
Bulgarian Chemical Communications, Volume 50, Special Issue B, (pp. 115 – 120) 2018

115

Optimization algorithms for finding the shortest paths
F. I. Sapundzhi*, M. S. Popstoilov

South-West University Neofit Rilski, 2700 Blagoevgrad, Bulgaria

 Received: July 15, 2017; Revised: October 17, 2017

Graph traveling problems are among the oldest problems of graph theory. The shortest path algorithms are intensively
studied problems, which have a lot of applications such as: many problems of dynamic programming with discrete state
and discrete time; network optimization problem-networks of roads and telecommunication networks, etc. At the present
time the graphs provide simple but often useful formal representation of biological networks capturing one-to-one
relationships between biological units. The aim of the present work is to evaluate the Dijkstra’s algorithm, Floyd-Warshall
algorithm, Bellman-Ford algorithm, and Dantzig’s algorithm in solving the shortest path problem, that can be applied to
very different biological systems and problems for biological system modelling. A brief overview of the different types
of algorithms for finding the shortest paths is given. C# implementation of the considered algorithms are presented to
show how works each of them. The results of evaluating the algorithms along with their time complexity are shown.

Keywords: Molecular modelling, Shortest path problem, Dijkstra’s algorithm, Floyd-Warshall algorithm, Bellman-Ford
algorithm, Dantzig’s algorithm.

INTRODUCTION

With the advent of computational biology,
biological information is more often represented and
stored in the form of biological interactions between
genes, proteins, miRNAs, etc. The biological data
assay has developed from understanding the
function of single genes to interpreting the collective
behaviour of complex biological systems, which can
be modelled and analysed in the form of protein-
ligand interaction networks, gene regulatory
networks and others. In the fields of biology and
medicine applications of network analysis include
identification of drug target, determining the
functions of proteins and genes, designing effective
strategies for treating various diseases, providing
early diagnosis of disorders, etc [1].

Networks of protein-protein interaction,
biochemical networks, transcriptional regulation
networks, signal transduction are the highlighted
network categories in systems biology often sharing
characteristics [2].

Signal transduction networks often use graphs to
represent a series of interactions between proteins,
chemicals or macromolecules. Databases that store
information about signal transduction pathways are
MiST [3], TRANSPATH [4], etc.

To operate the plenty of information, complex
computational methods are needed to manage the
number and size of biological networks which can
be represented in the form of mathematical graphs.

Many transport, distribution tasks, tasks for
selecting optimal routes or situation of service
centers, tasks for making schedules, are described by

the language of graphs and networks. Series of
physical, chemical, economical and managing
systems are successfully interpreted and examined
using graph theory.

In many cases tasks are linear – target function is
linear, as well as all of the constraints, which means
that they can be solved using linear optimization.
The real tasks (these who fully enough affect the
reality) are too complex, which causes searching
efficient and flexible algorithms regarding output
data. Graph theory gives good opportunities for this
[1,2,5,6].

The objectives of this research paper are: (a) to
determine and identify the concepts of the shortest
path problem; (b) to determine the representation of
graphs in computer in order to solve the shortest path
problem, as well as to explore
and understand the different basic terms of graphs;
(c) to explain the general concepts and the C#
implementations of Dijkstra’s algorithm, Floyd-
Warshall algorithm, Bellman-Ford algorithm and
Danzig's algorithm; (d) to evaluate each algorithm,
and to present the evaluations’ results.

MATERIALS AND METHODS

Graph theory and definitions

The shortest path problem is a task for finding the
shortest path or route from a starting point to a final
destination. In order to represent the shortest path
problem we use graph theory. To introduce the basic
concepts of it, we give the empirical and the
mathematical description of graphs that represent
networks as they are originally defined in the
literature [5,6].

* To whom all correspondence should be sent.
 E-mail: sapundzhi@swu.bg

© 2018 Bulgarian Academy of Sciences, Union of Chemists in Bulgaria

F. I. Sapundzhi et al.: Optimization algorithms for finding the shortest paths

116

A graph 𝐺𝐺 is a pair (𝑉𝑉,𝐸𝐸), where 𝑉𝑉 is a finite set
of vertices and 𝐸𝐸 is a set of connections (edges)
between the vertices. An edge 𝑒𝑒 = (𝑢𝑢, 𝑣𝑣) consists
of two vertices such that 𝑢𝑢, 𝑣𝑣 𝜖𝜖 𝑉𝑉.

A graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) is edge-weighted, if each
edge 𝑒𝑒 ∈ 𝐸𝐸 has a weight, 𝑊𝑊(𝑒𝑒) ∈ ℝ . Let 𝐺𝐺 =
(𝑉𝑉,𝐸𝐸) denotes an edge-weighted graph with real
edge weights 𝑊𝑊(𝑒𝑒), 𝑒𝑒 ∈ 𝐸𝐸. We will say that 𝐷𝐷 is a
metric for G if, for any three vertices 𝑢𝑢, 𝑣𝑣,𝑤𝑤 ∈ 𝑉𝑉,
𝐷𝐷(𝑢𝑢, 𝑣𝑣) = 𝐷𝐷(𝑣𝑣,𝑢𝑢) ≥ 0 , with 𝐷𝐷(𝑢𝑢, 𝑣𝑣) = 0 if and
only if 𝑢𝑢 = 𝑣𝑣, and 𝐷𝐷(𝑢𝑢, 𝑣𝑣) ≤ 𝐷𝐷(𝑢𝑢,𝑤𝑤) + 𝐷𝐷(𝑤𝑤,𝑢𝑢) .
One way of defining metric distance on a weighted
graph is to use the shortest-path metric 𝛿𝛿(. . .) on the
graph or its sub graph, i.e., (𝐷𝐷(𝑢𝑢, 𝑣𝑣) = 𝛿𝛿(𝑢𝑢, 𝑣𝑣), the
shortest path distance between 𝑢𝑢 and 𝑣𝑣 for all 𝑢𝑢, 𝑣𝑣 ∈
𝑉𝑉 . We will say that the edge weighted tree 𝛵𝛵 =
𝛵𝛵𝐺𝐺(𝑉𝑉′,𝐸𝐸′) is a tree metric for 𝐺𝐺 , with respect to
distance function 𝐷𝐷, if for any pair of vertices 𝑢𝑢, 𝑣𝑣 in
𝐺𝐺, the length of the unique path between them in 𝛵𝛵
is equal to 𝐷𝐷(𝑢𝑢, 𝑣𝑣). An ultra-metric is a special type
of tree metric defined on rooted trees, where the
distance to the root is the same for all leaves in the
tree, an approximation that introduces small
distortion. A metric 𝐷𝐷 is an ultra-metric if, for all
points𝑥𝑥,𝑦𝑦, 𝑧𝑧 we have 𝐷𝐷[𝑥𝑥, 𝑦𝑦] ≤ max{𝐷𝐷[𝑥𝑥, 𝑧𝑧],𝐷𝐷[𝑦𝑦, 𝑧𝑧]}.
An ultra-metric does not satisfy all the properties of
a tree metric distance. To create a general tree metric
from an ultra-metric, we need to satisfy the 4-
point condition:

𝐷𝐷[𝑥𝑥,𝑦𝑦] + 𝐷𝐷[𝑧𝑧,𝑤𝑤] ≤ max {𝐷𝐷[𝑥𝑥, 𝑧𝑧] +
𝐷𝐷[𝑦𝑦,𝑤𝑤],𝐷𝐷[𝑥𝑥,𝑤𝑤] + 𝐷𝐷[𝑦𝑦, 𝑧𝑧]}, for all 𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑤𝑤.

A metric that satisfies the 4-point condition is
called an additive metric.

 If routes are one-way then the graph will be
directed or else it will be undirected. In the literature
are presented many different types of algorithms that
solve the shortest path problem. Only several of the
most popular conventional shortest path algorithms
are going to be discussed in this paper, and they are
as follows: Dijkstra’s algorithm, Floyd-Warshall
algorithm, Bellman-Ford algorithm and Dantzig’s
algorithm [8-11].

EXPLANATION AND IMPLEMENTATION OF
THE ALGORITHMS

Explanation and implementation of Dijkstra’s
algorithm

Explanation:
Step 1: Mark the initial vertex (s). Let: 𝑑𝑑(𝑠𝑠) = 0

(Constant distance label) 𝑑𝑑(𝑥𝑥) = ∞ (Tentative
distance label) 𝑝𝑝 = 𝑠𝑠 (𝑝𝑝 – last marked vertex).

Step 2: (Changing the tentative distance labels).
For all unmarked vertices 𝑥𝑥 the numbers 𝑑𝑑(𝑥𝑥) are
recalculated by Eqn.1:

𝑑𝑑(𝑥𝑥) = min{𝑑𝑑(𝑥𝑥),𝑑𝑑(𝑝𝑝) + 𝑐𝑐(𝑝𝑝, 𝑥𝑥)} (1)

where 𝑑𝑑(𝑥𝑥) is the minimal tentative distance
from 𝑠𝑠 to 𝑥𝑥, 𝑑𝑑(𝑝𝑝) – minimal tentative distance from
𝑠𝑠 to 𝑝𝑝 and c(𝑝𝑝, 𝑥𝑥) is the edge’s weight from 𝑝𝑝 to 𝑥𝑥.
(Obviously we may change only those 𝑑𝑑(𝑥𝑥) , for
which the edge (𝑝𝑝, 𝑥𝑥) exists, the rest of the numbers
remain the same).

If 𝑑𝑑(𝑥𝑥) = ∞, for each unmarked vertex 𝑥𝑥 , stop
the procedure – it means that there are no paths from
𝑠𝑠 to all unmarked vertices. Otherwise mark the one
vertex 𝑥𝑥 which has minimal distance label 𝑑𝑑(𝑥𝑥) .
Also color the edge which goes into vertex 𝑥𝑥, for
which the minimal distance label from Eqn.1 is
reached. Let 𝑝𝑝 = 𝑥𝑥.

Step 3: If 𝑝𝑝 = 𝑡𝑡, the procedure ends, the only way
from 𝑠𝑠 to 𝑡𝑡 , made out of marked edges, is the
shortest path between 𝑠𝑠 and 𝑡𝑡. Otherwise, go back to
Step 2 [9].

Implementation:
The following basic variables are used:

𝐷𝐷𝐷𝐷𝑐𝑐𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑦𝑦 < 𝑉𝑉,𝑑𝑑𝐷𝐷𝑢𝑢𝑑𝑑𝑑𝑑𝑒𝑒 > 𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡𝐷𝐷𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠 -stores the
distances from source vertex to all vertices;
𝐷𝐷𝐷𝐷𝑐𝑐𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑦𝑦 < 𝑉𝑉,𝐸𝐸 > 𝑑𝑑𝑒𝑒𝑠𝑠𝑡𝑡𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝑒𝑒𝑥𝑥𝐸𝐸𝑑𝑑𝑏𝑏 -stores an
edge for every vertex that minimizes its distance
label; 𝐷𝐷𝐷𝐷𝑐𝑐𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑦𝑦 < 𝑉𝑉, 𝑑𝑑𝐷𝐷𝐷𝐷𝑑𝑑 > 𝑚𝑚𝐷𝐷𝐷𝐷𝑚𝑚𝑒𝑒𝑑𝑑 -if some
vertex is marked, its value in this dictionary is true;
𝐿𝐿𝐷𝐷𝑠𝑠𝑡𝑡 < 𝐸𝐸 > 𝑚𝑚𝐷𝐷𝐷𝐷𝑚𝑚𝑒𝑒𝑑𝑑𝐸𝐸𝑑𝑑𝑏𝑏𝑒𝑒𝑠𝑠 -list of all marked
edges; 𝑉𝑉 𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝑡𝑡𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝑒𝑒𝑥𝑥 - last marked vertex [7].

