariate calibration 
techniques on spectral data offers the great 
advantage of speeding up complex systems 
resolution. Among the various chemometric 
approaches applied for multicomponent analysis, 
classical least squares (CLS), principal component 
regression (PCR), partial least squares regression 
(PLS) have been successfully adopted in many 
quantitative assays of pharmaceutical formulations 
[11, 12]. Hybrid linear analysis (HLA) is a relatively 
new linear algorithm, which combines the 
advantages of knowing pure component spectra (like 
CLS) with the modeling advantage of ignoring all 
other species (e.g., PLS) [13]. Two variants of HLA 

algorithms were introduced which did not require the 
pure spectrum to be known. Finally hybrid linear 
analysis developed by Xu & Schechter called 
HLA/XS [14], hybrid linear analysis called 
HLA/GO and net analyte pre-processing combined 
with classical least squares (NAP/CLS) developed 
by Goicoechea & Olivieri [15] were applied for 
resolving multicomponent pharmaceutical mixtures 
[16]. 

In the case of pharmaceutical analysis, either full-
factorial or central composite designs are often 
employed for calibration. The preparations studied 
require designs other than full-factorial ones, which 
would imply too many calibration mixtures. 
Brereton’s experimental plans are a suitable strategy 
to reduce calibration samples [17]. 

Multicomponent drug formulations are a great 
challenge for analytical chemists to develop reliable 
and easy methods for simultaneous estimation which 
do not require individual calculations for every 
single component [18]. The pharmaceutical 
multidrug formulations, in which one dominant drug 
is combined with other related drugs, are designated 
to enhance the pharmacological effects of each 
substance and to cover a wider medical treatment. 
One such popular combination, containing 
paracetamol as a dominant drug and 
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propyphenazone and caffeine in smaller quantities is 
named Saridon®. Saridon® is manufactured by 
Bayer and it is a widely prescribed combination for 
pain relief in Eastern Europe.  

Paracetamol (PAR) (4‐hydroxyacetanilide) is a 
synthetic drug, derived from p-aminophenol. It is a 
widely used over-the-counter analgesic and 
antipyretic agent, which has no antiinflammatory 
properties. Therefore, it helps to prevent headache 
and other pain and is a major ingredient in numerous 
cold and flu remedies [19]. 

Propyphenazone (PRO) (3‐dimethyl‐1‐phenyl- 
3‐pyrazolin‐5‐one) is derived from pyrazolone. It is 
an analgesic, antipyretic and anti-inflammatory 
agent [20]. It is a non-steroidal antiinflammatory 
drug (NSAID) incorporated together with 
paracetamol into many over-the-counter analgesic 
combinations. 

Caffeine (CAF) (3,7‐dihydro‐1,3,7‐trimethyl‐ 
1H‐purine‐2,6‐dione) is a xanthine substance used as 
a psychotropic stimulant drug [21]. Caffeine is also 
known to synergistically increase the analgesic 
effect of paracetamol and propyphenazone [22, 23], 
providing relief for symptoms like headache, 
muscular aches, neuralgia, backache, joint pain, 
rheumatic pain, migraine, toothache and menstrual 
pain. 

It is found that the combination of the above 
mentioned drugs is also very effective in controlling 
fever originating from bacterial or viral infection. It 
is usually available in a tablet dosage form as a single 
unit dose with drug concentrations in varying 
proportions, but in Saridon® the content is: 250 mg 
of paracetamol, 150 mg of propyphenazone and 50 
mg of caffeine. 

Literature survey revealed several analytical 
methods reported for the determination of ternary 
combinations of PAR, PRO and CAF. Separation 
techniques such as HPLC and HPTLC have been 
reported for the analysis of this drug mixture in 
pharmaceutical dosage forms [24-26]. Vidal et al. 
carried out spectrophotometric determination by 
means of a single flow-through UV multiparameter 
sensor [27]. Derivative ratio zero-crossing 
spectrophotometric method of the three analytes was 
also demonstrated by Dink et al. [24]. The same 
authors proposed UV chemometric determination of 
this ternary mixture in pharmaceutical preparations 
[28]. De Luca et al. applied chemometric methods 
not only for absorbance but in derivative spectra for 
better resolving of the above drugs with a novel 
mathematical procedure including wavelength 
selection [29]. 

