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Graph traveling problems are among the oldest problems of graph theory. The shortest path algorithms are intensively 
studied problems, which have a lot of applications such as: many problems of dynamic programming with discrete state 
and discrete time; network optimization problem-networks of roads and telecommunication networks, etc. At the present 
time the graphs provide simple but often useful formal representation of biological networks capturing one-to-one 
relationships between biological units. The aim of the present work is to evaluate the Dijkstra’s algorithm, Floyd-Warshall 
algorithm, Bellman-Ford algorithm, and Dantzig’s algorithm in solving the shortest path problem, that can be applied to 
very different biological systems and problems for biological system modelling. A brief overview of the different types 
of algorithms for finding the shortest paths is given. C# implementation of the considered algorithms are presented to 
show how works each of them. The results of evaluating the algorithms along with their time complexity are shown. 

Keywords: Molecular modelling, Shortest path problem, Dijkstra’s algorithm, Floyd-Warshall algorithm, Bellman-Ford 
algorithm, Dantzig’s algorithm. 

INTRODUCTION 

With the advent of computational biology, 
biological information is more often represented and 
stored in the form of biological interactions between 
genes, proteins, miRNAs, etc. The biological data 
assay has developed from understanding the 
function of single genes to interpreting the collective 
behaviour of complex biological systems, which can 
be modelled and analysed in the form of protein-
ligand interaction networks, gene regulatory 
networks and others. In the fields of biology and 
medicine applications of network analysis include 
identification of drug target, determining the 
functions of proteins and genes, designing effective 
strategies for treating various diseases, providing 
early diagnosis of disorders, etc [1].  

Networks of protein-protein interaction, 
biochemical networks, transcriptional regulation 
networks, signal transduction are the highlighted 
network categories in systems biology often sharing 
characteristics [2]. 

Signal transduction networks often use graphs to 
represent a series of interactions between proteins, 
chemicals or macromolecules. Databases that store 
information about signal transduction pathways are 
MiST [3], TRANSPATH [4], etc. 

To operate the plenty of information, complex 
computational methods are needed to manage the 
number and size of biological networks which can 
be represented in the form of mathematical graphs. 

Many transport, distribution tasks, tasks for 
selecting optimal routes or situation of service 
centers, tasks for making schedules, are described by 

the language of graphs and networks. Series of 
physical, chemical, economical and managing 
systems are successfully interpreted and examined 
using graph theory. 

In many cases tasks are linear – target function is 
linear, as well as all of the constraints, which means 
that they can be solved using linear optimization. 
The real tasks (these who fully enough affect the 
reality) are too complex, which causes searching 
efficient and flexible algorithms regarding output 
data. Graph theory gives good opportunities for this 
[1,2,5,6]. 

The objectives of this research paper are: (a) to 
determine and identify the concepts of the shortest 
path problem; (b) to determine the representation of 
graphs in computer in order to solve the shortest path 
problem, as well as to explore 
and understand the different basic terms of graphs; 
(c) to explain the general concepts and the C# 
implementations of Dijkstra’s algorithm, Floyd-
Warshall algorithm, Bellman-Ford algorithm and 
Danzig's algorithm; (d) to evaluate each algorithm, 
and to present the evaluations’ results. 

MATERIALS AND METHODS 

Graph theory and definitions 

The shortest path problem is a task for finding the 
shortest path or route from a starting point to a final 
destination. In order to represent the shortest path 
problem we use graph theory. To introduce the basic 
concepts of it, we give the empirical and the 
mathematical description of graphs that represent 
networks as they are originally defined in the 
literature [5,6].  
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A graph 𝐺𝐺 is a pair (𝑉𝑉,𝐸𝐸), where 𝑉𝑉 is a finite set 
of vertices and 𝐸𝐸  is a set of connections (edges) 
between the vertices. An edge 𝑒𝑒 = (𝑢𝑢, 𝑣𝑣)  consists 
of two vertices such that 𝑢𝑢, 𝑣𝑣 𝜖𝜖 𝑉𝑉. 

A graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸)  is edge-weighted, if each 
edge 𝑒𝑒 ∈ 𝐸𝐸  has a weight, 𝑊𝑊(𝑒𝑒) ∈ ℝ . Let 𝐺𝐺 =
(𝑉𝑉,𝐸𝐸)  denotes an edge-weighted graph with real 
edge weights 𝑊𝑊(𝑒𝑒), 𝑒𝑒 ∈  𝐸𝐸. We will say that 𝐷𝐷 is a 
metric for G if, for any three vertices 𝑢𝑢, 𝑣𝑣,𝑤𝑤 ∈ 𝑉𝑉, 
𝐷𝐷(𝑢𝑢, 𝑣𝑣) = 𝐷𝐷(𝑣𝑣,𝑢𝑢) ≥ 0 , with 𝐷𝐷(𝑢𝑢, 𝑣𝑣) = 0  if and 
only if 𝑢𝑢 = 𝑣𝑣, and 𝐷𝐷(𝑢𝑢, 𝑣𝑣) ≤ 𝐷𝐷(𝑢𝑢,𝑤𝑤) + 𝐷𝐷(𝑤𝑤,𝑢𝑢) . 
One way of defining metric distance on a weighted 
graph is to use the shortest-path metric 𝛿𝛿(. . . ) on the 
graph or its sub graph, i.e., (𝐷𝐷(𝑢𝑢, 𝑣𝑣) = 𝛿𝛿(𝑢𝑢, 𝑣𝑣), the 
shortest path distance between 𝑢𝑢 and 𝑣𝑣 for all 𝑢𝑢, 𝑣𝑣 ∈
𝑉𝑉 . We will say that the edge weighted tree 𝛵𝛵 =
𝛵𝛵𝐺𝐺(𝑉𝑉′,𝐸𝐸′)  is a tree metric for 𝐺𝐺 , with respect to 
distance function 𝐷𝐷, if for any pair of vertices 𝑢𝑢, 𝑣𝑣 in 
𝐺𝐺, the length of the unique path between them in 𝛵𝛵 
is equal to 𝐷𝐷(𝑢𝑢, 𝑣𝑣).  An ultra-metric is a special type 
of tree metric defined on rooted trees, where the 
distance to the root is the same for all leaves in the 
tree, an approximation that introduces small 
distortion. A metric 𝐷𝐷 is an ultra-metric if, for all 
points𝑥𝑥,𝑦𝑦, 𝑧𝑧 we have 𝐷𝐷[𝑥𝑥, 𝑦𝑦] ≤ max{𝐷𝐷[𝑥𝑥, 𝑧𝑧],𝐷𝐷[𝑦𝑦, 𝑧𝑧]}. 
An ultra-metric does not satisfy all the properties of 
a tree metric distance. To create a general tree metric 
from an ultra-metric, we need to satisfy the 4-
point condition: 