The algorithm of Dijkstra determines the shortest
path and its length from a given vertex 𝑠𝑠 to a target
vertex 𝑡𝑡. It is supposed that all edge’s lengths are
positive. The algorithm stops: (1) if there’s no path
from 𝑠𝑠 to 𝑡𝑡; (2) if one or more edges have negative
weights; (3) when the target vertex 𝑡𝑡 is marked.

Step 1: A tentative distance for all vertices in the
given graph that represents the minimal distance
from the source vertex to all vertices and use
𝐷𝐷𝐷𝐷𝑐𝑐𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑦𝑦 < 𝑉𝑉,𝑑𝑑𝐷𝐷𝑢𝑢𝑑𝑑𝑑𝑑𝑒𝑒 > 𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡𝐷𝐷𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠 for these
labels. Initially, all labels are set to big enough
number to represent infinity but 𝑠𝑠 (𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡𝐷𝐷𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠[𝑠𝑠] =
0) and (𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡𝐷𝐷𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠[𝑣𝑣] = 𝐷𝐷𝐷𝐷𝑖𝑖, 𝑣𝑣 ≠ 𝑠𝑠) which means
that the path lengths from 𝑠𝑠 to the rest vertices are
unknown, after that mark source vertex 𝑠𝑠 as visited
and set it as current vertex (𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝑡𝑡𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝑒𝑒𝑥𝑥 ∶= 𝑠𝑠).

Step 2: The distance labels (𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡𝐷𝐷𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠[𝑣𝑣]) for
each unmarked neighbor vertex v where an edge
exists from 𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝑡𝑡𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝑒𝑒𝑥𝑥 to 𝑣𝑣 are recalculated by
Eqn. 2:

 𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡𝐷𝐷𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠[𝑣𝑣]
= min{𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡𝐷𝐷𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠[𝑣𝑣],𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡𝐷𝐷𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠[𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝑡𝑡𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝑒𝑒𝑥𝑥]
+ 𝑐𝑐(𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝑡𝑡𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝑒𝑒𝑥𝑥, 𝑣𝑣)} (2)
where 𝑐𝑐 (𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝑡𝑡𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝑒𝑒𝑥𝑥, 𝑣𝑣) is edge’s weight from
𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝑡𝑡𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝑒𝑒𝑥𝑥 to 𝑣𝑣. Then set 𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝑡𝑡𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝑒𝑒𝑥𝑥 this

F. I. Sapundzhi et al.: Optimization algorithms for finding the shortest paths

117

unmarked vertex 𝑣𝑣 which has minimal distance label
and color the edge entering 𝑣𝑣 for which the minimal
number from Eqn. 2 is reached.

Step 3: If current vertex is target
(𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝑡𝑡𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝑒𝑒𝑥𝑥 = 𝑡𝑡) the procedure ends. The
only path from 𝑠𝑠 to 𝑡𝑡, made out of marked edges, is
the shortest path between 𝑠𝑠 and 𝑡𝑡 . Otherwise, go
back to Step 2.

Dijkstra’s algorithm using adjacency matrix: In
this case following variables are used:
𝑑𝑑𝐷𝐷𝑢𝑢𝑑𝑑𝑑𝑑𝑒𝑒[,] 𝐷𝐷𝑑𝑑𝑎𝑎𝐷𝐷𝑐𝑐𝑒𝑒𝐷𝐷𝑐𝑐𝑦𝑦𝑎𝑎𝐷𝐷𝑡𝑡𝐷𝐷𝐷𝐷𝑥𝑥 – graph’s adjacency
matrix; 𝐷𝐷𝐷𝐷𝑐𝑐𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑦𝑦 < 𝑉𝑉, 𝐷𝐷𝐷𝐷𝑡𝑡 > 𝑣𝑣𝑒𝑒𝐷𝐷𝑡𝑡𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠𝑣𝑣𝐷𝐷𝑑𝑑𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠 -
stores the corresponding index of every vertex in the
adjacency matrix; 𝐷𝐷𝐷𝐷𝑡𝑡 𝑣𝑣𝑒𝑒𝐷𝐷𝑡𝑡𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠𝑣𝑣𝐷𝐷𝑢𝑢𝐷𝐷𝑡𝑡-number of all
vertices; 𝐷𝐷𝐷𝐷𝑡𝑡 𝑠𝑠𝐷𝐷𝑢𝑢𝐷𝐷𝑐𝑐𝑒𝑒𝑣𝑣𝐷𝐷𝑑𝑑𝑒𝑒𝑥𝑥 - starting vertex index;
𝐷𝐷𝐷𝐷𝑡𝑡 𝑡𝑡𝐷𝐷𝐷𝐷𝑏𝑏𝑒𝑒𝑡𝑡𝑣𝑣𝐷𝐷𝑑𝑑𝑒𝑒𝑥𝑥 - destination vertex index;
𝐷𝐷𝐷𝐷𝑡𝑡 𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝑡𝑡𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝑒𝑒𝑥𝑥𝑣𝑣𝐷𝐷𝑑𝑑𝑒𝑒-last marked vertex index;
𝑑𝑑𝐷𝐷𝑢𝑢𝑑𝑑𝑑𝑑𝑒𝑒[] 𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡𝐷𝐷𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠 – stores the distances from
source vertex to all vertices. All vertices are indexed
with the numbers from 0 to 𝑣𝑣𝑒𝑒𝐷𝐷𝑡𝑡𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠𝑣𝑣𝐷𝐷𝑢𝑢𝐷𝐷𝑡𝑡 −
1; 𝐿𝐿𝐷𝐷𝑠𝑠𝑡𝑡 < 𝐸𝐸 > 𝑑𝑑𝑒𝑒𝑠𝑠𝑡𝑡𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝑒𝑒𝑥𝑥𝐸𝐸𝑑𝑑𝑏𝑏- stores an edge for
every vertex that minimizes its distance label;
𝑑𝑑𝐷𝐷𝐷𝐷𝑑𝑑 [] 𝑚𝑚𝐷𝐷𝐷𝐷𝑚𝑚𝑒𝑒𝑑𝑑 – if 𝑚𝑚𝐷𝐷𝐷𝐷𝑚𝑚𝑒𝑒𝑑𝑑[𝐷𝐷] is true then the
vertex with index 𝐷𝐷 is marked; 𝐿𝐿𝐷𝐷𝑠𝑠𝑡𝑡 < 𝐸𝐸 >
 𝑚𝑚𝐷𝐷𝐷𝐷𝑚𝑚𝑒𝑒𝑑𝑑𝐸𝐸𝑑𝑑𝑏𝑏𝑒𝑒𝑠𝑠 - list of all marked edges [7].