In the work of Gergov et al. [30] on the same drug 
mixture and Saridon® formulation the predictability 

of different PLS algorithms was investigated. This 
motivated us to further extend our work and to 
investigate the quantitative power of NAS-based 
methods and to compare them with PLS. NAS 
multivariate models may benefit from suitable 
wavelength selection which avoids heavily 
overlapped spectral regions. A sensor selection 
approach based on moving spectral windows 
strategy was applied in this work.  

The goal of the present study was to compare 
different NAS calibration approaches (NAP CLS, 
HLA/XS, HLA/GO) and PLS1. Thus, an optimal 
chemometric methodology could be offered to solve 
the significant problems of modeling and analysis of 
multicomponent pharmaceutical systems.  

EXPERIMENTAL 

Reagents and solutions 

Paracetamol, propyphenazone and caffeine were 
purchased from Sigma–Aldrich. All stock solutions 
were prepared by dissolving 100 mg of the 
corresponding compounds in 1 L of water. 22 
mixtures, containing 0 – 24 mg L–1 of PAR, 0 – 20 
mg L–1 of PRO and 0 – 20 mg L–1 of CAF in possible 
compositions were prepared from the stock 
solutions. 

Apparatus and software 

Absorption spectra were recorded over the λ 
range of 190 – 820 nm using a quartz cuvette of 1.0 
cm optical path, by a HP8452A diode-array UV–VIS 
spectrophotometer. 

Data were handled using MATLAB® software 
(ver. 7.0.1). Multivariate calculations by PLS1 and 
HLA were performed using MVC1 program which 
is available on the Internet and performed under 
MATLAB environment (MATLAB, ver. 7.0.1) or 
by our MATLAB codes which are available by 
request [31]. Before running MVC1, the spectral 
data for calibration, validation and real samples were 
saved in special format that is compatible with 
MVC1. MVC1 has the ability to display graphical 
presentations related to calibration tools. 

Sample solutions 

Pharmaceutical formulations were assayed by 
weighing the content of five tablets and crushing 
them into fine powder. An amount exactly 
corresponding to the average tablet weight was 
suspended in water and made up to a volume of 1000 
mL. The suspension was sonicated for 10 min and 
then filtered through a PTFE 0.45 μm membrane 
filter. Samples for analysis were obtained after serial 
dilution 1:25 of this filtrate with water and analyzed. 

http://link.springer.com/search?facet-author=%22A.+Dom%C3%ADnguez+Vidal%22
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Design of the experiment - calibration and 
validation sets 

A calibration design set of 22 samples was used 
based on five levels, which was coded between -2 
and +2 for each compound in the mixture. The levels 
were related to the concentrations of the compounds 
[17]. The same calibration design was used in our 
previous study [30]. The concentrations of the 
calibration set solutions were prepared within the 
linear range of the calibration graph. The design had 
a value of r12 = 0.0, so the two concentration vectors 
were orthogonal to one another. The difference 
vector [1 3 2 0] and cyclical generator -2, -1, 2, 1 
were used in the calibration design matrix. The 
construction of multilevel calibration designs has 
been described in the literature [17]. A validation set 
was prepared in order to test the performance of the 
models. The chosen concentration levels of the three 
solutes were within the ranges selected for the 
calibration set.  

Theoretical background 

HLA method. Hybrid linear analysis (HLA) is a 
relatively new linear algorithm, which can be used 
when data for the considered pure analyte are 
available [13]. The main idea of HLA is to obtain a 
limited number of factors of a data matrix in which 
the contribution of the analyte of interest has been 
removed, and is therefore based on net analyte signal 
(NAS) calculation. The net analyte signal (NAS) for 
analyte k (r*k) is given by the following equation: 

𝑟𝑟∗𝑘𝑘 = [𝐼𝐼 − 𝑅𝑅−𝑘𝑘(𝑅𝑅−𝑘𝑘)+]𝑟𝑟 = 𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁,𝑘𝑘𝑘𝑘            (1) 

where R is JxJ orthogonal projection matrix 
which projects a given vector onto the NAS space, r 
is the spectrum of a given sample, I is JxJ unitary 
matrix, 𝑅𝑅−𝑘𝑘 is JxI a column space spanned by the 
spectra of all other analytes except k, (R−k)+  is the 
pseudo-inverse of 𝑅𝑅−𝑘𝑘   usually computed by 
singular value decomposition using A factors. 

