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Two reversible electrode reactions that are connected by either reversible or totally irreversible chemical reactions 

are theoretically analysed by staircase cyclic voltammetry. The dependence of peak potentials on the thermodynamic 

and kinetic parameters is calculated. If the mechanism is permanently in equilibrium, the stability constant of the 

reversible chemical reaction can be determined. Furthermore, the critical kinetic parameter is determined and its 

application to the measurement of the forward rate constant of the chemical reaction is demonstrated. Also, the 

influence of the kinetics of electrode reactions is discussed. 
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INTRODUCTION 

The acronym ECE denotes an electrochemical 

mechanism in which two electrode reactions are 

coupled by a chemical reaction in the way that the 

product of the first electrode reaction is the reactant 

in a chemical reaction and the product of the latter is 

a reactant in a second electrode reaction [1-7]. This 

mechanism can be considered as a special case of 

the general nine-member square scheme [8-11]. It 

was observed in electroreduction of p-nitrosophenol 

[12, 13], carbonylmanganese compounds [14-16], 

benzenesulfonyl fluoride [17, 18], 1-butyl-3-

methylimidazolium bistriflimide [19], uranium 

complexes of acetylacetone [20], 

hexacyanochromate(III) [21], bimetallic 

organometallic complexes [22] and adriamycin [23], 

as well as in electrooxidation of tocopherols [24], 

copper(II) complex of thyrotropin-releasing 

hormone [25], methylcatechol [26, 27], dopamine 

[28] and aromatic hydrocarbons [29, 30]. The theory 

of the ECE mechanism is developed for 

chronoamperometry [31-33], d. c. polarography [34-

36], linear scan [37, 38], cyclic [21, 39] and square 

wave voltammetry [40-44], rotating disk [45] and 

ring-disk electrode measurements [46], the scanning 

electrochemical microscopy [47] and the surface 

reactions in protein film voltammetry [48, 49]. In 

this paper the main properties of responses of ECE 

mechanism in staircase cyclic voltammetry are 

recapitulated. The influences of both the 

thermodynamic constants under equilibrium 

conditions and the kinetic parameters of reversible 

and totally irreversible chemical reactions, as well as 

electrode reactions are considered. 

MODELS 

The following reactions are investigated: 

A ↔ B+ + e-     (1) 

B+ + X- ↔ E     (2) 

E ↔ F+ + e-      (3) 

It is assumed that the mass transport can be 

described by the stationary, planar, semiinfinite 

diffusion model and that the reagent X- is present in 

great excess, so that the variation of its 

concentration can be neglected. 

(1) The first model is based on the assumption 

that the chemical reaction is permanently in 

equilibrium. Its mathematical representation is given 

by the following differential equations and boundary 

conditions: 

𝜕𝑐𝐴 𝜕𝑡⁄ = 𝐷 𝜕2𝑐𝐴 𝜕𝑥2⁄      (4) 

𝜕𝑐𝐼𝑛𝑡 𝜕𝑡⁄ = 𝐷 𝜕2𝑐𝐼𝑛𝑡 𝜕𝑥2⁄     (5) 

𝜕𝑐𝐹 𝜕𝑡⁄ = 𝐷 𝜕2𝑐𝐹 𝜕𝑥2⁄      (6) 

𝑐𝐼𝑛𝑡 = 𝑐𝐵 + 𝑐𝐸      (7) 

𝑡 = 0,   𝑥 ≥ 0:           𝑐𝐴 = 𝑐𝐴
∗,      𝑐𝐵 = 𝑐𝐸 = 𝑐𝐹 = 0,  

𝑐𝑋 = 𝑐𝑋
∗       (8) 

𝑡 > 0, 𝑥 → ∞:         𝑐𝐴 →  𝑐𝐴
∗, 𝑐𝑋 →  𝑐𝑋

∗ ,   𝑐𝐵 →
0 𝑐𝐸 → 0, 𝑐𝐹 → 0     (9) 

𝑥 = 0:                           𝑐𝑋 = 𝑐𝑋
∗               (10) 

𝑐𝐵,𝑥=0 = 𝑐𝐴,𝑥=0 𝑒𝑥𝑝(𝐹(𝐸 − 𝐸1
0) 𝑅𝑇⁄ )            (11) 

𝐾𝑐𝑋
∗ = 𝑐𝐸,𝑥=0 𝑐𝐵,𝑥=0⁄                  (12) 

𝑐𝐹,𝑥=0 = 𝑐𝐸,𝑥=0 𝑒𝑥𝑝(𝐹(𝐸 − 𝐸2
0) 𝑅𝑇⁄ )               (13) 
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𝐷(𝜕𝑐𝐴 𝜕𝑥⁄ )𝑥=0 = 𝐼1 𝐹𝑆⁄                (14) 

𝐷(𝜕𝑐𝐼𝑛𝑡 𝜕𝑥⁄ )𝑥=0 = (𝐼2 − 𝐼1) 𝐹𝑆⁄               (15) 

𝐷(𝜕𝑐𝐹 𝜕𝑥⁄ )𝑥=0 = −𝐼2 𝐹𝑆⁄                 (16) 

𝑥 > 0:  𝐾𝑐𝑋
∗ = 𝑐𝐸 𝑐𝐵⁄                  (17) 

The meanings of symbols are reported in Table 

1.  