Step 1: Convert the graph to adjacency matrix (a
square matrix) with dimensions 𝐷𝐷 𝑥𝑥 𝐷𝐷 (𝐷𝐷 – number
of vertices). The matrix elements are calculated by
Eqn. 3:

 𝐴𝐴𝑖𝑖𝑖𝑖 = �
∞ 𝐷𝐷𝑖𝑖 𝑡𝑡ℎ𝑒𝑒𝐷𝐷𝑒𝑒 𝐷𝐷𝑠𝑠𝐷𝐷’𝑡𝑡 𝐷𝐷𝐷𝐷 𝑒𝑒𝑑𝑑𝑏𝑏𝑒𝑒 𝑖𝑖𝐷𝐷𝐷𝐷𝑚𝑚 𝐷𝐷 𝑡𝑡𝐷𝐷 𝑎𝑎
𝑚𝑚𝐷𝐷𝐷𝐷𝐷𝐷𝑚𝑚𝐷𝐷𝑑𝑑 𝑒𝑒𝑑𝑑𝑏𝑏𝑒𝑒 ′𝑠𝑠 𝑤𝑤𝑒𝑒𝐷𝐷𝑏𝑏ℎ𝑡𝑡 𝑖𝑖𝐷𝐷𝐷𝐷𝑚𝑚 𝐷𝐷 𝑡𝑡𝐷𝐷 𝑎𝑎 (3)

where 𝐴𝐴𝑖𝑖𝑖𝑖 = 0,∀𝐷𝐷 . A hash table which keeps the
index of every vertex in the adjacency matrix is
created, that so the path could be restored. A
tentative distance label which represents the minimal
current distance from vertex s to the rest vertices v is
assigned for each vertex in the graph. For this
purpose, an array 𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡𝐷𝐷𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠[] is used. The array is
initialized as follows: 𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡𝐷𝐷𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠[𝑠𝑠] = 0,
𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡𝐷𝐷𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠[𝑣𝑣] = big enough number where 𝑣𝑣 ≠ 𝑠𝑠 (𝑠𝑠
and 𝑣𝑣 – array’s indices). The vertex 𝑠𝑠 was marked
as visited and set it as current vertex using its index.

Step 2: The distance labels (𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡𝐷𝐷𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠[𝑣𝑣]) are
recalculated for each unmarked neighbor vertex v
where an edge exists from 𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝑡𝑡𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝑒𝑒𝑥𝑥 to v by
Eqn. 4:
𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡𝐷𝐷𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠[𝑣𝑣]

= min�
𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡𝐷𝐷𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠[𝑣𝑣𝑣𝑣𝐷𝐷𝑑𝑑𝑒𝑒𝑥𝑥],

 𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡𝐷𝐷𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠[𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝑡𝑡𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝑒𝑒𝑥𝑥𝑣𝑣𝐷𝐷𝑑𝑑𝑒𝑒𝑥𝑥]
+𝑐𝑐(𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝑡𝑡𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝑒𝑒𝑥𝑥𝑣𝑣𝐷𝐷𝑑𝑑𝑒𝑒𝑥𝑥, 𝑣𝑣)

� (4)

where 𝑣𝑣𝑣𝑣𝐷𝐷𝑑𝑑𝑒𝑒𝑥𝑥 and 𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝑡𝑡𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝑒𝑒𝑥𝑥𝑣𝑣𝐷𝐷𝑑𝑑𝑒𝑒𝑥𝑥 are
respectively the distances array’s indices of vertices
𝑣𝑣 and current marked vertex. Then it is appropriated
𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝑡𝑡𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝑒𝑒𝑥𝑥𝑣𝑣𝐷𝐷𝑑𝑑𝑒𝑒𝑥𝑥 the index of this unmarked

vertex 𝑣𝑣 which has minimal distance label and
colored the edge entering 𝑣𝑣 for which the minimal
number from formula were reached (Eqn. 4).

Step 3: If the current vertex index equals the
target vertex index (𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝑡𝑡𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝑒𝑒𝑥𝑥𝑣𝑣𝐷𝐷𝑑𝑑𝑒𝑒𝑥𝑥 =
 𝑡𝑡𝐷𝐷𝐷𝐷𝑏𝑏𝑒𝑒𝑡𝑡𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝑒𝑒𝑥𝑥𝑣𝑣𝐷𝐷𝑑𝑑𝑒𝑒𝑥𝑥) the procedure ends. The only
path from 𝑠𝑠 to 𝑡𝑡, made out of marked edges, is the
shortest path between 𝑠𝑠 and 𝑡𝑡. Otherwise go back to
Step 2.