𝐷𝐷[𝑥𝑥,𝑦𝑦] + 𝐷𝐷[𝑧𝑧,𝑤𝑤] ≤ max {𝐷𝐷[𝑥𝑥, 𝑧𝑧] +
𝐷𝐷[𝑦𝑦,𝑤𝑤],𝐷𝐷[𝑥𝑥,𝑤𝑤] + 𝐷𝐷[𝑦𝑦, 𝑧𝑧]}, for all 𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑤𝑤.  

A metric that satisfies the 4-point condition is 
called an additive metric. 

 If routes are one-way then the graph will be 
directed or else it will be undirected. In the literature 
are presented many different types of algorithms that 
solve the shortest path problem. Only several of the 
most popular conventional shortest path algorithms 
are going to be discussed in this paper, and they are 
as follows: Dijkstra’s algorithm, Floyd-Warshall 
algorithm, Bellman-Ford algorithm and Dantzig’s 
algorithm [8-11].  

EXPLANATION AND IMPLEMENTATION OF 
THE ALGORITHMS 

Explanation and implementation of Dijkstra’s 
algorithm 

Explanation:  
Step 1: Mark the initial vertex (s). Let: 𝑑𝑑(𝑠𝑠) = 0 

(Constant distance label)  𝑑𝑑(𝑥𝑥) = ∞  (Tentative 
distance label) 𝑝𝑝 = 𝑠𝑠 (𝑝𝑝 – last marked vertex). 

Step 2: (Changing the tentative distance labels). 
For all unmarked vertices 𝑥𝑥  the numbers 𝑑𝑑(𝑥𝑥) are 
recalculated by Eqn.1: 

𝑑𝑑(𝑥𝑥) = min{𝑑𝑑(𝑥𝑥),𝑑𝑑(𝑝𝑝) + 𝑐𝑐(𝑝𝑝, 𝑥𝑥)}        (1) 

where 𝑑𝑑(𝑥𝑥)  is the minimal tentative distance 
from 𝑠𝑠 to 𝑥𝑥, 𝑑𝑑(𝑝𝑝) – minimal tentative distance from 
𝑠𝑠 to 𝑝𝑝 and c(𝑝𝑝, 𝑥𝑥) is the edge’s weight from 𝑝𝑝 to 𝑥𝑥. 
(Obviously we may change only those 𝑑𝑑(𝑥𝑥) , for 
which the edge (𝑝𝑝, 𝑥𝑥) exists, the rest of the numbers 
remain the same). 

If 𝑑𝑑(𝑥𝑥) = ∞, for each unmarked vertex 𝑥𝑥 , stop 
the procedure – it means that there are no paths from 
𝑠𝑠 to all unmarked vertices. Otherwise mark the one 
vertex 𝑥𝑥  which has minimal distance label 𝑑𝑑(𝑥𝑥) . 
Also color the edge which goes into vertex 𝑥𝑥, for 
which the minimal distance label from Eqn.1 is 
reached. Let 𝑝𝑝 = 𝑥𝑥. 

Step 3: If 𝑝𝑝 = 𝑡𝑡, the procedure ends, the only way 
from 𝑠𝑠  to 𝑡𝑡 , made out of marked edges, is the 
shortest path between 𝑠𝑠 and 𝑡𝑡. Otherwise, go back to 
Step 2 [9]. 

Implementation:  
The following basic variables are used: 

𝐷𝐷𝐷𝐷𝑐𝑐𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑦𝑦 < 𝑉𝑉,𝑑𝑑𝐷𝐷𝑢𝑢𝑑𝑑𝑑𝑑𝑒𝑒 >  𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡𝐷𝐷𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠 -stores the 
distances from source vertex to all vertices; 
𝐷𝐷𝐷𝐷𝑐𝑐𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑦𝑦 < 𝑉𝑉,𝐸𝐸 >  𝑑𝑑𝑒𝑒𝑠𝑠𝑡𝑡𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝑒𝑒𝑥𝑥𝐸𝐸𝑑𝑑𝑏𝑏 -stores an 
edge for every vertex that minimizes its distance 
label; 𝐷𝐷𝐷𝐷𝑐𝑐𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑦𝑦 < 𝑉𝑉, 𝑑𝑑𝐷𝐷𝐷𝐷𝑑𝑑 >  𝑚𝑚𝐷𝐷𝐷𝐷𝑚𝑚𝑒𝑒𝑑𝑑 -if some 
vertex is marked, its value in this dictionary is true; 
𝐿𝐿𝐷𝐷𝑠𝑠𝑡𝑡 < 𝐸𝐸 >  𝑚𝑚𝐷𝐷𝐷𝐷𝑚𝑚𝑒𝑒𝑑𝑑𝐸𝐸𝑑𝑑𝑏𝑏𝑒𝑒𝑠𝑠 -list of all marked 
edges; 𝑉𝑉 𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝑡𝑡𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝑒𝑒𝑥𝑥 - last marked vertex [7].  