Table 1. Meanings of symbols 
__________________________________________________________________________ 

𝛼1, 𝛼2  Transfer coefficients of the first and the 

second electrode reactions 

𝑐𝐴, 𝑐𝐵 , 𝑐𝐸 , 𝑐𝐹  Concentrations of species A, B+, E and F+ 

𝑐𝐴
∗ , 𝑐𝑋

∗   Concentrations of species A and X- in the 

bulk of solution 

𝐷   Common diffusion coefficient 

𝐸  Electrode potential 

𝐸1
0, 𝐸2

0 Standard potentials of the first and the 

second electrode reactions 

∆𝐸  Potential step in staircase cyclic 

voltammetry 

𝐸𝑝,𝑎, 𝐸𝑝,𝑐  Anodic and cathodic peak potentials 

𝐹  Faraday constant 

𝐼1, 𝐼2  Currents of the first and the second electron 

transfer 

𝐾 Equilibrium constant of the chemical 

reactions 

𝑘  Rate constant of irreversible chemical 

reaction 

𝑘𝑓 , 𝑘𝑏  Rate constants of reversible chemical 

reaction 

𝑘𝑠1, 𝑘𝑠2  Rate constants of the first and the second 

electrode reactions 

𝑅  Gas constant 

𝑆  Electrode surface area 

𝑇  Temperature  

𝑡  Time 

𝑣  Scan rate 
________________________________________________________________________ 

Differential equations are solved by the 

numerical method [50, 51]. In staircase voltammetry 

the potential is changed in a stepwise manner and 

the scan rate is defined as the ratio of the height and 

the duration of the step: 𝑣 = ∆𝐸 𝜏⁄ . The current is 

measured at the end of each step. The dimensionless 

current is defined as follows: Φ𝑘 =

𝐼𝑘(𝐹𝑆𝑐𝐴
∗)−1(𝐷𝑣𝐹/𝑅𝑇)−1 2⁄ , where k = 1 or 2. In the 

simulation the time increment 𝑑 = 𝜏/25 and the 

fixed value ∆𝐸 = 5 mV were used. The numerical 

solution is the system of recursive formulae for the 

dimensionless current: 

Φ2,𝑚 = 𝑢1𝑢2(1 + 𝑢4)−1 − ∑ Φ2,𝑗𝑠𝑚−𝑗+1
𝑚−1
𝑗=1   (18) 

Φ1,𝑚 = (𝑢1𝑢5 + ∑ Φ2,𝑗𝑠𝑚−𝑗+1)(1 + 𝑢5)−1 −𝑚
𝑗=1

∑ Φ1,𝑗𝑠𝑚−𝑗+1
𝑚−1
𝑗=1               (19) 

𝑢1 = 5√𝜋𝑅𝑇 𝐹∆𝐸⁄ 2⁄              (20) 

𝑢2 =
𝐾𝑐𝑋

∗ 𝑒𝑥𝑝(𝐹(𝐸 − 𝐸1
0) 𝑅𝑇⁄ )𝑒𝑥𝑝(𝐹(𝐸 − 𝐸2

0) 𝑅𝑇⁄ ) 

               (21) 

𝑢3 = 𝐾𝑐𝑋
∗ [1 + 𝑒𝑥𝑝(𝐹(𝐸 − 𝐸2

0) 𝑅𝑇⁄ )]           (22) 

𝑢4 = (1 + 𝑢3)𝑒𝑥𝑝(𝐹(𝐸 − 𝐸1
0) 𝑅𝑇⁄ )           (23) 

𝑢5 = (1 + 𝐾𝑐𝑋
∗ )𝑒𝑥𝑝(𝐹(𝐸 − 𝐸1

0) 𝑅𝑇⁄ )           (24) 

𝑠𝑝 = √𝑝 − √𝑝 − 1              (25) 

𝑚 = 1, 2, 3 ….              (26) 

The sum Φ = Φ1 + Φ2 is reported as a function of 

electrode potential. 

(2) In the second model it is assumed that the 

chemical reaction is totally irreversible and of the 

first order: 

B+ → E               (27) 

Consequently, equations (12) and (17) have to be 

replaced by the following equations: 

𝜕𝑐𝐵 𝜕𝑡⁄ = 𝐷𝜕2𝑐𝐵 𝜕𝑥2⁄ − 𝑘𝑐𝐵             (28) 

𝐷(𝜕𝑐𝐵 𝜕𝑥⁄ )𝑥=0 = −𝐼1 𝐹𝑆⁄              (29) 

The following solution is obtained: 

Φ1,𝑚 = [𝑢1𝑢6 − 𝜅−1/2 ∑ Φ1,𝑗𝑃𝑚−𝑗+1
𝑚−1
𝑗=1  −

𝑢6 ∑ Φ1,𝑗𝑠𝑚−𝑗+1
𝑚−1
𝑗=1 ](𝑃1𝜅−1/2 + 𝑢6)

−1
  

               (30) 

Φ2,𝑚 = [∑ Φ1,𝑗𝑠𝑚−𝑗+1
𝑚
𝑗=1 −

𝑢1𝜅−1/2 ∑ Φ1,𝑗𝑃𝑚−𝑗+1
𝑚
𝑗=1 ]𝑢7 − ∑ Φ2,𝑗𝑠𝑚−𝑗+1

𝑚−1
𝑗=1  

               (31) 

𝑢6 = 𝑒𝑥𝑝(𝐹(𝐸 − 𝐸1
0) 𝑅𝑇⁄ )/𝑢1               (32) 

𝑢7 = 𝑒𝑥𝑝(𝐹(𝐸 − 𝐸2
0) 𝑅𝑇⁄ )/[1 +

𝑒𝑥𝑝(𝐹(𝐸 − 𝐸2
0) 𝑅𝑇⁄ )]     

          (33) 

𝜅 = 𝑘𝑅𝑇 𝐹𝑣⁄               (34) 

𝑃𝑖 = 𝑒𝑟𝑓√𝜅𝑞𝑖 − 𝑒𝑟𝑓√𝜅𝑞(𝑖 − 1)           (35) 

𝑞 = 𝐹Δ𝐸 25𝑅𝑇⁄              (36) 

(3) The third model extends the second one by 

assuming that electrode reactions are not fast and 

reversible. Under this condition, equations (11) and 

(13) must be replaced by the following 

equations: 
349 
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𝐼1 𝐹𝑆⁄ = −𝑘𝑠1𝑒𝑥𝑝(−𝛼1𝐹(𝐸 − 𝐸1
0) 𝑅𝑇⁄ )[𝑐𝐵,𝑥=0 −