HLA HS method. There are different alternative 
approaches, which can be used in order to estimate 
the R-k matrix.  One of them is proposed by Xu and 
Schechter [14]. Each spectrum from the calibration 
matrix is divided by its concentration, except for the 
zero concentrations, and the sum of the resulting 
spectra is calculated using the following equation 
(2): 

 

𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 = 1
𝐼𝐼′
∑ 𝑟𝑟𝑖𝑖,𝑐𝑐𝑐𝑐𝑐𝑐

𝑐𝑐𝑖𝑖𝑖𝑖
𝐼𝐼
𝑖𝑖=1                                         (2) 

where 𝐼𝐼′ is the number of the calibration samples 
for which cik  is different from 0.  

The resulting mean spectrum is obtained from the 
spectral matrix using the following equation (3): 

(𝑅𝑅−𝑘𝑘)𝑖𝑖′,𝑗𝑗=𝑅𝑅𝑖𝑖′,𝑗𝑗/𝑐𝑐𝑖𝑖𝑖𝑖 − 𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐,𝑗𝑗Т                                (3) 

The calibration spectra with cik = 0 are then added 
to the matrix from equation (3) and thus the desired 
matrix R-k is obtained. The net sensitivity vector sk* 
is calculated through projection of sk;LS on the NAS 
area, using least squares method approximation 
according to the following equation:  

𝑠𝑠𝑘𝑘∗ = 𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁,𝑘𝑘 �
𝑅𝑅𝑇𝑇𝑐𝑐𝑘𝑘
𝑐𝑐𝑘𝑘
𝑇𝑇𝑐𝑐𝑘𝑘

�                                      (4) 

The concentration of к for the unknown sample is 
calculated from the r spectrum using the equation 
(5), which is a basic step in the prediction for the 
methods, based on net analyte signal (NAS) [6]. 

𝑐𝑐𝑢𝑢𝑢𝑢,𝑘𝑘 =
𝑠𝑠𝑘𝑘
𝑇𝑇𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁,𝑘𝑘𝑟𝑟

𝑠𝑠𝑘𝑘
𝑇𝑇𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁,𝑘𝑘𝑠𝑠𝑘𝑘

=
𝑠𝑠𝑘𝑘
𝑇𝑇𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁,𝑘𝑘  𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁,𝑘𝑘𝑟𝑟

𝑠𝑠𝑘𝑘
𝑇𝑇  𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁,𝑘𝑘 𝑆𝑆𝑘𝑘

= �𝑠𝑠𝑘𝑘
∗�
𝑇𝑇𝑟𝑟𝑘𝑘

∗

�𝑠𝑠𝑘𝑘
∗�

2   (5) 

HLA GO method. The applied HLA GO [11] 
method in this research involves the use of mean 
(uncentred) calibration profile. At first it is obtained 
as: 

𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐����� = 1
𝐼𝐼
∑ 𝑟𝑟𝑖𝑖,𝑐𝑐𝑐𝑐𝑐𝑐𝐼𝐼
𝑖𝑖=1                                           (6) 

where ri,cal is the profile for the i-th calibration 
sample. Then the contribution of analyte k is 
subtracted from the data matrix R in the following 
way: 

𝑅𝑅−𝑘𝑘 = 𝑅𝑅 − 𝑐𝑐𝑘𝑘 𝑟̅𝑟𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇

𝑐𝑐𝑘̅𝑘,𝑐𝑐𝑐𝑐𝑐𝑐
                                        (7) 

where 𝑐𝑐�𝑘𝑘,𝑐𝑐𝑐𝑐𝑐𝑐 is the mean (uncentred) calibration 
con-centration of analyte k. The calculation of net 
sensitivity (𝑠𝑠𝑘𝑘∗) is then carried out according to the 
following equation: 

𝑠𝑠𝑘𝑘∗ = 𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁,𝑘𝑘 �
𝑟𝑟�𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇

𝑐𝑐�𝑘𝑘,𝑐𝑐𝑐𝑐𝑐𝑐
�                                    (8) 

NAP CLS method. The last possible approach to 
estimate the net sensitivity vector sk* and 𝑅𝑅−𝑘𝑘 matrix 
includes approximation of sk;LS using least squares 
method for obtaining the 𝑅𝑅−𝑘𝑘 matrix (equation 9) 
and sk* (equation 4). 