The algorithm of Dijkstra determines the shortest 
path and its length from a given vertex 𝑠𝑠 to a target 
vertex 𝑡𝑡. It is supposed that all edge’s lengths are 
positive. The algorithm stops: (1) if there’s no path 
from 𝑠𝑠 to 𝑡𝑡; (2) if one or more edges have negative 
weights; (3) when the target vertex 𝑡𝑡 is marked. 

Step 1: A tentative distance for all vertices in the 
given graph that represents the minimal distance 
from the source vertex to all vertices and use 
𝐷𝐷𝐷𝐷𝑐𝑐𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑦𝑦 < 𝑉𝑉,𝑑𝑑𝐷𝐷𝑢𝑢𝑑𝑑𝑑𝑑𝑒𝑒 > 𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡𝐷𝐷𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠  for these 
labels. Initially, all labels are set to big enough 
number to represent infinity but 𝑠𝑠 (𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡𝐷𝐷𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠[𝑠𝑠] =
0) and (𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡𝐷𝐷𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠[𝑣𝑣]  =  𝐷𝐷𝐷𝐷𝑖𝑖, 𝑣𝑣 ≠  𝑠𝑠) which means 
that the path lengths from 𝑠𝑠 to the rest vertices are 
unknown, after that mark source vertex 𝑠𝑠 as visited 
and set it as current vertex (𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝑡𝑡𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝑒𝑒𝑥𝑥 ∶=  𝑠𝑠). 

Step 2: The distance labels (𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡𝐷𝐷𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠[𝑣𝑣]) for 
each unmarked neighbor vertex v where an edge 
exists from 𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝑡𝑡𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝑒𝑒𝑥𝑥 to 𝑣𝑣 are recalculated by 
Eqn. 2: 

 𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡𝐷𝐷𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠[𝑣𝑣]
= min{𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡𝐷𝐷𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠[𝑣𝑣],𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡𝐷𝐷𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠[𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝑡𝑡𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝑒𝑒𝑥𝑥]
+ 𝑐𝑐(𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝑡𝑡𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝑒𝑒𝑥𝑥, 𝑣𝑣)}                                   (2) 
where 𝑐𝑐 (𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝑡𝑡𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝑒𝑒𝑥𝑥, 𝑣𝑣) is edge’s weight from 
𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝑡𝑡𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝑒𝑒𝑥𝑥 to 𝑣𝑣. Then set 𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝑡𝑡𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝑒𝑒𝑥𝑥 this 
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unmarked vertex 𝑣𝑣 which has minimal distance label 
and color the edge entering 𝑣𝑣 for which the minimal 
number from Eqn. 2 is reached.  

Step 3: If current vertex is target 
(𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝑡𝑡𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝑒𝑒𝑥𝑥 =  𝑡𝑡)  the procedure ends. The 
only path from 𝑠𝑠 to 𝑡𝑡, made out of marked edges, is 
the shortest path between 𝑠𝑠  and 𝑡𝑡 . Otherwise, go 
back to Step 2. 

Dijkstra’s algorithm using adjacency matrix: In 
this case following variables are used: 
𝑑𝑑𝐷𝐷𝑢𝑢𝑑𝑑𝑑𝑑𝑒𝑒[, ] 𝐷𝐷𝑑𝑑𝑎𝑎𝐷𝐷𝑐𝑐𝑒𝑒𝐷𝐷𝑐𝑐𝑦𝑦𝑎𝑎𝐷𝐷𝑡𝑡𝐷𝐷𝐷𝐷𝑥𝑥  – graph’s adjacency 
matrix; 𝐷𝐷𝐷𝐷𝑐𝑐𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑦𝑦 < 𝑉𝑉, 𝐷𝐷𝐷𝐷𝑡𝑡 >  𝑣𝑣𝑒𝑒𝐷𝐷𝑡𝑡𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠𝑣𝑣𝐷𝐷𝑑𝑑𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠  - 
stores the corresponding index of every vertex in the 
adjacency matrix; 𝐷𝐷𝐷𝐷𝑡𝑡 𝑣𝑣𝑒𝑒𝐷𝐷𝑡𝑡𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠𝑣𝑣𝐷𝐷𝑢𝑢𝐷𝐷𝑡𝑡-number of all 
vertices; 𝐷𝐷𝐷𝐷𝑡𝑡 𝑠𝑠𝐷𝐷𝑢𝑢𝐷𝐷𝑐𝑐𝑒𝑒𝑣𝑣𝐷𝐷𝑑𝑑𝑒𝑒𝑥𝑥 - starting vertex index; 
𝐷𝐷𝐷𝐷𝑡𝑡 𝑡𝑡𝐷𝐷𝐷𝐷𝑏𝑏𝑒𝑒𝑡𝑡𝑣𝑣𝐷𝐷𝑑𝑑𝑒𝑒𝑥𝑥 - destination vertex index; 
𝐷𝐷𝐷𝐷𝑡𝑡 𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝑡𝑡𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝑒𝑒𝑥𝑥𝑣𝑣𝐷𝐷𝑑𝑑𝑒𝑒-last marked vertex index; 
𝑑𝑑𝐷𝐷𝑢𝑢𝑑𝑑𝑑𝑑𝑒𝑒[] 𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡𝐷𝐷𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠  – stores the distances from 
source vertex to all vertices. All vertices are indexed 
with the numbers from 0 to 𝑣𝑣𝑒𝑒𝐷𝐷𝑡𝑡𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠𝑣𝑣𝐷𝐷𝑢𝑢𝐷𝐷𝑡𝑡 −
1; 𝐿𝐿𝐷𝐷𝑠𝑠𝑡𝑡 < 𝐸𝐸 >  𝑑𝑑𝑒𝑒𝑠𝑠𝑡𝑡𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝑒𝑒𝑥𝑥𝐸𝐸𝑑𝑑𝑏𝑏- stores an edge for 
every vertex that minimizes its distance label; 
𝑑𝑑𝐷𝐷𝐷𝐷𝑑𝑑 [] 𝑚𝑚𝐷𝐷𝐷𝐷𝑚𝑚𝑒𝑒𝑑𝑑  – if 𝑚𝑚𝐷𝐷𝐷𝐷𝑚𝑚𝑒𝑒𝑑𝑑[𝐷𝐷]  is true then the 
vertex with index 𝐷𝐷  is marked; 𝐿𝐿𝐷𝐷𝑠𝑠𝑡𝑡 < 𝐸𝐸 >
 𝑚𝑚𝐷𝐷𝐷𝐷𝑚𝑚𝑒𝑒𝑑𝑑𝐸𝐸𝑑𝑑𝑏𝑏𝑒𝑒𝑠𝑠 - list of all marked edges [7].  