𝑐𝐴,𝑥=0𝑒𝑥𝑝(𝐹(𝐸 − 𝐸1
0) 𝑅𝑇⁄ )]                (37) 

𝐼2 𝐹𝑆⁄ = −𝑘𝑠2𝑒𝑥𝑝(−𝛼2𝐹(𝐸 − 𝐸2
0) 𝑅𝑇⁄ )[𝑐𝐹,𝑥=0 −

𝑐𝐸,𝑥=0𝑒𝑥𝑝(𝐹(𝐸 − 𝐸2
0) 𝑅𝑇⁄ )]             (38) 

The solution is as follows: 

Φ1,𝑚 = [𝑢8 − 𝑢9 ∑ Φ1,𝑗𝑃𝑚−𝑗+1
𝑚−1
𝑗=1 −

𝑢8𝑢1
−1 ∑ Φ1,𝑗𝑠𝑚−𝑗+1

𝑚−1
𝑗=1 ]/𝑢10            (39) 

Φ2,𝑚 = [𝑢11𝑢1
−1 ∑ Φ1,𝑗𝑠𝑚−𝑗+1

𝑚
𝑗=1 −

𝑢11𝜅−1/2 ∑ Φ1,𝑗𝑃𝑚−𝑗+1
𝑚
𝑗=1 −

𝑢12𝑢1
−1 ∑ Φ2,𝑗𝑠𝑚−𝑗+1

𝑚−1
𝑗=1 ]/(1 + 𝑢12𝑢1

−1)      (40) 

𝑢8 = 𝜆1𝑒𝑥𝑝((1 − 𝛼1)𝐹(𝐸 − 𝐸1
0) 𝑅𝑇⁄ )           (41) 

𝑢9 = 𝜆1𝑒𝑥𝑝(−𝛼1𝐹(𝐸 − 𝐸1
0) 𝑅𝑇⁄ )𝜅−1/2         (42) 

𝑢10 = 1 + 𝑢9𝑃1 + 𝑢8/𝑢1            (43) 

𝑢11 = 𝜆2𝑒𝑥𝑝 ((1 − 𝛼2) 𝐹(𝐸 − 𝐸2
0) 𝑅𝑇⁄ )       (44) 

𝑢12 = 𝜆2𝑒𝑥𝑝(−𝛼2𝐹(𝐸 − 𝐸2
0) 𝑅𝑇⁄ )[1 +

𝑒𝑥𝑝(𝐹(𝐸 − 𝐸2
0) 𝑅𝑇⁄ )]             (45) 

𝜆1 = 𝑘𝑠1(𝐷𝐹𝑣 𝑅𝑇⁄ )−1/2            (46) 

𝜆2 = 𝑘𝑠2(𝐷𝐹𝑣 𝑅𝑇⁄ )−1/2            (47) 

(4) The last model is a general solution for two 

reversible electrode reactions coupled by a 

kinetically controlled reversible chemical reaction. 

In this case equations (12) and (17) must be replaced 

by the following equations: 

𝑐𝐻 = 𝐾𝑐𝑋
∗ 𝑐𝐵 − 𝑐𝐸            (48) 

𝜕𝑐𝐻 𝜕𝑡⁄ = 𝐷𝜕2𝑐𝐻 𝜕𝑥2⁄ − 𝜀 𝑐𝐻    
               (49) 

𝐷(𝜕𝑐𝐻 𝜕𝑥⁄ )𝑥=0 = −𝐾𝑐𝑋
∗ 𝐼1 𝐹𝑆⁄ − 𝐼2 𝐹𝑆⁄        (50) 

  𝜀 = 𝑘𝑏(1 + 𝐾𝑐𝑋
∗ )          (51) 

  𝐾 = 𝑘𝑓 𝑘𝑏⁄           (52) 

The solution is given by the following recursive 

formulae: 

Φ2,𝑚 = −𝑧8𝑧7
−1 + 𝑧9𝑧7

−1 ∑ Φ2,𝑗𝑠𝑚−𝑗+1
𝑚−1
𝑗=1 +

𝑧10𝑧7
−1 ∑ Φ2,𝑗𝑃𝑚−𝑗+1

𝑚−1
𝑗=1 +

𝑧11𝑧7
−1 ∑ Φ1,𝑗𝑠𝑚−𝑗+1

𝑚−1
𝑗=1 +

𝑧12𝑧7
−1 ∑ Φ1,𝑗𝑃𝑚−𝑗+1

𝑚−1
𝑗=1           (53) 

Φ1,𝑚 = 𝑧8 + 𝑧1𝑧5
−1 ∑ Φ2,𝑗𝑠𝑚−𝑗+1

𝑚
𝑗=1 −

𝑧2𝑧5
−1 ∑ Φ2,𝑗𝑃𝑚−𝑗+1

𝑚
𝑗=1 − 𝑧13 ∑ Φ1,𝑗𝑠𝑚−𝑗+1

𝑚−1
𝑗=1 −

𝑧3𝑧5
−1 ∑ Φ1,𝑗𝑃𝑚−𝑗+1

𝑚−1
𝑗=1     

                (54) 

𝑧1 = 𝑢1
−1(1 + 𝐾𝑐𝑋

∗ )−1              (55) 

𝑧2 = (1 + 𝐾𝑐𝑋
∗ )−3/2𝜅𝑏

−1/2
             (56) 

𝑧3 = 𝐾𝑐𝑋
∗ 𝑧2                 (57) 

𝑧4 = 𝐾𝑐𝑋
∗ 𝑧1              (58) 

𝑧5 = 𝑧1 + 𝑢1
−1𝑒𝑥𝑝(𝐹(𝐸 − 𝐸1

0) 𝑅𝑇⁄ ) + 𝑧3𝑃1  
               (59) 

𝑧6 = [𝑧4 + 𝑧3𝑃1]𝑒𝑥𝑝(𝐹(𝐸 − 𝐸2
0) 𝑅𝑇⁄ )            (60) 