𝑅𝑅−𝑘𝑘 = 𝑅𝑅 − 𝑐𝑐𝑘𝑘  𝑠𝑠𝑘𝑘,𝐿𝐿𝐿𝐿                                        (9) 

This method is called NAP CLS [11] and 
includes the following steps: (1) preprocessing of the 
raw initial spectral matrix R through projection on 
the space, orthogonal to the space of all mixture 
components, except for the k analyte, which results 
in obtaining the net analyte signal matrix 𝑅𝑅𝑘𝑘∗  and  
regression of the obtained matrix with the 
concentrations using classical CLS procedure. 

Figures of merits for the analytical method. 
Selectivity, sensitivity, signal to noise ratio, LOD 
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and LOQ are among the valuable analytical 
information that can be obtained from NAS [32]. 
MVC1 contains a special sub-routine, based on net 
analyte signal concept for estimation of figures of 
merit for the analytical method [31]. 

Determination of number of factors(A). The 
optimal number of principal factors is essential in 
building multivariate models [33]. The prediction 
error decreases with the number of factors used until 
an optimal value is reached. Most of the information 
is usually in the first factors but it is not guaranteed 
that the useful information is exclusively reserved to 
these factors. Full crossvalidation is the most used 
validation method, in which one reference at a time 
is removed from the calibration set, after that the 
same sample is predicted by using the calibration 
built with the other references. Several tests have 
been proposed to select the number of PCs.  

The root mean square error of prediction 
(RMSEP) was chosen to express the prediction error 
when PLS1 and HLA/GO procedures were applied. 
This parameter represents an estimate of the error 
when other samples are predicted with that model. 
The best prediction ability of the models is reached 
when the prediction error is at its lowest value. 

𝑆𝑆𝑆𝑆𝑆𝑆 = 1
𝐶𝐶
�
∑ �𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎�𝑚𝑚
𝑖𝑖=1

2

𝑚𝑚
�

1
2
                       (10) 

where Cact indicates the actual concentration in 
the sample, Cpred is predicted concentration, C is the 
mean of real concentrations in the validation set and 
m is the number of samples in the prediction set. 

Another important statistical parameter in 
evaluating the model quality is R2. It represents an 
index of quality in fitting all data to a straight line 
and represents the fraction of total variance 
explained by the model. It is computed as: 

𝑅𝑅2 = 1 −
∑ �𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎−𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�

2𝑚𝑚
1
∑ (𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎−𝐶𝐶)2𝑚𝑚
1

                            (11) 

where C represents the mean of the true 
concentrations in the prediction set. 

The last statistical parameter for evaluating the 
quality of validation is relative error of prediction: 

𝑅𝑅𝑅𝑅𝑅𝑅(%) = 100
𝐶𝐶

 �1
𝐼𝐼

 ∑ �𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎 − 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�
2𝑚𝑚

1 �
1
2        (12) 

Softwares. The NAP/CLS, HLA/HS, HLA/GO 
and PLS1 algorithm was applied using the 
Toolbox MVC1 written for MATLAB [31], 

because these routines allow one to evaluate the 
figures of merit based of the NAS theory. 

RESULTS AND DISCUSSION 

Spectral overlapping and data preprocessing 

The zero-order UV spectra of PAR, PRO and 
CAF in a concentration ratio equivalent to the 
content of the commercial pharmaceutical 
formulation in water are shown in Fig.1. The 
wavelength range from 190–300 (56 wav) was 
selected because of the absence of absorbance after 
300 nm for all of the drugs. It is obvious that the 
studied analytes in combination could not be 
determined directly in this spectral region because of 
strong overlapping. 

Regression model building and wavelength 
optimization 

With the aim to extract the most significant 
analytical information from the spectral region of 56 
wavelengths the NAP/CLS, HLA/HS, HLA/GO and 
PLS1 calibration models were firstly developed on 
data. Selection of the optimum number of factors to 
be used within the all proposed algorithms allows 
one to model the system with the optimum amount 
of information. In the present work, cross-validation 
has been used to select the optimum number of 
factors. The statistical parameters of model 
prediction for both chemometric methods are 
presented in Table 1. A comparative study of the 
statistical parameters of all chemometric approaches 
was undertaken.  