Step 1: Convert the graph to adjacency matrix (a 
square matrix) with dimensions 𝐷𝐷 𝑥𝑥 𝐷𝐷 (𝐷𝐷 – number 
of vertices). The matrix elements are calculated by 
Eqn. 3: 

   𝐴𝐴𝑖𝑖𝑖𝑖 =  �
∞ 𝐷𝐷𝑖𝑖 𝑡𝑡ℎ𝑒𝑒𝐷𝐷𝑒𝑒 𝐷𝐷𝑠𝑠𝐷𝐷’𝑡𝑡 𝐷𝐷𝐷𝐷 𝑒𝑒𝑑𝑑𝑏𝑏𝑒𝑒 𝑖𝑖𝐷𝐷𝐷𝐷𝑚𝑚 𝐷𝐷 𝑡𝑡𝐷𝐷 𝑎𝑎
𝑚𝑚𝐷𝐷𝐷𝐷𝐷𝐷𝑚𝑚𝐷𝐷𝑑𝑑 𝑒𝑒𝑑𝑑𝑏𝑏𝑒𝑒 ′𝑠𝑠 𝑤𝑤𝑒𝑒𝐷𝐷𝑏𝑏ℎ𝑡𝑡 𝑖𝑖𝐷𝐷𝐷𝐷𝑚𝑚 𝐷𝐷 𝑡𝑡𝐷𝐷 𝑎𝑎   (3) 

where 𝐴𝐴𝑖𝑖𝑖𝑖 = 0,∀𝐷𝐷 . A hash table which keeps the 
index of every vertex in the adjacency matrix is 
created, that so the path could be restored. A 
tentative distance label which represents the minimal 
current distance from vertex s to the rest vertices v is 
assigned for each vertex in the graph. For this 
purpose, an array 𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡𝐷𝐷𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠[] is used. The array is 
initialized as follows: 𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡𝐷𝐷𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠[𝑠𝑠]  =  0, 
𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡𝐷𝐷𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠[𝑣𝑣] = big enough number where 𝑣𝑣 ≠ 𝑠𝑠 (𝑠𝑠 
and 𝑣𝑣 – array’s indices). The vertex  𝑠𝑠 was marked 
as visited and set it as current vertex using its index. 

Step 2: The distance labels (𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡𝐷𝐷𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠[𝑣𝑣]) are 
recalculated for each unmarked neighbor vertex v 
where an edge exists from 𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝑡𝑡𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝑒𝑒𝑥𝑥 to v by 
Eqn. 4: 
𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡𝐷𝐷𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠[𝑣𝑣]

= min�
𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡𝐷𝐷𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠[𝑣𝑣𝑣𝑣𝐷𝐷𝑑𝑑𝑒𝑒𝑥𝑥],

 𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡𝐷𝐷𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠[𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝑡𝑡𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝑒𝑒𝑥𝑥𝑣𝑣𝐷𝐷𝑑𝑑𝑒𝑒𝑥𝑥]
+𝑐𝑐(𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝑡𝑡𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝑒𝑒𝑥𝑥𝑣𝑣𝐷𝐷𝑑𝑑𝑒𝑒𝑥𝑥, 𝑣𝑣)

�     (4) 

where 𝑣𝑣𝑣𝑣𝐷𝐷𝑑𝑑𝑒𝑒𝑥𝑥  and 𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝑡𝑡𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝑒𝑒𝑥𝑥𝑣𝑣𝐷𝐷𝑑𝑑𝑒𝑒𝑥𝑥  are 
respectively the distances array’s indices of vertices 
𝑣𝑣 and current marked vertex. Then it is appropriated 
𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝑡𝑡𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝑒𝑒𝑥𝑥𝑣𝑣𝐷𝐷𝑑𝑑𝑒𝑒𝑥𝑥  the index of this unmarked 

vertex 𝑣𝑣  which has minimal distance label and 
colored the edge entering 𝑣𝑣 for which the minimal 
number from formula were reached (Eqn. 4). 

Step 3: If the current vertex index equals the 
target vertex index ( 𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝑡𝑡𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝑒𝑒𝑥𝑥𝑣𝑣𝐷𝐷𝑑𝑑𝑒𝑒𝑥𝑥 =
 𝑡𝑡𝐷𝐷𝐷𝐷𝑏𝑏𝑒𝑒𝑡𝑡𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝑒𝑒𝑥𝑥𝑣𝑣𝐷𝐷𝑑𝑑𝑒𝑒𝑥𝑥) the procedure ends. The only 
path from 𝑠𝑠 to 𝑡𝑡, made out of marked edges, is the 
shortest path between 𝑠𝑠 and 𝑡𝑡. Otherwise go back to 
Step 2. 