𝑧7 = 𝑧5
−1(𝑧1 − 𝑧2) − 𝑧6

−1[𝑢1
−1 + (𝑧4 +

𝑧2𝑃1)𝑒𝑥𝑝(𝐹(𝐸 − 𝐸2
0) 𝑅𝑇⁄ )]             (61) 

𝑧8 = 𝑧5
−1𝑒𝑥𝑝(𝐹(𝐸 − 𝐸1

0) 𝑅𝑇⁄ )             (62) 

𝑧9 = 𝑢1
−1𝑧6

−1 + 𝑧4𝑧6
−1𝑒𝑥𝑝(𝐹(𝐸 − 𝐸2

0) 𝑅𝑇⁄ ) −
𝑧1𝑧5

−1                (63) 

𝑧10 = 𝑧2𝑧6
−1𝑒𝑥𝑝(𝐹(𝐸 − 𝐸2

0) 𝑅𝑇⁄ ) + 𝑧2𝑧5
−1  

               (64) 

𝑧11 = 𝑧13 − 𝑧4𝑧6
−1𝑒𝑥𝑝(𝐹(𝐸 − 𝐸2

0) 𝑅𝑇⁄ )         (65) 

𝑧12 = 𝑧3𝑧6
−1𝑒𝑥𝑝(𝐹(𝐸 − 𝐸2

0) 𝑅𝑇⁄ ) + 𝑧3𝑧5
−1  

               (66) 

𝑧13 = [𝑧1 + 𝑢1
−1𝑒𝑥𝑝(𝐹(𝐸 − 𝐸1

0) 𝑅𝑇⁄ )] 𝑧5⁄   

               (67) 

𝜅𝑏 = 𝑘𝑏 𝑅𝑇 𝐹𝑣⁄               (68) 

𝑃𝑖 = 𝑒𝑟𝑓√𝜅𝑏(1 + 𝐾𝑐𝑋
∗ )𝑞𝑖 −

𝑒𝑟𝑓√𝜅𝑏(1 + 𝐾𝑐𝑋
∗ )𝑞(𝑖 − 1)           (69) 

RESULTS AND DISCUSSION 

Staircase cyclic voltammograms of the 

mechanisms (1) – (3) under equilibrium conditions 

depend on the standard potentials of electron 

transfers and the dimensionless constant 𝐾𝑐𝑋
∗  of the 

chemical reaction. We shall investigate an ideal case 

in which the concentration of reagent X- can be 

changed experimentally from zero to the limit of 

solubility. If 𝐸1
0 = 𝐸2

0 and 𝐾𝑐𝑋
∗  = 1, the response 

exhibits a single pair of peaks with the 

dimensionless peak currents Φ𝑝,𝑎 = 0.773 and Φ𝑝,𝑐 

= -0.574 that appear at 𝐸𝑝,𝑎 = 0.035 V vs. 𝐸1
0 and 

𝐸𝑝,𝑐 − 𝐸1
0 = -0.040 V. This is shown in Fig. 1. The 

real peak currents depend linearly on the square root 

of scan rate, but the peak potentials are independent 

of the scan rate. If the concentration of X- is reduced 

to zero, only the first electrode reaction occurs and 

the peak currents are diminished to 0.3865 and -

0.287, but the peak potentials do not change. The 

peak separation is 75 mV and the mid-potential is 

350 
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close to the first standard potential. The difference 

of -2.5 mV is the consequence of changing the 

potential in discrete quantity ∆𝐸.  

 

Fig. 1. Dimensionless staircase cyclic voltammograms 

of ECE mechanism under equilibrium conditions (eqs. 18 

and 19). ∆𝐸 = 5 mV, 𝐸2
0 = 𝐸1

0 and 𝐾𝑐𝑋
∗  = 1 (1) and 0 (2). 

 

Fig. 2. Dimensionless staircase cyclic voltammograms 

of ECE mechanism under equilibrium conditions. 𝐾𝑐𝑋
∗  = 

1 and (𝐸2
0 − 𝐸1

0) / V = -0.2 (1) and 0.2 (2). 

Fig. 2 shows the influence of the difference in 

standard potentials on cyclic voltammograms. If 

𝐸2
0 − 𝐸1

0 = -0.2 V, the intermediate is unstable and 

only two peaks appear: Φ𝑝,𝑎 = 1.023 and Φ𝑝,𝑐 = -

0.844. The peak potentials are 𝐸𝑝,𝑎 − 𝐸1
0 = -0.080 V 

and 𝐸𝑝,𝑐 − 𝐸1
0 = -0.120 V. In the case of stable 

intermediate, the voltammogram consists of two 

pairs of peaks: Φ𝑝,1,𝑎 = 0.387 and Φ𝑝,1,𝑐 = -0.350, 

appearing at 𝐸𝑝,1,𝑎 − 𝐸1
0 = 0.020 V and 𝐸𝑝,1,𝑐 − 𝐸1

0 

= -0.055 V, and Φ𝑝,2,𝑎 = 0.562 and Φ𝑝,2,𝑐 = -0.128 

that appear at 𝐸𝑝,2,𝑎 − 𝐸1
0 = 0.250 V and 𝐸𝑝,2,𝑐 − 𝐸1

0 

= 0.180 V. Table 2 reports the peak potentials as a 

function of the difference between standard 

potentials. 

Table 2. Dependence of anodic and cathodic peak 

potentials on the difference between standard potentials 

for 𝐾𝑐𝑋
∗  = 1. 