The models were validated by an external 
validation set. The results from the calibration 
methods with net analyte signal were much better 
when the calibration was carried out in a selected 
spectral region instead of the whole spectrum. The 
results from applying the NAP CLS, HLA GO, HLA 
XS and PLS1 methods for calibration with and 
without spectral selection are presented in table 1. 
The spectral selection was carried out using moving 
window strategy on the absorption spectra in order 
to define the most informative spectral regions [34]. 
As shown, without the wavelength selection the 
factors number was much smaller for the NAS 
methods compared to PLS. The RMSEP and REP 
values for PAR and PRO were lower with the NAS 
methods in comparison with PLS, whereas CAF 
showed similar RMSEP and REP values with NAS 
and PLS methods. The slope and intercept values for 
PRO were unsatisfactory. 
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Fig.1. Absorbance spectra in water of paracetamol (10 µg mL-1), propyphenazone (6 µg mL-1) and caffeine (2 µg mL-1). 

After wavelength selection the number of the 
factors was significantly reduced. The obtained 
RMSEP values were much lower, especially for 
PRO and CAF. The estimated RMSEP and REP 
values were approximately the same and in some 
cases even better for the NAS calibration methods 
compared to PLS. For PRO and CAF the RMSEP 
and REP values were highly reduced after the 
spectral selection and were even lower for NAS than 
the PLS method. PRO showed the lowest values with 
HLA XS and CAF – with NAP CLS. Compared to 
the other two components, CAF had the lowest 
values for RMSEP and REP. After the wavelength 
selection PRO gave better values for the slope and 
the intercept. 

Analytical figures of merit 

Net-analyte signal (NAS) is a suitable method to 
characterize the analytical figures of merit related to 
the multivariate calibration during drugs 
quantification [35]. NAS calculations, in fact, could 
be applied for univariate, classical and inverse 
multivariate calibration [36]. For classical 
multivariate calibration, the basic equation that is 
needed to estimate figures of merit is:  

sk* = [ I – S-k  S-k
+] sk,                                     (13) 

where S is the matrix of sensitivities collected for 
the other solutes (other than the solute of interest), sk 
is the sensitivity vector of the analyte, and sk* is the 
estimated net part of the k-th component that is 
orthogonal to the other constituents [37]. 

The best candidate for sk is the pure spectrum of 
the analyte of interest. NAS is necessary to find 

meaningful parameters to assess the analytical 
performance of multivariate calibration like 
sensitivity (SEN), selectivity (SEL), limit of 
detection (LOD), limit of quantification (LOQ). 

SEN was estimated from the net signal of analyte k 
(sk*) as ║sk*║[37]. SEL which measures the extent 
of spectral overlapping was estimated as 
║sk*║/║sk║[37]. LOD which gives the minimum 
detectable amount of the solute k was given as 
3║ε║/║sk*║ [35]. The minimum quantifiable 
amount of the solute was estimated as 
10║ε║/║sk*║[35]. In the former two equations, 
║ε║ represents the instrumental noise which was 
estimated by recording five spectra of the blank over 
the range 190-300 nm (2 nm resolution). Then the 
norms of blank readings (║NASblank║) were 
estimated, and ║ε║ was taken as the standard 
deviation of estimated norms [35]. Analytical 
sensitivity (𝛾𝛾) was given as: 

𝛾𝛾 =
𝑆𝑆𝑆𝑆𝑆𝑆
‖𝜀𝜀‖

 

The estimated figures of merit of the three drugs 
are presented in Table 2.  

Sensitivity (SEN), selectivity (SEL), analytical 
sensitivity (𝛾𝛾), and limit of detection (LOD) were 
estimated using MVC1 toolbox, containing a special 
sub-routine based on net analyte signal concept for 
estimation of figures of merit for the analytical 
method. Estimated FOM for PAR, PRO and CAF 
were determined with all algorithms and used to 
compare analytical methods. The obtained results 
are given in Table 3. 
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Table 1. Comparison of validation parameters of NAP CLS, HLA GO, HLA XS and PLS1 methods before and after 
wavelength selection for the three components 

Component Statistical 
parameters 

Multivariate methods 
NAP CLS HLA GO 

PAR 

Sensor range(nm) 190-300 250-268 190-300 250-268 
Factors 4 2 4 2 
RMSEP(μg mL–1) 0.1921 0.1636 0.2271 0.1550 
REP(%) 2.52 2.14 2.97 2.03 
R2 0.9968 0.9977 0.9956 0.9979 
Slope 1.0504 0.9786 1.0603 0.9753 
Intercept -0.2476 0.1850 -0.3007 0.1507 
Recovery(%) (RSD)  101.82(1.04) 100.28 (2.25) 102.2(0.88) 100.08(2.02) 