Explanation and implementation of Ford’s 
algorithm 

Explanation: 
The Bellman-Ford algorithm is Dijkstra’s 

algorithm modification in case that some edges have 
negative weights [9]. The Bellman-Ford algorithm’s 
modification consists of: in Step 2 the distance labels 
𝑑𝑑(𝑥𝑥) for all vertices are recalculated. If the distance 
label 𝑑𝑑(𝑥𝑥)  of some vertex 𝑥𝑥  can be changed, the 
distance is updated to the new lower value and if this 
vertex 𝑥𝑥 is marked, its marking and the incident with 
it colored edges are ignored. The algorithm stops 
when all vertices are marked and after Step 2 none 
of the distance labels 𝑑𝑑(𝑥𝑥)  has changed. This 
algorithm is slower than Dijkstra’s. As it admits 
edges with negative weights, a graph can contain 
negative length cycle. In case like this, the algorithm 
won’t work properly. 

Implementation:  
Instead of 𝐷𝐷𝐷𝐷𝑐𝑐𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑦𝑦 < 𝑉𝑉, 𝑑𝑑𝐷𝐷𝐷𝐷𝑑𝑑 >  𝑚𝑚𝐷𝐷𝐷𝐷𝑚𝑚𝑒𝑒 , 

here 𝐻𝐻𝐷𝐷𝑠𝑠ℎ𝑆𝑆𝑒𝑒𝑡𝑡 < 𝑉𝑉 >  𝑚𝑚𝐷𝐷𝐷𝐷𝑚𝑚𝑒𝑒𝑑𝑑𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠 (set of all 
marked vertices) and 𝐻𝐻𝐷𝐷𝑠𝑠ℎ𝑆𝑆𝑒𝑒𝑡𝑡 < 𝑉𝑉 >
 𝑢𝑢𝐷𝐷𝑚𝑚𝐷𝐷𝐷𝐷𝑚𝑚𝑒𝑒𝑑𝑑𝑉𝑉𝑒𝑒𝐷𝐷𝑡𝑡𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠 (set of unmarked vertices) are 
used. The 𝑑𝑑𝐷𝐷𝑠𝑠𝑡𝑡𝐷𝐷𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠[𝑣𝑣]  for every vertex in the 
graph (unlike Dijkstra’s algorithm the labels of 
unmarked vertices are recalculated) are recalculated. 

Explanation and implementation of Floyd’s 
algorithm 

Explanation: 
This algorithm finds the shortest path length 

between every couple of vertices. Edges can have 
negative weights but loops with negative length are 
not allowed [10]. 

Step 1: All vertices are numbered with the 
numbers from 1 to n. Matrix 𝐷𝐷0 = (𝑑𝑑𝑖𝑖𝑖𝑖0 )𝑛𝑛𝑛𝑛𝑛𝑛  is 
determined. Element (𝐷𝐷, 𝑎𝑎)  is the shortest edge’s 
length (with least weight) between 𝐷𝐷 and 𝑎𝑎. 𝑑𝑑𝑖𝑖𝑖𝑖0 = ∞ 
if (𝐷𝐷, 𝑎𝑎) edge is missing and 𝑑𝑑𝑖𝑖𝑖𝑖0 = 0,∀𝐷𝐷. 

Step 2: For each 𝑚𝑚 𝜖𝜖 [1,𝐷𝐷] are determined the 
matrix elements 𝐷𝐷𝑚𝑚 = (𝑑𝑑𝑖𝑖𝑖𝑖𝑚𝑚)𝑛𝑛𝑛𝑛𝑛𝑛  by the matrix 
elements 𝐷𝐷𝑚𝑚−1 = (𝑑𝑑𝑖𝑖𝑖𝑖𝑚𝑚−1)𝑛𝑛𝑛𝑛𝑛𝑛 using Eqn. 5: 

𝑑𝑑𝑖𝑖𝑖𝑖𝑚𝑚 =  𝑚𝑚𝐷𝐷𝐷𝐷�𝑑𝑑𝑖𝑖𝑖𝑖𝑚𝑚−1,𝑑𝑑𝑖𝑖𝑚𝑚𝑚𝑚−1 + 𝑑𝑑𝑚𝑚𝑖𝑖
𝑚𝑚−1�              (5)  
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Every element (𝐷𝐷, 𝑎𝑎)  in the matrix 𝐷𝐷𝑛𝑛  is the 
shortest path’s length from 𝐷𝐷 to 𝑎𝑎. 

Implementation:  
Step 1: Convert the graph to adjacency matrix (a 

square matrix) with dimensions n x n (n – number of 
vertices). The matrix’ elements are calculated by 
Eqn. 6: 

         𝑑𝑑𝑖𝑖𝑖𝑖0  =  �
∞ 𝐷𝐷𝑖𝑖 𝑡𝑡ℎ𝑒𝑒𝐷𝐷𝑒𝑒 𝐷𝐷𝑠𝑠𝐷𝐷’𝑡𝑡 𝐷𝐷𝐷𝐷 𝑒𝑒𝑑𝑑𝑏𝑏𝑒𝑒 𝑖𝑖𝐷𝐷𝐷𝐷𝑚𝑚 𝐷𝐷 𝑡𝑡𝐷𝐷 𝑎𝑎
𝑚𝑚𝐷𝐷𝐷𝐷𝐷𝐷𝑚𝑚𝐷𝐷𝑑𝑑 𝑒𝑒𝑑𝑑𝑏𝑏𝑒𝑒 ′𝑠𝑠 𝑤𝑤𝑒𝑒𝐷𝐷𝑏𝑏ℎ𝑡𝑡 𝑖𝑖𝐷𝐷𝐷𝐷𝑚𝑚 𝐷𝐷 𝑡𝑡𝐷𝐷 𝑎𝑎 

(6) 

where𝑑𝑑𝑖𝑖𝑖𝑖0 = 0,∀𝐷𝐷. A hash table which keeps the index 
of every vertex in the adjacency matrix is created, so 
the path could be restored [7]. 