(𝐸2
0 −

𝐸1
0) / V 

𝐸𝑝,1,𝑎 / 

V 

𝐸𝑝,1,𝑐 / 

V 

𝐸𝑝,2,𝑎 / 

V 

𝐸𝑝,2,𝑐 / 

V 

-0.300 -0.130 -0.170   

-0.250 -0.105 -0.145   

-0.200 -0.080 -0.120   

-0.150 -0.055 -0.095   

-0.100 -0.030 -0.075   

-0.050 0.000 -0.050   

0.000 0.035 -0.040   

0.050 0.090 -0.045   

0.060 0.105 -0.045   

0.070 0.115 -0.045   

0.080 0.125 -0.045   

0.090 0.135 -0.050   

0.100 0.030 -0.050 0.150 - 

0.150 0.020 -0.050 0.200 0.125 

0.200 0.020 -0.055 0.250 0.180 

0.250 0.020 -0.055 0.305 0.230 

0.300 0.020 -0.055 0.355 0.280 

If 𝐸2
0 − 𝐸1

0 < -0.1 V, the peak separation is 40 

mV and the mid-potential is equal to the average of 

standard potentials. The latter is in agreement with 

the properties of the simple EE mechanism [52 - 

54]. The peak separation increases to 75 mV for 

𝐸2
0 = 𝐸1

0 and to 185 mV for 𝐸2
0 − 𝐸1

0 = 0.090 V. 

This is the consequence of the development of the 

second pair of peaks, as can be seen in Fig. 3. The 

response is split it two pairs of peaks if 𝐸2
0 − 𝐸1

0 > 

0.1 V. The peak separations are 75 mV and the mid- 

potentials are equal to 𝐸1
0 – 17.5 mV and 𝐸2

0 + 17.5 

mV. In the further analysis the mid-potential will be 

neglected.  

 

Fig. 3. CV of ECE in the equilibrium. 𝐾𝑐𝑋
∗  = 1 and 

𝐸2
0 − 𝐸1

0 = 0.080 V. 

The second variable that governs the response is 

the dimensionless constant 𝐾𝑐𝑋
∗ . An example is 

shown in Fig. 4. 
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A 

 
B 

Fig. 4. CV of ECE in the equilibrium. 𝐸2
0 = 𝐸1

0 and 

𝐾𝑐𝑋
∗  = 300 (A) and 0.003 (B). Two pairs of peaks are 

marked. 

 

Fig. 5. Relationship between peak potentials in CV 

and the logarithm of dimensionless equilibrium constant 

of chemical reaction. ECE in the permanent equilibrium. 

𝐸2
0 = 𝐸1

0. The straight lines are linear approximations. 

If 𝐸2
0 = 𝐸1

0 and 𝐾𝑐𝑋
0 = 300, the first electron 

transfer occurs at the potential that is lower than the 

standard potential (𝐸𝑝,1,𝑎 − 𝐸1
0 = -0.105 V and 

𝐸𝑝,1,𝑐 − 𝐸1
0 = -0.180 V) while the second charge 

transfer remains unchanged (𝐸𝑝,2,𝑎 − 𝐸1
0 = 0.030 V 

and 𝐸𝑝,2,𝑐 − 𝐸1
0 = -0.045 V). This is because the 

chemical reaction consumes the product of the first 

electrode reaction and decreases the formal potential 

of this reaction. 

The situation is opposite if 𝐾𝑐𝑋
∗  = 0.003 and the 

chemical equilibrium is shifted towards B+ species. 

In this case additional energy is required to 

surmount the chemical reaction preceding the 

second charge transfer [55]. For this reason the peak 

potentials corresponding to the second electrode 

reaction are higher than the second standard 

potential: 𝐸𝑝,2,𝑎 − 𝐸1
0 = 0.180 V and 𝐸𝑝,2,𝑐 − 𝐸1

0 = 

0.105 V. These explanations are confirmed by the 

dependence of anodic and cathodic peak potentials 

on the logarithm of the product 𝐾𝑐𝑋
∗  that is shown in 

Fig. 5 for 𝐸2
0 = 𝐸1

0. Under this condition the cyclic 

voltammogram splits in two pairs of peaks if either 

𝐾𝑐𝑋
∗  > 100 or 𝐾𝑐𝑋

∗  < 0.01. Within these boundaries 

only two peaks appear, but their separation increases 

from 75 mV for 𝐾𝑐𝑋
∗  = 1 to 110 mV for 𝐾𝑐𝑋

∗  = 10, or 

𝐾𝑐𝑋
∗  = 0.1, and to 180 mV for 𝐾𝑐𝑋

∗  = 100 or 𝐾𝑐𝑋
∗  = 

0.01. In the split responses one pair of peak 

potentials depends linearly on the logarithm of 𝐾𝑐𝑋
∗  

while the other pair is independent of this variable. 

The straight lines in Fig. 5 are defined by the 

following equations: 𝐸𝑝,2,𝑎 − 𝐸1
0 = -2.3 (𝑅𝑇 𝐹⁄ ) 

log(𝐾𝑐𝑋
∗ ) + 0.030 V (1), 𝐸𝑝,2,𝑐 − 𝐸1

0 = -2.3 (𝑅𝑇 𝐹⁄ ) 

log(𝐾𝑐𝑋
∗ ) – 0.045 V (2), 𝐸𝑝,1,𝑎 − 𝐸1

0 =  -2.3 (𝑅𝑇 𝐹⁄ ) 

log(𝐾𝑐𝑋
∗ ) + 0.040 V (3) and 𝐸𝑝,1,𝑐 − 𝐸1

0 = -2.3 

(𝑅𝑇 𝐹⁄ ) log(𝐾𝑐𝑋
∗ ) – 0.030 V (4). One can see that the 

equilibrium constant 𝐾 can be estimated if the 

product 𝐾𝑐𝑋
∗  can be changed either from 0.1 to 100, 

or from 0.01 to 10. In the first case the cathodic peak 

potential changes from 𝐸𝑝,1,𝑐 − 𝐸1
0 = -0.030 V to the 

straight line 4. The intersection of these two lines 

reveals the equilibrium constant: log(𝐾𝑐𝑋
∗ )cross = 0 

and 𝐾 = (𝑐𝑋
∗ )𝑐𝑟𝑜𝑠𝑠

−1 . The same applies to the 

intersection of the straight line 𝐸𝑝,2,𝑎 − 𝐸1
0 = 0.030 

V and the straight line 1. In experiments the 

condition 𝑐𝑋
∗ ≫ 𝑐𝐴

∗ must be satisfied. 