 HLA XS PLS 
Sensor range(nm) 190-300 250-268 190-300 250-268 
Factors 4 2 8 3 
RMSEP(μg mL–1) 0.1625 0.1952 0.3160 0.1512 
REP(%) 2.13 2.56 4.14 1.98 
R2 0.9977 0.9968 0.9916 0.9981 
Slope 1.0113 0.9827 0.9597 0.9701 
Intercept -0.0651 0.2143 -0.0056 0.2172 
Recovery(%) (RSD) 100.93 (2.14) 101.14(2.51) 95.77(1.75) 99.80 (1.78) 

PRO 

 NAP CLS HLA GO 
Sensor range(nm) 190-300 230-248 190-300 210-278 
Factors 6 2 7 5 
RMSEP(μg mL–1) 0.4822 0.2084 0.5203 0.4236 
REP(%) 8.84 3.82 9.54 7.77 
R2 0.9453 0.9898 0.9363 0.9578 
Slope 0.9211 0.9381 0.8667 0.9162 
Intercept -0.1249 0.0561 0.1110 0.6046 
Recovery(%) (RSD) 90.02(3.19) 95.60(1.28) 89.0(4.78) 104.4(7.69) 

 HLA XS PLS1 
Sensor range(nm) 190-300 240-268 190-300 210-278 
Factors 9 2 10 6 
RMSEP(μg mL–1) 0.5150 0.1729 0.7082 0.2609 
REP(%) 9.44 3.17 12.98 4.78 
R2 0.9376 0.9930 0.8819 0.9839 
Slope 0.8827 0.9737 0.7004 0.9110 
Intercept 0.1173 0.1076 0.9740 0.1497 
Recovery(%) (RSD) 89.75(9.34) 102.13(1.95) 90.08(8.60) 95.73(3.79) 

CAF 

 NAP CLS HLA GO 
Sensor range(nm) 190-300 220-278 190-300 210-258 
Factors 6 5 6 5 
RMSEP(μg mL–1) 0.1467 0.0353 0.1471 0.0954 
REP(%) 4.42 1.01 4.43 2.87 
R2 0.8597 0.9927 0.8592 0.9407 
Slope 0.9309 0.9288 0.9282 1.0277 
Intercept 0.0117 0.0346 0.0272 0.1054 
Recovery(%) (RSD) 93.93(8.20) 99.96(3.32) 94.69(8.5) 93.86(4.21) 

 HLA XS PLS1 
Sensor range(nm) 190-300 210-258  190-300 210-258 
Factors 6 5 7 5 
RMSEP(μg mL–1) 0.1674 0.0608 0.1289 0.0441 
REP(%) 5.04 1.83 3.89 1.33 
R2 0.8176 0.9759 0.8917 0.9873 
Slope 1.0823 0.9542 0.9205 0.9288 
Intercept -0.2713 0.1312 0.0385 0.0346 
Recovery(%) (RSD) 88.93(8.41) 99.57(4.36) 94.91(7.13) 102.02(3.94) 
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Table 2. Figures of merits of PAR, PRO, CAF for NAP CLS and HLA GO methods.  
Figure of merit NAP CLS HLA GO HLA XS PLS1 

 PAR 
Range(nm) 190-300 250-268 190-300 250-268 190-300 250-268 190-300 250-268 
A 4 2 4 2 4 2 8 3 
SEL 0.13 0.012 0.14 0.012 0.13 0.012 0.074 0.013 
SENa 0.064 0.0022 0.066 0.0022 0.065 0.0022 0.036 0.0023 
γ 8.6 6.6 8.6 7.8 8.4 6.1 12 6.8 
LODb 0.35  0.35  0.36  0.33 0.41 

 PRO 
Range(nm) 190-300 230-248 190-300 210-278 190-300 240-268 190-300 210-278 
A 6 2 7 2 9 5 10 6 
SEL 0.05 0.02 0.041 0.017 0.033 0.012 0.03 0.016 
SENa 0.024 0.0043 0.019 0.0042 0.016 0.0044 0.014 0.0063 
γ 8 20 6.9 6.4 6.8 3.4 5.8 4.7 
LODb 0.39  0.46  0.46  0.30 0.36 