Step 2: Three nested for-loops are used to 
represent Eqn.5: 
𝐷𝐷𝑚𝑚[𝐷𝐷, 𝑎𝑎]  =  𝑎𝑎𝐷𝐷𝑡𝑡ℎ.𝑎𝑎𝐷𝐷𝐷𝐷(𝑝𝑝𝐷𝐷𝑒𝑒𝑣𝑣𝐷𝐷[𝐷𝐷, 𝑎𝑎], 𝑝𝑝𝐷𝐷𝑒𝑒𝑣𝑣𝐷𝐷[𝐷𝐷,𝑚𝑚 − 1]  

+  𝑝𝑝𝐷𝐷𝑒𝑒𝑣𝑣𝐷𝐷[𝑚𝑚 − 1, 𝑎𝑎]) 

Explanation and implementation of Danzig’s 
algorithm 

Explanation:  
Step 1: All vertices are numbered with the 

numbers from 1 to n. Matrix 𝐷𝐷0 = (𝑑𝑑𝑖𝑖𝑖𝑖0 )𝑛𝑛𝑛𝑛𝑛𝑛  is 
determined. The element (𝐷𝐷, 𝑎𝑎) is the shortest edge’s 
length (with least weight) between 𝐷𝐷 and 𝑎𝑎 [11]. The 
elements 𝑑𝑑𝑖𝑖𝑖𝑖0 = ∞ if (𝐷𝐷, 𝑎𝑎) edge is missing and 𝑑𝑑𝑖𝑖𝑖𝑖0 =
0 for every 𝐷𝐷. 

Step 2: The matrix 𝐷𝐷𝑚𝑚  for each 𝑚𝑚 = 1, 2, … ,𝐷𝐷 
using 𝐷𝐷𝑚𝑚−1 and 𝐷𝐷0 are determined by the following 
equations: 

         𝑑𝑑𝑖𝑖𝑖𝑖𝑚𝑚 = 0 𝑖𝑖𝐷𝐷𝐷𝐷 𝑒𝑒𝐷𝐷𝑐𝑐ℎ 𝐷𝐷 𝐷𝐷𝐷𝐷𝑑𝑑 𝑒𝑒𝐷𝐷𝑐𝑐ℎ 𝑚𝑚           (7) 
𝑑𝑑𝑖𝑖𝑖𝑖𝑚𝑚 = min�𝑑𝑑𝑖𝑖𝑖𝑖𝑚𝑚−1,𝑑𝑑𝑖𝑖𝑚𝑚𝑚𝑚 + 𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚 � ,𝑤𝑤ℎ𝑒𝑒𝐷𝐷 𝐷𝐷, 𝑎𝑎

= 1,2, … ,𝑚𝑚 − 1                  (8) 

 𝑑𝑑𝑖𝑖𝑚𝑚𝑚𝑚 = 𝑚𝑚𝐷𝐷𝐷𝐷
𝑎𝑎 = 1, 2, … ,𝑚𝑚− 1�𝑑𝑑𝑖𝑖𝑖𝑖

𝑚𝑚−1 + 𝑑𝑑𝑖𝑖𝑚𝑚0 �,𝑤𝑤ℎ𝑒𝑒𝐷𝐷 𝐷𝐷

=  1,2, … ,𝑚𝑚 − 1                     (9) 

   𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚 = 𝑚𝑚𝐷𝐷𝐷𝐷
𝐷𝐷 = 1,2, … ,𝑚𝑚 − 1�𝑑𝑑𝑚𝑚𝑖𝑖

0 + 𝑑𝑑𝑖𝑖𝑖𝑖𝑚𝑚−1�,𝑤𝑤ℎ𝑒𝑒𝐷𝐷 𝑎𝑎
= 1,2, … ,𝑚𝑚 − 1                    (10) 

This algorithm performs the same operations as 
Floyd’s algorithm but in other order. In this case the 
matrix 𝐷𝐷𝑚𝑚 (𝑚𝑚 ≥ 1) has dimensions 𝑚𝑚 ×𝑚𝑚.  

Implementation: 
For this algorithm following variables are 

used: 𝑑𝑑𝐷𝐷𝑢𝑢𝑑𝑑𝑑𝑑𝑒𝑒[, ] 𝐷𝐷𝑑𝑑𝑎𝑎𝐷𝐷𝑐𝑐𝑒𝑒𝐷𝐷𝑐𝑐𝑦𝑦𝑎𝑎𝐷𝐷𝑡𝑡𝐷𝐷𝐷𝐷𝑥𝑥 -stores the 
adjacency matrix which elements are described 
below;  𝐷𝐷𝐷𝐷𝑐𝑐𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑦𝑦 < 𝑉𝑉, 𝐷𝐷𝐷𝐷𝑡𝑡 >  𝑣𝑣𝑒𝑒𝐷𝐷𝑡𝑡𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠𝑣𝑣𝐷𝐷𝑑𝑑𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠  - 
stores the corresponding index of every vertex in the 
adjacency matrix; 𝐷𝐷𝐷𝐷𝑡𝑡 𝑣𝑣𝑒𝑒𝐷𝐷𝑡𝑡𝐷𝐷𝑐𝑐𝑒𝑒𝑠𝑠𝑣𝑣𝐷𝐷𝑢𝑢𝐷𝐷𝑡𝑡 - number of 
all vertices in the graph; 𝑑𝑑𝐷𝐷𝑢𝑢𝑑𝑑𝑑𝑑𝑒𝑒[, ] 𝐷𝐷0 - matrix 𝐷𝐷0; 
𝑑𝑑𝐷𝐷𝑢𝑢𝑑𝑑𝑑𝑑𝑒𝑒[, ] 𝐷𝐷𝑚𝑚 -current matrix 𝐷𝐷𝑚𝑚 (𝑚𝑚 =
1 …𝐷𝐷);𝑑𝑑𝐷𝐷𝑢𝑢𝑑𝑑𝑑𝑑𝑒𝑒[, ] 𝑝𝑝𝐷𝐷𝑒𝑒𝑣𝑣𝐷𝐷𝑚𝑚 -represents matrix 
𝐷𝐷𝑚𝑚−1. 