The relationship between peak potentials and the 

equilibrium constant depends on the difference in 

standard potentials. This is shown in Figs. 6 and 7. 

If two pairs of peaks appear at all values of 

log(𝐾𝑐𝑋
∗ ), the first electrode reaction is influenced 

by the chemical reaction if 𝐾𝑐𝑋
∗  > 0.1, while the 

peak potentials of the second electrode reaction 

depend on log(𝐾𝑐𝑋
∗ ) if it is smaller than 1. The 

straight lines 1 and 2 in Fig. 6 satisfy the equations: 

𝐸𝑝,2,𝑎 − 𝐸1
0 = -2.3 (𝑅𝑇 𝐹⁄ ) log(𝐾𝑐𝑋

∗ ) + 𝐸2
0 − 𝐸1

0 + 

0.035 V and 𝐸𝑝,2,𝑐 − 𝐸1
0 = -2.3 (𝑅𝑇 𝐹⁄ ) log(𝐾𝑐𝑋

∗ ) + 

𝐸2
0 − 𝐸1

0 – 0.040 V. If 𝐾𝑐𝑋
∗  > 10 the peak potentials 

acquire constant values 𝐸𝑝,2,𝑎 − 𝐸1
0 = 𝐸2

0 − 𝐸1
0 + 

0.035 V and 𝐸𝑝,2,𝑐 − 𝐸1
0 = 𝐸2

0 − 𝐸1
0 - 0.040 V. These 

relationships can be used for the calculation of 

equilibrium constant. The lines 3 and 4 in Figs. 5 

and 6 are identical.  
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Fig. 6. Dependence of peak potentials on the 

logarithm of the product 𝐾𝑐𝑋
∗ . 𝐸2

0 − 𝐸1
0 = 0.150 V. 

 

Fig. 7. Dependence of peak potentials on the 

logarithm of the product 𝐾𝑐𝑋
∗ . 𝐸2

0 − 𝐸1
0 = -0.150 V. 

Fig. 7 shows that for 𝐸2
0 − 𝐸1

0 = -0.150 V a single 

pair of peaks appears within a wide range -4 < 

log(𝐾𝑐𝑋
∗ ) < 5. The peak separation is constant if -1 < 

log(𝐾𝑐𝑋
∗ ) < 1 and within these boundaries the slopes 

of linear dependence of peak potentials on the 

logarithm of 𝐾𝑐𝑋
∗  are equal to -0.030 V. This slope 

corresponds to the average of the formal potentials 

of the first and the second electrode reaction: 

�̅� = [𝐸1
0 − (𝑅𝑇 𝐹⁄ ) ln(𝐾𝑐𝑋

∗ ) + 𝐸2
0] 2⁄               (70) 

So, the straight lines 2 and 3 are defined by the 

equations: 

𝐸𝑝,𝑎 − 𝐸1
0 = -2.3 (𝑅𝑇 2𝐹⁄ ) log(𝐾𝑐𝑋

∗ ) + (𝐸2
0 − 𝐸1

0)/2 

+ 0.020 V                (71) 

𝐸𝑝,𝑐 − 𝐸1
0 = -2.3 (𝑅𝑇 2𝐹⁄ ) log(𝐾𝑐𝑋

∗ ) + (𝐸2
0 − 𝐸1

0)/2 – 

0.020 V                (72) 

For the biggest and the smallest values of 𝐾𝑐𝑋
∗  

the shoulders develop, as in Fig. 3, and the 

responses start to split. The slopes of straight lines 1 

and 4 are -2.3 (𝑅𝑇 𝐹⁄ ), as in CE and EC 

mechanisms. 

The figures 5, 6 and 7 show that the form of 

response depends on the product 𝐾𝑐𝑋
∗  and the 

difference in standard potentials. One may define a 

critical value of 𝐾𝑐𝑋
∗  above which the 

voltammogram consists of two pairs of peaks. Our 

calculation shows that the logarithm of this critical 

value is a linear function of the difference between 

standard potentials expressed in volts: log(𝐾𝑐𝑋
∗ )crit. = 

-17.16 (𝐸2
0 − 𝐸1

0) + 2.255.  

Fig. 8 shows the influence of the kinetics of 

irreversible chemical reaction on the response of 

ECE mechanism. Dimensionless voltammograms 

depend on the dimensionless rate constant 𝜅 = 

𝑘𝑅𝑇 𝐹𝑣⁄ . If the intermediate is stable, the second 

pair of peaks develops with the increasing rate 

constant, but the first cathodic peak is diminished. If 

𝜅 = 0.01 there is no second pair of peaks and the 

response is characterised by Φ𝑝,𝑎 = 0.387, 𝐸𝑝,𝑎 − 𝐸1
0 

= 0.035 V, Φ𝑝,𝑐 = -0.242 and 𝐸𝑝,𝑐 − 𝐸1
0 = -0.035 V. 

For 𝜅 = 0.001 the anodic branch does not change, 

but the cathodic peak current decreases to -0.287 

and appears at -0.040 V vs. 𝐸1
0. This is identical to 

the curve 2 in Fig. 1. If the rate constant is increased 

to 1, the following characteristic currents and 

potentials are obtained: Φ𝑝,1,𝑎 = 0.421, 𝐸𝑝,1,𝑎 − 𝐸1
0 

= 0.020 V, Φ𝑝,1,𝑐 = -0.060, 𝐸𝑝,1,𝑐 − 𝐸1
0 = -0.075 V, 

Φ𝑝,2,𝑎 = 0.504, 𝐸𝑝,2,𝑎 − 𝐸1
0 = 0.235 V, Φ𝑝,2,𝑐 = -

0.142 and 𝐸𝑝,2,𝑐 − 𝐸1
0 = 0.160 V. The response of 

the second electrode reaction is similar to the curve 

2 in Fig. 2, but the first electrode reaction appears 

totally irreversible. This is because the product B+ is 

irreversibly transformed into the species E and 

cannot be reduced back to the reactant A. 