 CAF 
Range(nm) 190-300 220-278 190-300 210-258 190-300 210-258 190-300 210-258 
A 6 5 6 5 6 5 7 5 
SEL 0.15 0.03 0.15 0.04 0.17 0.035 0.16 0.06 
SENa 0.063 0.0079 0.064 0.012 0.069 0.01 0.066 0.018 
γ 21 17 20 9.1 22 7.7 22 11 
LODb 0.14  0.15  0.14  0.13 0.099 
a SEN and analytical sensitivity (𝛾𝛾) measure the changes in response as a function of the concentration (mL μg–1). 
b Limit of detection (LOD) is the lowest concentration of an analyte that can be detected, but not necessarily quantified (μg mL–1). 

Table 3. Assay results from application of NAP CLS, HLA XS, HLA GO and  PLS on the pharmaceutical tablet 
Saridon®. 

Method Drug A Sensor range(nm) Recovery(%) (RSD) 

NAP CLS 

PAR 4 190-300 98.41 (2.49) 
2 250-268 98.98 (3.13) 

PRO 6 190-300 88.49 (1.29) 
2 230-248 103.94 (0.99) 

CAF 6 190-300 89.44 (2.32) 
4 250-298 94.70 (2.73) 

HLA XS 

PAR 4 190-300 95.53 (2.15) 
2 250-268 99.54 (3.09) 

PRO 4 190-300 95.53 (2.15) 
2 250-268 99.54 (3.09) 

CAF 6 190-300 75.89 (1.37) 
4 220-298 99.14 (3.59) 

HLA GO 

PAR 4 190-300 98.90 (2.41) 
2 250-268 99.14 (3.12) 

PRO 7 190-300 84.96 (2.35) 
7 210-288 87.16 (0.74) 

CAF 6 190-300 88.51 (2.03) 
4 270-298 93.61 (2.85) 

PLS 

PAR 8 190-300 92.52 (2.36) 
3 250-268 98.71 (3.12) 

PRO 10 190-300 88.57 (1.19) 
6 210-278 104.92 (0.72) 

CAF 7 190-300 96.43 (2.43) 
6 260-288 96.43 (2.43) 

 

Analysis of commercial formulations 

Again, as shown, the number of factors was 
smaller for the NAS methods, compared to PLS. 
After the wavelength selection the estimated 
recoveries for all three components of the Saridon® 
tablet were much higher.  

CONCLUSIONS 

A comparative study on the application of 
multivariate calibration methods NAP/CLS, 
HLA/HS, HLA/GO and PLS1 for simultaneous 
determination of paracetamol (PAR), 
propyphenzone (PRO) and caffeine (CAF) has been 
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performed using data extracted from UV spectra. In 
general, comparable results were obtained after 
applying net-analyte signal methods compared with 
PLS-1 model using less factors for paracetamol and 
propyphenazone. Only for caffeine determination 
PLS1 model give slightly better results. As a 
conclusion after applying the studied methods for 
calibration – the most suitable model for the 
determination of PAR is HLA GO, whereas for the 
analysis of PRO and CAF it is better to use 
respectively HLA XS and NAP CLS. 
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(Резюме) 

Три различни метода, основаващи се на нетния сигнал на аналита - NAP CLS, HLA/GO и HLA XS, са 
приложени успешно за определяне на тройни смеси от парацетамол, пропифеназон и кафеин. Абсорбционни УВ 
спектрални данни са използвани за разделяне на тази сложна система с припокриващи се спектри на лекарствата. 
Редуциран ортогонален дизайн на пет нива е използван за формиране на калибрационна система, включваща 
трите съединения. Хемометричните модели са проверени с помощта на външна валидационна система от данни 
с концентрации в обсега на калибриране. Всички предложени хемометрични алгоритми са приложени успешно 
за определяне на горните съединения във фармацевтичната таблетна форма Saridon®. Получените резултати 
показват, че методът, основаващ се на нетния сигнал на аналита дава подобни резултати на тези с метода на 
частичните най-малки квадрати. В допълнение, използването на концепцията за нетния сигнал на аналита 
позволява да се изчислят аналитичните параметри. Използвана е стратегия на подвижен прозорец на дължината 
на вълната, която значително намалява броя на факторите и подобрява аналитичните добиви.  
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