Step 1: Convert the graph to adjacency matrix (a 
square matrix) with dimensions 𝐷𝐷 ×  𝐷𝐷 (𝐷𝐷 -number 
of vertices) [7]. The matrix elements are 

   𝑑𝑑0𝑖𝑖𝑖𝑖 =  �
∞, 𝐷𝐷𝑖𝑖 𝑡𝑡ℎ𝑒𝑒𝐷𝐷𝑒𝑒 𝐷𝐷𝑠𝑠𝐷𝐷’𝑡𝑡 𝐷𝐷𝐷𝐷 𝑒𝑒𝑑𝑑𝑏𝑏𝑒𝑒 𝑖𝑖𝐷𝐷𝐷𝐷𝑚𝑚 𝐷𝐷 𝑡𝑡𝐷𝐷 𝑎𝑎
𝑚𝑚𝐷𝐷𝐷𝐷𝐷𝐷𝑚𝑚𝐷𝐷𝑑𝑑 𝑒𝑒𝑑𝑑𝑏𝑏𝑒𝑒 ′𝑠𝑠 𝑤𝑤𝑒𝑒𝐷𝐷𝑏𝑏ℎ𝑡𝑡 𝑖𝑖𝐷𝐷𝐷𝐷𝑚𝑚 𝐷𝐷 𝑡𝑡𝐷𝐷 𝑎𝑎  (11)    

 𝑑𝑑0
𝐷𝐷𝐷𝐷 = 0,∀𝐷𝐷. We also create a hash table which 

keeps the index of every vertex in the adjacency 
matrix so we can restore the path. 

Step 2: The matrix 𝐷𝐷𝑚𝑚 for each 𝑚𝑚 =  1 …𝐷𝐷  is 
determined by the equations for 𝐷𝐷𝑚𝑚[𝐷𝐷,𝑚𝑚 −  1] and 
𝐷𝐷𝑚𝑚[𝑚𝑚 −  1, 𝑎𝑎] (𝐷𝐷, 𝑎𝑎 = 0 …𝑚𝑚 − 2): 

𝐷𝐷𝑚𝑚[𝐷𝐷,𝑚𝑚 −  1] =  𝑎𝑎𝐷𝐷𝑡𝑡ℎ.𝑎𝑎𝐷𝐷𝐷𝐷(𝐷𝐷𝑚𝑚[𝐷𝐷,𝑚𝑚 −  1],
𝑝𝑝𝐷𝐷𝑒𝑒𝑣𝑣𝐷𝐷𝑚𝑚[𝐷𝐷, 𝑎𝑎] +  𝐷𝐷0[𝑎𝑎,𝑚𝑚 −  1])  (12) 

   𝐷𝐷𝑚𝑚[𝑚𝑚 −  1, 𝑎𝑎] =  𝑎𝑎𝐷𝐷𝑡𝑡ℎ.𝑎𝑎𝐷𝐷𝐷𝐷                                 (13) 
The elements of 𝐷𝐷𝑚𝑚[𝐷𝐷, 𝑎𝑎] (𝐷𝐷, 𝑎𝑎 = 0 …𝑚𝑚− 2) 

depend on the upper ones 𝐷𝐷𝑚𝑚[𝐷𝐷, 𝑎𝑎] = 𝑎𝑎𝐷𝐷𝑡𝑡ℎ.   
𝑎𝑎𝐷𝐷𝐷𝐷(𝑝𝑝𝐷𝐷𝑒𝑒𝑣𝑣𝐷𝐷𝑚𝑚[𝐷𝐷, 𝑎𝑎],𝐷𝐷𝑚𝑚[𝐷𝐷,𝑚𝑚− 1] + 𝐷𝐷𝑚𝑚[𝑚𝑚 − 1, 𝑎𝑎]).

Table 1. The values of execution time and different number of vertices for shortest path algorithms (Dijkstra, 
Ford, Floyd, Dantzig). 

№ Vertices Edges Dijkstra’s 
algorithm 

Dijkstra’s algorithm 
by adjacency matrix 

Ford’s 
algorithm 

Floyd’s 
algorithm 

Dantzig’s 
algorithm 

1 100 10 000 0.142 0.066 0.042 0.341 0.387 
2 500 50 000 1.165 0.504 0.584 32.123 35.229 
3 500 100 000 1.036 0.769 0.755 34.307 36.981 
4 500 1 000 000 3.03 5.209 2.707 37.406 45.805 
5 1 000 100 000 1.468 0.64 3.238 266.92 324.216 
6 2 500 1 000 000 15.764 9.753 14.622 993.166 1985.166 
7 5 000 500 000 24.813 5.958 61.076 - - 
8 5 000 1 000 000 48.685 4.987 17.488 ~13620 - 
9 5 000 1 000 000 35.545 12.706 69.894 - - 
10 10 000 100 000 68.81 19.942 75.975 - - 
11 10 000 1 000 000 84.742 17.783 80.715 - - 
12 25 000 5 000 000 506.299 - - - - 
13 25 000 5 000 000 2259 - - - - 
14 25 000 5 000 000 - - 757.885 - - 
15 25 000 5 000 000 - - 1232.543 - - 
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RESULTS AND DISCUSSION 

The algorithms of Dijkstra [8], Floyd-Warshall 
[9], Bellman-Ford [10] and Dantzig [11] for finding 
the shortest path were tested using Visual Studio 
Community 2015, Intel® Pentium® Processor 
N3710, 1.6 GHz (4 CPUs), 4096 MB RAM [7,13]. 
The values of execution time and different number 
of vertices for shortest path algorithms (Dijkstra, 
Ford, Floyd, Dantzig) are presented in Table 1The 
experimental results are shown in Table 2. Time 
complexity of the shortest path algorithms depends 
on the number of vertices, number of edges and edge 
length. As can be seen, the time complexity of the 
Dijkstra’s algorithm depends on the number of 
vertices and is inversely proportional to the number 
of vertices. The time complexity was higher for 
Bellman-Ford algorithm than Dijkstra’s algorithm. 
For higher number of nodes, the Dijkstra’s algorithm 
is better and efficient (Table 3) [14-17]. 