 

Fig. 8. Dimensionless staircase cyclic voltammograms 

of ECE mechanism influenced by the kinetics of totally 

irreversible chemical reaction (eqs. 30 and 31). Δ𝐸 = 5 

mV, 𝐸2
0 − 𝐸1

0 = 0.2 V and 𝜅 = 0.01 (1), 0.1 (2) and 1 (3). 

Fig. 9 shows the relationship between 

dimensionless peak currents and peak potentials and 

the logarithm of dimensionless rate constant. One 

can notice that the second anodic peak appears for 

𝜅𝑐𝑟𝑖𝑡 = 0.03. If the parameter 𝜅 is changed by the 

variation of scan rate, the real rate constant is related 

to the critical scan rate, at which the second peak 
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appears, by the following equations: 𝑘 =
𝜅𝑐𝑟𝑖𝑡𝑣𝑐𝑟𝑖𝑡 (𝑅𝑇 𝐹⁄ )⁄  and 𝑘 = 1.17 𝑣𝑐𝑟𝑖𝑡.  

Fig. 10 shows a simulation of a real experiment 

in which the critical scan rate is determined. The 

second anodic peak can be observed below 𝑣 = 0.1 

V/s and disappears for higher scan rates. This 

suggests that 𝑘 = 0.117 s-1. The rate constant 

influences mainly the peak potentials of the first 

electrode reaction, as can be seen in Fig. 9B.   

A 

 

B 

Fig. 9. Dependence of dimensionless peak currents 

(A) and peak potentials (B) on the logarithm of 

dimensionless rate constant of irreversible chemical 

reaction. 𝐸2
0 − 𝐸1

0 = 0.2 V. 

 

Fig. 10. Normalized cyclic voltammograms of ECE 

mechanism controlled by the chemical kinetics. 𝐸2
0 − 𝐸1

0 

= 0.2 V, 𝑘 = 0.117 s-1 and 𝑣/(V/s) = 0.3 (1), 0.1 (2) and 

0.03 (3). 

The straight lines 1 and 2 satisfy the following 

equations: 𝐸𝑝,1,𝑎 − 𝐸1
0 = -0.030 log(𝜅) + 0.020 V 

and 𝐸𝑝,1,𝑐 − 𝐸1
0 = -0.035 log(𝜅) – 0.075 V. The 

effect of chemical kinetics may be hidden if the 

intermediate is not stable. Fig. 11 shows the change 

of a single pair of peaks under the influence of 

diminishing dimensionless rate constant. 

Dimensionless anodic peak current decreases from 

0.675 to 0.393, but the cathodic peak current 

changes from -0.230 to -0.265. 

 

Fig. 11. Cyclic voltammograms of kinetically 

controlled ECE mechanism. 𝐸2
𝑜 = 𝐸1

0 and 𝜅 = 1 (1) and 

0.01 (2). 

Comparing to Fig. 1, a reversible transfer of 

single electron that appears for 𝜅 = 0.01 turns into 

irreversible two-electrons electrode reaction for 𝜅 = 

1. In the experiments one can observe that the 

relationship between peak current and the square 

root of scan rate is not linear. This is shown in Fig. 

12.  

 

Fig. 12. Dependence of normalized peak currents on 

the square root of scan rate. ECE mechanism controlled 

by the kinetics of totally irreversible chemical reaction. 

𝐸2
0 = 𝐸1

0 and 𝑘 = 3 s-1. 

The slopes of straight lines 1 and 2 are 0.77 and 

0.38, respectively. The first slope corresponds to 

two electrons oxidation appearing for higher values 

of the dimensionless kinetic parameter, while the 

second one belongs to the single electron oxidation. 
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However, the slopes of straight lines 3 and 4 are -

0.24 and -0.30 because the cathodic current 

originates from the reduction of either the species 

F+, at higher 𝜅 values, or B+ at lower 𝜅 values.  

The variation of scan rate may influence the 

kinetics of both chemical and electrode reactions 

[5]. An example is shown in Fig. 13. The kinetics of 

electrode reactions depends on the dimensionless 

parameters 𝜆1 and 𝜆2 (see eqs. 46 and 47), but the 

ratio of electrochemical and chemical kinetic 

parameters depends on the scan rate: 𝜆1 𝜅⁄ =

𝑘𝑠1√𝐹𝑣 𝐷𝑅𝑇⁄ 𝑘⁄ . 

 
A 

 

B 

Fig. 13. Normalized cyclic voltammograms of ECE 

mechanism influenced by the kinetics of both chemical 

and electrode reactions (eqs. 39 and 40). 𝐸2
0 − 𝐸1

0 = 0.2 

V, Δ𝐸 = 5 mV, 𝐷 = 9×10-6 cm2/s, 𝑘 = 3 s-1, 𝛼1 = 0.5, 𝛼2 = 

0.5, 𝑘𝑠1 = 0.01 cm/s, 𝑘𝑠2 / (cm/s) = 0.01 (A) and 1 (B) and 

𝑣 / (V/s) = 1 (1), 2 (2), 3 (3) and 4 (4). 

For this reason Fig. 13 shows the influence of 

scan rate on the normalized voltammograms. The 

chemical kinetic parameter decreases with the scan 

rate as follows: 𝜅 = 0.0771 (1), 0.0386 (2), 0.0257 

(3) and 0.0193 (4). One can notice that the second 

anodic peak disappears if the scan rate is higher than 

2 V/s regardless of the ratio between rate constants 

of the first and the second electrode reaction. This is 

in agreement with the critical chemical kinetic 

parameter 𝜅𝑐𝑟𝑖𝑡 = 0.03 that is predicted for 

reversible electrode reactions. Comparing with Fig. 

10, it can be noticed that the anodic peak potentials 

increase with the scan rate, but two peaks do not 

overlap if the difference between standard potentials 

is high enough. However, if these conditions are not 

satisfied, the critical scan rate cannot be determined. 