Explanation and implementation of Ford’s
algorithm

Explanation:
The Bellman-Ford algorithm is Dijkstra’s

algorithm modification in case that some edges have
negative weights [9]. The Bellman-Ford algorithm’s
modification consists of: in Step 2 the distance labels
𝑑𝑑(𝑥𝑥) for all vertices are recalculated. If the distance
label 𝑑𝑑(𝑥𝑥) of some vertex 𝑥𝑥 can be changed, the
distance is updated to the new lower value and if this
vertex 𝑥𝑥 is marked, its marking and the incident with
it colored edges are ignored. The algorithm stops
when all vertices are marked and after Step 2 none
of the distance labels 𝑑𝑑(𝑥𝑥) has changed. This
algorithm is slower than Dijkstra’s. As it admits
edges with negative weights, a graph can contain
negative length cycle. In case like this, the algorithm
won’t work properly.

Implementation:
Instead of 𝐷𝐷𝐷𝐷𝑐𝑐𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑦𝑦 < 𝑉𝑉, 𝑑𝑑𝐷𝐷𝐷𝐷𝑑𝑑 > 𝑚𝑚𝐷𝐷𝐷𝐷𝑚𝑚𝑒𝑒 ,

here 𝐻𝐻𝐷𝐷𝑠𝑠ℎ𝑆𝑆𝑒𝑒𝑡𝑡 < 𝑉𝑉 > 𝑚𝑚𝐷𝐷𝐷𝐷𝑚𝑚𝑒𝑒𝑑𝑑𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠 (set of all
marked vertices) and 𝐻𝐻𝐷𝐷𝑠𝑠ℎ𝑆𝑆𝑒𝑒𝑡𝑡 < 𝑉𝑉 >
 𝑢𝑢𝐷𝐷𝑚𝑚𝐷𝐷𝐷𝐷𝑚𝑚𝑒𝑒𝑑𝑑𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠 (set of unmarked vertices) are
used. The 𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡𝐷𝐷𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠[𝑣𝑣] for every vertex in the
graph (unlike Dijkstra’s algorithm the labels of
unmarked vertices are recalculated) are recalculated.

Explanation and implementation of Floyd’s
algorithm

Explanation:
This algorithm finds the shortest path length

between every couple of vertices. Edges can have
negative weights but loops with negative length are
not allowed [10].

Step 1: All vertices are numbered with the
numbers from 1 to n. Matrix 𝐷𝐷0 = (𝑑𝑑𝑖𝑖𝑖𝑖0)𝑛𝑛𝑛𝑛𝑛𝑛 is
determined. Element (𝐷𝐷, 𝑎𝑎) is the shortest edge’s
length (with least weight) between 𝐷𝐷 and 𝑎𝑎. 𝑑𝑑𝑖𝑖𝑖𝑖0 = ∞
if (𝐷𝐷, 𝑎𝑎) edge is missing and 𝑑𝑑𝑖𝑖𝑖𝑖0 = 0,∀𝐷𝐷.

Step 2: For each 𝑚𝑚 𝜖𝜖 [1,𝐷𝐷] are determined the
matrix elements 𝐷𝐷𝑚𝑚 = (𝑑𝑑𝑖𝑖𝑖𝑖𝑚𝑚)𝑛𝑛𝑛𝑛𝑛𝑛 by the matrix
elements 𝐷𝐷𝑚𝑚−1 = (𝑑𝑑𝑖𝑖𝑖𝑖𝑚𝑚−1)𝑛𝑛𝑛𝑛𝑛𝑛 using Eqn. 5:

𝑑𝑑𝑖𝑖𝑖𝑖𝑚𝑚 = 𝑚𝑚𝐷𝐷𝐷𝐷�𝑑𝑑𝑖𝑖𝑖𝑖𝑚𝑚−1,𝑑𝑑𝑖𝑖𝑚𝑚𝑚𝑚−1 + 𝑑𝑑𝑚𝑚𝑖𝑖
𝑚𝑚−1� (5)

F. I. Sapundzhi et al.: Optimization algorithms for finding the shortest paths

118

Every element (𝐷𝐷, 𝑎𝑎) in the matrix 𝐷𝐷𝑛𝑛 is the
shortest path’s length from 𝐷𝐷 to 𝑎𝑎.

Implementation:
Step 1: Convert the graph to adjacency matrix (a

square matrix) with dimensions n x n (n – number of
vertices). The matrix’ elements are calculated by
Eqn. 6:

 𝑑𝑑𝑖𝑖𝑖𝑖0 = �
∞ 𝐷𝐷𝑖𝑖 𝑡𝑡ℎ𝑒𝑒𝐷𝐷𝑒𝑒 𝐷𝐷𝑠𝑠𝐷𝐷’𝑡𝑡 𝐷𝐷𝐷𝐷 𝑒𝑒𝑑𝑑𝑏𝑏𝑒𝑒 𝑖𝑖𝐷𝐷𝐷𝐷𝑚𝑚 𝐷𝐷 𝑡𝑡𝐷𝐷 𝑎𝑎
𝑚𝑚𝐷𝐷𝐷𝐷𝐷𝐷𝑚𝑚𝐷𝐷𝑑𝑑 𝑒𝑒𝑑𝑑𝑏𝑏𝑒𝑒 ′𝑠𝑠 𝑤𝑤𝑒𝑒𝐷𝐷𝑏𝑏ℎ𝑡𝑡 𝑖𝑖𝐷𝐷𝐷𝐷𝑚𝑚 𝐷𝐷 𝑡𝑡𝐷𝐷 𝑎𝑎

(6)

where𝑑𝑑𝑖𝑖𝑖𝑖0 = 0,∀𝐷𝐷. A hash table which keeps the index
of every vertex in the adjacency matrix is created, so
the path could be restored [7].