 
Fig. 1. Execution time and different number of 

vertices for the shortest path algorithms - Dijkstra, Ford, 
Floyd and Dantzig. 

As it can be seen from the results in Тable 2, the 
Dijkstra’s algorithm and its implementation for 

adjacency matrix in C # representation of graphs 
provide better performance in the cost of memory. 
The time complexity for the matrix representation is 
O(V^2). 

The algorithms for finding the shortest paths – 
Dijkstra’s, Ford’s, Floyd’s and Dantzig’s were 
examined and analyzed. The best results for the 
values of execution time and different number of 
vertices are obtained by Dijkstra’s algorithm (Table 
2 and Figure 2). This algorithm is also implemented 
through a adjacency matrix. As can be seen in Figure 
2, better results are obtained when using an 
adjacency matrix for the same input parameters. 

A C# implementation for drawing the shortest 
path for Dijkstra's algorithm was developed. The 
software draws and marks the nodes and edges of the 
finding shortest path by coloring them in red. The 
algorithm of Dijkstra is implemented and visually 
demonstrated in Visual Studio Community 2015 
[7,13]. Figure 3 shows C # implementation of some 
examples of Dijkstra’s algorithm. Graphic 
representation is going to be implemented for the 
rest algorithms for finding the shortest paths. 

Table 3. Dijkstra’s algorithm execution time in 
seconds.  

Number of 
vertices 

Dijkstra’s 
algorithm 

Dijkstra’s algorithm 
by adjacency matrix 

50 0.173 0.297 
100 0.322 0.329 
250 0.327 0.491 
500 0.334 0.4 
750 0.507 0.61 

1000 1.3 0.494 
2500 13.425 2.223 
5000 16.682 2.959 
7500 34.61 6.198 

10 000 81.373 24.103 

 
Fig. 2. Relationship between the number of vertices and execution time for Dijkstra’s algorithm and its 

implementation: A) without adjacency matrix in C #; B - with adjacency matrix in C #. 
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Fig. 3. Illustration of Dijkstra's algorithm search for finding shortest path from a start node to a goal node: A) n = 21, m= 
41, B) n = 41, m = 60. The found shortest path is coloured in red. 

In conclusion, we can say that the calculation of 
shortest paths in interaction graphs is an important 
method for network analysis in computational 
biology. This report draws attention to the important 
computational problem and provides a number of 
new algorithms, partially specifically tailored for 
biological interaction graphs. 

REFERENCES  

1. K. Magzhan, H. Jani, IJSTR, 2 (6), 100 (2013). 
2. G. Pavlopoulos, M.Secrier, C.Moschopoulos, T. 
Soldatos, S. Kossida, J. Aerts, R.Schneider, P. Bagos 
BioData Mining, 4(10), 1 (2011). 
3. L. Ulrich, Nucleic Acids Res., 35, 386 (2007).  
4. M. Krull, N. Voss, C.Choi, S. Pistor, A. Potapov, E. 
Wingender, Nucleic Acids Res., 31(1), 97 (2003). 
5. T. Cormen, Ch. Leiserson, R. Rivest, C.Stein, 
Cambridge, Massachusetts 02142, The MIT Press, (2009).  

6. W. Huber, V. Carey, L. Long, S. Falcon, R. Gentleman, 
BMC Bioinformatics, 8, S8 (2007). 

7. M. Negnevitsky, Artificial Intelligence: A Guide to 
Intelligent Systems, Third ed., Addison-Wesley, 
(2011).  

8. J. Edmonds, Lectures in Applied Mathematics, 2, 346 
(1968). 

9. E. Dijkstra, Numer. Math., 1, 269 (1955). 
10. L. Ford, Raud Corporation Report, P-923 (1946). 
11. R. Floyd, Comm. ACM, 5, 345 (1962) 
12. G. Dantzig, International Symposium, Rome, Gordon 

and Breach, 91, 1966. 
13. B. Johnson, Professional Visual Studio (2015). 
14. V. Vladimirov, F. Sapundzhi, R. Kraleva, V. Kralev, 

Biomath Communications, 3 (1), P71, (2016). 
15. F. Sapundzhi, T.Dzimbova, N.Pencheva,P.Milanov, 

Journal of Computational Methods in Molecular 
Design, 5, 98 (2015). 

16. V. Kralev, IJASEIT, 7 (5), 1685 (2017). 
17. V. Kralev, R. Kraleva, IJACR, 7 (28), 1 (2017).

A 

B 



F. I. Sapundzhi et al.: Optimization algorithms for finding the shortest paths 

121 

 


	Optimization algorithms for finding the shortest paths
	Introduction
	Graph theory and definitions
	The shortest path problem is a task for finding the shortest path or route from a starting point to a final destination. In order to represent the shortest path problem we use graph theory. To introduce the basic concepts of it, we give the empirical ...
	In conclusion, we can say that the calculation of shortest paths in interaction graphs is an important method for network analysis in computational biology. This report draws attention to the important computational problem and provides a number of ne...
	References