This is shown in Fig. 14. The second anodic peak is 

diminished with the scan rate because the parameter 

𝜅 decreases from 1.54, for 𝑣 = 0.050 V/s, to 0.0386 

for 𝑣 = 2 V/s. As the first anodic peak potential 

increases with the scan rate and the second one does 

not, two anodic peaks overlap and the second peak 

disappears at the scan rate that is lower than the 

theoretical one.  

 

Fig. 14. CV of ECE mechanism (eqs. 39 and 40); 𝑘𝑠1 

= 0.002 cm/s, 𝑘𝑠2 = 0.1 cm/s and 𝑣 / (V/s) = 0.05 (1), 0.1 

(2), 0.5 (3), 1 (4), 2 (5) and 3 (6). All other data are as in 

Fig. 13. 

 

A 

 
B 

Fig. 15. Dimensionless voltammograms of ECE 

mechanism controlled by the kinetics of reversible 

chemical reaction (eqs. 53 and 54). 𝐸2
0 − 𝐸1

0 = 0.2 V, 𝐾𝑐𝑋
∗  

= 1 (A) and 100 (B) and 𝜅𝑏 = 0.001 (1), 0.01 (2), 0.1 (3), 

1 (4), 10 (5) and →∞ (6). 

The equilibrium constant and the kinetics of the 

reversible chemical reaction are considered in the 

last theoretical model. The reaction (2) depends on 
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dimensionless rate constants 𝜅𝑏 = 𝑘𝑏 𝑅𝑇 𝐹𝑣⁄  and 

𝜅𝑓 = 𝜅𝑏𝐾𝑐𝑋
∗ . The latter corresponds to the 

dimensionless rate constant 𝜅 of totally irreversible 

chemical reaction. The responses depend on 𝜅𝑏 and 

𝐾𝑐𝑋
∗ , as can be seen in Fig. 15. These parameters can 

be changed by the variation of scan rate and the 

concentration of the reactant X-. If 𝐾𝑐𝑋
∗  = 1 the 

forward and backward kinetic parameters are equal 

(𝜅𝑓 = 𝜅𝑏) and the response tends to the equilibrium 

conditions with increasing 𝜅𝑏. The curve 6 is 

calculated by the first model. The second anodic 

peak appears if 𝜅𝑓,𝑐𝑟𝑖𝑡 = 0.03, which means that 

𝑘𝑓𝑐𝑋
∗  = 1.17 𝑣𝑐𝑟𝑖𝑡. The same was predicted by the 

second model. Fig. 15B shows that for 𝐾𝑐𝑋
∗  = 100 

and 𝜅𝑏 = 10 the first electrode reaction appears 

irreversible and out of equilibrium. Under these 

conditions the second electrode reaction is in the 

equilibrium, but the backward chemical reaction 

limits the first cathodic peak current. This is because 

the equilibrium is shifted towards the species E and 

the value of 𝜅𝑏 that is required for the approaching 

to the equilibrium is higher than in Fig. 15A. 

The influence of the reagent X- is shown in Fig. 

16 for various scan rates. The relationships between 

the first anodic peak potential and the logarithm of 

the product 𝐾𝑐𝑋
∗  are curves that tend to the 

asymptotes with the slope -0.030 V (see curves 1 – 

4). The straight line 5 is calculated by the first model 

and its slope is -2.3𝑅𝑇 𝐹⁄ . The difference in slopes 

is caused by the fact that the first electrode reaction 

appears irreversible for the chosen kinetic 

parameters. This is confirmed by Fig. 17 in which 

the voltammograms influenced by the variation of 

the concentration of the reagent X- at the constant 

scan rate are shown. It can be seen that the first 

cathodic peak current vanishes with the increasing 

product 𝐾𝑐𝑋
∗ . Fig. 18 shows that for the given value 

of the product 𝐾𝑐𝑋
∗  the scan rate has to be decreased 

as to increase the parameter 𝜅𝑏 in order to approach 

the equilibrium conditions. The curve 5 is calculated 

by the first model. 

Generally, the equilibrium constant cannot be 

measured by the variation of the reactant X- 

concentration, but it can be estimated by the 

simulation using the value of the forward rate 

constant of chemical reaction that is determined 

from the critical scan rate at which the second 

anodic peak appears.  

CONCLUSIONS 

Four mathematical models of ECE mechanism 

are described. The first two models are simplified in 

order to determine the parameters that can be 

measured by the cyclic voltammetry. 

 

 

Fig. 16. Dependence of the first anodic peak potential 

on the logarithm of the dimensionless equilibrium 

constant of the kinetically controlled reversible chemical 

reaction. 𝐸2
0 − 𝐸1

0 = 0.2 V and 𝜅𝑏= 0.001 (1), 0.1 (2) 1 

(3), 10 (4) and →∞ (5). 

 

Fig. 17. CV of ECE mechanism. 𝐸2
0 − 𝐸1

0 = 0.2 V, 𝜅𝑏 

= 1 and 𝐾𝑐𝑋
∗  = 1 (1), 10 (2), 100 (3) and 1000 (4). 

 

Fig. 18. CV of ECE mechanism. 𝐸2
0 − 𝐸1

0 = 0.2 V, 𝐾𝑐𝑋
∗  = 

1000 and 𝜅𝑏 = 10 (1), 100 (2), 1000 (3), 10000 (4) and 

→∞ (5). 

The other two models are general and they define 

the conditions under which the first two models are 

realistic. The simulation demonstrates that the 

equilibrium constant of chemical reaction can be 

measured by the variation of the concentration of the 

reagent X- if the chemical reaction is permanently in 

equilibrium. Furthermore, the critical kinetic 

parameter is calculated that enables the 

measurement of the rate constant of totally 

irreversible chemical reaction. However, it is shown 

that the kinetics of electrode reactions may hinder 

the proper estimation of the chemical rate constant. 
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Finally, the last model shows that the chemical 

reaction appears irreversible if the concentration of 

the reagent X- is increased and that the critical 

kinetic parameter applies under this condition. Also, 

the determination n of the equilibrium constant by 

the fitting procedure is discussed. 
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