Step 2: Three nested for-loops are used to
represent Eqn.5:
𝐷𝐷𝑚𝑚[𝐷𝐷, 𝑎𝑎] = 𝑎𝑎𝐷𝐷𝑡𝑡ℎ.𝑎𝑎𝐷𝐷𝐷𝐷(𝑝𝑝𝐷𝐷𝑒𝑒𝑣𝑣𝐷𝐷[𝐷𝐷, 𝑎𝑎], 𝑝𝑝𝐷𝐷𝑒𝑒𝑣𝑣𝐷𝐷[𝐷𝐷,𝑚𝑚 − 1]

+ 𝑝𝑝𝐷𝐷𝑒𝑒𝑣𝑣𝐷𝐷[𝑚𝑚 − 1, 𝑎𝑎])

Explanation and implementation of Danzig’s
algorithm

Explanation:
Step 1: All vertices are numbered with the

numbers from 1 to n. Matrix 𝐷𝐷0 = (𝑑𝑑𝑖𝑖𝑖𝑖0)𝑛𝑛𝑛𝑛𝑛𝑛 is
determined. The element (𝐷𝐷, 𝑎𝑎) is the shortest edge’s
length (with least weight) between 𝐷𝐷 and 𝑎𝑎 [11]. The
elements 𝑑𝑑𝑖𝑖𝑖𝑖0 = ∞ if (𝐷𝐷, 𝑎𝑎) edge is missing and 𝑑𝑑𝑖𝑖𝑖𝑖0 =
0 for every 𝐷𝐷.

Step 2: The matrix 𝐷𝐷𝑚𝑚 for each 𝑚𝑚 = 1, 2, … ,𝐷𝐷
using 𝐷𝐷𝑚𝑚−1 and 𝐷𝐷0 are determined by the following
equations:

 𝑑𝑑𝑖𝑖𝑖𝑖𝑚𝑚 = 0 𝑖𝑖𝐷𝐷𝐷𝐷 𝑒𝑒𝐷𝐷𝑐𝑐ℎ 𝐷𝐷 𝐷𝐷𝐷𝐷𝑑𝑑 𝑒𝑒𝐷𝐷𝑐𝑐ℎ 𝑚𝑚 (7)
𝑑𝑑𝑖𝑖𝑖𝑖𝑚𝑚 = min�𝑑𝑑𝑖𝑖𝑖𝑖𝑚𝑚−1,𝑑𝑑𝑖𝑖𝑚𝑚𝑚𝑚 + 𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚 � ,𝑤𝑤ℎ𝑒𝑒𝐷𝐷 𝐷𝐷, 𝑎𝑎

= 1,2, … ,𝑚𝑚 − 1 (8)

 𝑑𝑑𝑖𝑖𝑚𝑚𝑚𝑚 = 𝑚𝑚𝐷𝐷𝐷𝐷
𝑎𝑎 = 1, 2, … ,𝑚𝑚− 1�𝑑𝑑𝑖𝑖𝑖𝑖

𝑚𝑚−1 + 𝑑𝑑𝑖𝑖𝑚𝑚0 �,𝑤𝑤ℎ𝑒𝑒𝐷𝐷 𝐷𝐷

= 1,2, … ,𝑚𝑚 − 1 (9)

 𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚 = 𝑚𝑚𝐷𝐷𝐷𝐷
𝐷𝐷 = 1,2, … ,𝑚𝑚 − 1�𝑑𝑑𝑚𝑚𝑖𝑖

0 + 𝑑𝑑𝑖𝑖𝑖𝑖𝑚𝑚−1�,𝑤𝑤ℎ𝑒𝑒𝐷𝐷 𝑎𝑎
= 1,2, … ,𝑚𝑚 − 1 (10)

This algorithm performs the same operations as
Floyd’s algorithm but in other order. In this case the
matrix 𝐷𝐷𝑚𝑚 (𝑚𝑚 ≥ 1) has dimensions 𝑚𝑚 ×𝑚𝑚.

Implementation:
For this algorithm following variables are

used: 𝑑𝑑𝐷𝐷𝑢𝑢𝑑𝑑𝑑𝑑𝑒𝑒[,] 𝐷𝐷𝑑𝑑𝑎𝑎𝐷𝐷𝑐𝑐𝑒𝑒𝐷𝐷𝑐𝑐𝑦𝑦𝑎𝑎𝐷𝐷𝑡𝑡𝐷𝐷𝐷𝐷𝑥𝑥 -stores the
adjacency matrix which elements are described
below; 𝐷𝐷𝐷𝐷𝑐𝑐𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑦𝑦 < 𝑉𝑉, 𝐷𝐷𝐷𝐷𝑡𝑡 > 𝑣𝑣𝑒𝑒𝐷𝐷𝑡𝑡𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠𝑣𝑣𝐷𝐷𝑑𝑑𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠 -
stores the corresponding index of every vertex in the
adjacency matrix; 𝐷𝐷𝐷𝐷𝑡𝑡 𝑣𝑣𝑒𝑒𝐷𝐷𝑡𝑡𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠𝑣𝑣𝐷𝐷𝑢𝑢𝐷𝐷𝑡𝑡 - number of
all vertices in the graph; 𝑑𝑑𝐷𝐷𝑢𝑢𝑑𝑑𝑑𝑑𝑒𝑒[,] 𝐷𝐷0 - matrix 𝐷𝐷0;
𝑑𝑑𝐷𝐷𝑢𝑢𝑑𝑑𝑑𝑑𝑒𝑒[,] 𝐷𝐷𝑚𝑚 -current matrix 𝐷𝐷𝑚𝑚 (𝑚𝑚 =
1 …𝐷𝐷);𝑑𝑑𝐷𝐷𝑢𝑢𝑑𝑑𝑑𝑑𝑒𝑒[,] 𝑝𝑝𝐷𝐷𝑒𝑒𝑣𝑣𝐷𝐷𝑚𝑚 -represents matrix
𝐷𝐷𝑚𝑚−1.

Step 1: Convert the graph to adjacency matrix (a
square matrix) with dimensions 𝐷𝐷 × 𝐷𝐷 (𝐷𝐷 -number
of vertices) [7]. The matrix elements are

 𝑑𝑑0𝑖𝑖𝑖𝑖 = �
∞, 𝐷𝐷𝑖𝑖 𝑡𝑡ℎ𝑒𝑒𝐷𝐷𝑒𝑒 𝐷𝐷𝑠𝑠𝐷𝐷’𝑡𝑡 𝐷𝐷𝐷𝐷 𝑒𝑒𝑑𝑑𝑏𝑏𝑒𝑒 𝑖𝑖𝐷𝐷𝐷𝐷𝑚𝑚 𝐷𝐷 𝑡𝑡𝐷𝐷 𝑎𝑎
𝑚𝑚𝐷𝐷𝐷𝐷𝐷𝐷𝑚𝑚𝐷𝐷𝑑𝑑 𝑒𝑒𝑑𝑑𝑏𝑏𝑒𝑒 ′𝑠𝑠 𝑤𝑤𝑒𝑒𝐷𝐷𝑏𝑏ℎ𝑡𝑡 𝑖𝑖𝐷𝐷𝐷𝐷𝑚𝑚 𝐷𝐷 𝑡𝑡𝐷𝐷 𝑎𝑎 (11)

 𝑑𝑑0
𝐷𝐷𝐷𝐷 = 0,∀𝐷𝐷. We also create a hash table which

keeps the index of every vertex in the adjacency
matrix so we can restore the path.

Step 2: The matrix 𝐷𝐷𝑚𝑚 for each 𝑚𝑚 = 1 …𝐷𝐷 is
determined by the equations for 𝐷𝐷𝑚𝑚[𝐷𝐷,𝑚𝑚 − 1] and
𝐷𝐷𝑚𝑚[𝑚𝑚 − 1, 𝑎𝑎] (𝐷𝐷, 𝑎𝑎 = 0 …𝑚𝑚 − 2):

𝐷𝐷𝑚𝑚[𝐷𝐷,𝑚𝑚 − 1] = 𝑎𝑎𝐷𝐷𝑡𝑡ℎ.𝑎𝑎𝐷𝐷𝐷𝐷(𝐷𝐷𝑚𝑚[𝐷𝐷,𝑚𝑚 − 1],
𝑝𝑝𝐷𝐷𝑒𝑒𝑣𝑣𝐷𝐷𝑚𝑚[𝐷𝐷, 𝑎𝑎] + 𝐷𝐷0[𝑎𝑎,𝑚𝑚 − 1]) (12)

 𝐷𝐷𝑚𝑚[𝑚𝑚 − 1, 𝑎𝑎] = 𝑎𝑎𝐷𝐷𝑡𝑡ℎ.𝑎𝑎𝐷𝐷𝐷𝐷 (13)
The elements of 𝐷𝐷𝑚𝑚[𝐷𝐷, 𝑎𝑎] (𝐷𝐷, 𝑎𝑎 = 0 …𝑚𝑚− 2)

depend on the upper ones 𝐷𝐷𝑚𝑚[𝐷𝐷, 𝑎𝑎] = 𝑎𝑎𝐷𝐷𝑡𝑡ℎ.
𝑎𝑎𝐷𝐷𝐷𝐷(𝑝𝑝𝐷𝐷𝑒𝑒𝑣𝑣𝐷𝐷𝑚𝑚[𝐷𝐷, 𝑎𝑎],𝐷𝐷𝑚𝑚[𝐷𝐷,𝑚𝑚− 1] + 𝐷𝐷𝑚𝑚[𝑚𝑚 − 1, 𝑎𝑎]).

Table 1. The values of execution time and different number of vertices for shortest path algorithms (Dijkstra,
Ford, Floyd, Dantzig).

№ Vertices Edges Dijkstra’s
algorithm

Dijkstra’s algorithm
by adjacency matrix

Ford’s
algorithm

Floyd’s
algorithm

Dantzig’s
algorithm

1 100 10 000 0.142 0.066 0.042 0.341 0.387
2 500 50 000 1.165 0.504 0.584 32.123 35.229
3 500 100 000 1.036 0.769 0.755 34.307 36.981
4 500 1 000 000 3.03 5.209 2.707 37.406 45.805
5 1 000 100 000 1.468 0.64 3.238 266.92 324.216
6 2 500 1 000 000 15.764 9.753 14.622 993.166 1985.166
7 5 000 500 000 24.813 5.958 61.076 - -
8 5 000 1 000 000 48.685 4.987 17.488 ~13620 -
9 5 000 1 000 000 35.545 12.706 69.894 - -
10 10 000 100 000 68.81 19.942 75.975 - -
11 10 000 1 000 000 84.742 17.783 80.715 - -
12 25 000 5 000 000 506.299 - - - -
13 25 000 5 000 000 2259 - - - -
14 25 000 5 000 000 - - 757.885 - -
15 25 000 5 000 000 - - 1232.543 - -

F. I. Sapundzhi et al.: Optimization algorithms for finding the shortest paths

119

RESULTS AND DISCUSSION

The algorithms of Dijkstra [8], Floyd-Warshall
[9], Bellman-Ford [10] and Dantzig [11] for finding
the shortest path were tested using Visual Studio
Community 2015, Intel® Pentium® Processor
N3710, 1.6 GHz (4 CPUs), 4096 MB RAM [7,13].
The values of execution time and different number
of vertices for shortest path algorithms (Dijkstra,
Ford, Floyd, Dantzig) are presented in Table 1The
experimental results are shown in Table 2. Time
complexity of the shortest path algorithms depends
on the number of vertices, number of edges and edge
length. As can be seen, the time complexity of the
Dijkstra’s algorithm depends on the number of
vertices and is inversely proportional to the number
of vertices. The time complexity was higher for
Bellman-Ford algorithm than Dijkstra’s algorithm.
For higher number of nodes, the Dijkstra’s algorithm
is better and efficient (Table 3) [14-17].

Fig. 1. Execution time and different number of

vertices for the shortest path algorithms - Dijkstra, Ford,
Floyd and Dantzig.

As it can be seen from the results in Тable 2, the
Dijkstra’s algorithm and its implementation for

adjacency matrix in C # representation of graphs
provide better performance in the cost of memory.
The time complexity for the matrix representation is
O(V^2).

The algorithms for finding the shortest paths –
Dijkstra’s, Ford’s, Floyd’s and Dantzig’s were
examined and analyzed. The best results for the
values of execution time and different number of
vertices are obtained by Dijkstra’s algorithm (Table
2 and Figure 2). This algorithm is also implemented
through a adjacency matrix. As can be seen in Figure
2, better results are obtained when using an
adjacency matrix for the same input parameters.

A C# implementation for drawing the shortest
path for Dijkstra's algorithm was developed. The
software draws and marks the nodes and edges of the
finding shortest path by coloring them in red. The
algorithm of Dijkstra is implemented and visually
demonstrated in Visual Studio Community 2015
[7,13]. Figure 3 shows C # implementation of some
examples of Dijkstra’s algorithm. Graphic
representation is going to be implemented for the
rest algorithms for finding the shortest paths.

Table 3. Dijkstra’s algorithm execution time in
seconds.

Number of
vertices

Dijkstra’s
algorithm

Dijkstra’s algorithm
by adjacency matrix

50 0.173 0.297
100 0.322 0.329
250 0.327 0.491
500 0.334 0.4
750 0.507 0.61

1000 1.3 0.494
2500 13.425 2.223
5000 16.682 2.959
7500 34.61 6.198

10 000 81.373 24.103

Fig. 2. Relationship between the number of vertices and execution time for Dijkstra’s algorithm and its

implementation: A) without adjacency matrix in C #; B - with adjacency matrix in C #.

F. I. Sapundzhi et al.: Optimization algorithms for finding the shortest paths

120

Fig. 3. Illustration of Dijkstra's algorithm search for finding shortest path from a start node to a goal node: A) n = 21, m=
41, B) n = 41, m = 60. The found shortest path is coloured in red.

In conclusion, we can say that the calculation of
shortest paths in interaction graphs is an important
method for network analysis in computational
biology. This report draws attention to the important
computational problem and provides a number of
new algorithms, partially specifically tailored for
biological interaction graphs.

REFERENCES

1. K. Magzhan, H. Jani, IJSTR, 2 (6), 100 (2013).
2. G. Pavlopoulos, M.Secrier, C.Moschopoulos, T.
Soldatos, S. Kossida, J. Aerts, R.Schneider, P. Bagos
BioData Mining, 4(10), 1 (2011).
3. L. Ulrich, Nucleic Acids Res., 35, 386 (2007).
4. M. Krull, N. Voss, C.Choi, S. Pistor, A. Potapov, E.
Wingender, Nucleic Acids Res., 31(1), 97 (2003).
5. T. Cormen, Ch. Leiserson, R. Rivest, C.Stein,
Cambridge, Massachusetts 02142, The MIT Press, (2009).

6. W. Huber, V. Carey, L. Long, S. Falcon, R. Gentleman,
BMC Bioinformatics, 8, S8 (2007).

7. M. Negnevitsky, Artificial Intelligence: A Guide to
Intelligent Systems, Third ed., Addison-Wesley,
(2011).

8. J. Edmonds, Lectures in Applied Mathematics, 2, 346
(1968).

9. E. Dijkstra, Numer. Math., 1, 269 (1955).
10. L. Ford, Raud Corporation Report, P-923 (1946).
11. R. Floyd, Comm. ACM, 5, 345 (1962)
12. G. Dantzig, International Symposium, Rome, Gordon

and Breach, 91, 1966.
13. B. Johnson, Professional Visual Studio (2015).
14. V. Vladimirov, F. Sapundzhi, R. Kraleva, V. Kralev,

Biomath Communications, 3 (1), P71, (2016).
15. F. Sapundzhi, T.Dzimbova, N.Pencheva,P.Milanov,

Journal of Computational Methods in Molecular
Design, 5, 98 (2015).

16. V. Kralev, IJASEIT, 7 (5), 1685 (2017).
17. V. Kralev, R. Kraleva, IJACR, 7 (28), 1 (2017).

A

B

F. I. Sapundzhi et al.: Optimization algorithms for finding the shortest paths

121

	Optimization algorithms for finding the shortest paths
	Introduction
	Graph theory and definitions
	The shortest path problem is a task for finding the shortest path or route from a starting point to a final destination. In order to represent the shortest path problem we use graph theory. To introduce the basic concepts of it, we give the empirical ...
	In conclusion, we can say that the calculation of shortest paths in interaction graphs is an important method for network analysis in computational biology. This report draws attention to the important computational problem and provides a number of ne...
	References

