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The thermodynamic behavior of mixtures is fundamental for the process systems engineering. Phase stability analysis 
is a key step for process design and it implies the global minimization of Tangent Plane Distance Function (TPDF). This 
thermodynamic calculation is challenging and effective global optimization methods are required. In this paper, two novel 
stochastic global optimization techniques, namely Gray Wolf Optimization (GWO) and Water Cycle Algorithm (WCA), 
were tested and compared for solving phase stability problems of non-reactive mixtures. A set of benchmark problems 
with different thermodynamic models was considered and the numerical performance of tested optimization methods 
have been discussed. Hybridization of the GWO stochastic methods have been analyzed to improve its ability to find the 
global minimum of TPDF. Results showed that that WCA has a better performance compared to the GWO method even 
using the hybridized algorithm. 
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INTRODUCTION 

Phase equilibrium behavior of pure compounds 
and mixtures plays an important role in process 
systems engineering [1]. The knowledge and 
analysis of the phase equilibrium is important for the 
design, simulation and optimization of process units 
such as distillation and extraction columns, reactors 
and absorbers. The characterization of the phase 
equilibrium behavior can be performed 
experimentally with its subsequent modeling and 
prediction using appropriate thermodynamic tools. 

The modeling and prediction of the phase 
equilibrium for a mixture imply solving a 
fundamental problem: the phase stability analysis 
[2]. The problem of phase stability is solved to 
establish whether a multicomponent system, with a 
given composition at given temperature and 
pressure, will show phase-split [3]. The phase 
stability can be determined by analyzing the Gibbs 
free energy surface [4]. Michelsen [5] developed the 
Tangent Plane Distance Function (TPDF) to 
evaluate numerically the phase stability of mixtures. 
The global minimization of TPDF is used to identify 
the thermodynamic stability of a system. This 
thermodynamic calculation can be handled via the 
application of different mathematical tools like 
global optimization methods including stochastic 
optimizers [3,6].  

Numerous global stochastic optimization 
methods have been reported in the literature, which 

can be useful for the resolution of the phase stability 
problem [3,7]. These methods require a very limited 
information about the nature of the optimization 
problem and can handle the discontinuity of 
objective functions and the presence of several local 
optima. The computational time of these methods is 
reasonable and their convergence to the global 
optimum is highly probable. Genetic Algorithm and 
Simulated Annealing, Tabu Search, Differential 
Evolution, Adaptive Random Search, Particle 
Swarm Optimization, Harmony Search and Cuckoo 
Search are examples of stochastic optimization 
methods used for this thermodynamic calculation. 
However, it is important to remark that stochastic 
optimizers still have limitations to resolve the phase 
equilibrium stability problem of highly non-ideal 
systems [3,7]. It is desirable to decrease the 
computational effort and to increase the 
effectiveness of available stochastic optimization 
methods that are applied in phase stability analysis 
[7].    

The aim of this work was to test new optimization 
methods for resolving phase stability problems. Two 
new stochastic methods, Gray Wolf Optimization 
(GWO) [8] and Water Cycle Algorithm (WCA) [9], 
have been used in this study. GWO and WCA have 
been recently introduced to solve global a wide 
range of optimization problems optimization 
problems in engineering with promising results [8-
11]. To best of the author’s knowledge, these 
methods have not been applied in thermodynamic 
calculations including the modeling of phase 
behavior of mixtures. Therefore, these optimization * To whom all correspondence should be sent: 
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strategies have been studied and evaluated to 
perform the phase stability analysis of non-reactive 
mixtures. Some alternatives to hybridize and 
improve the numerical performance of these 
metaheuristics are analyzed and discussed in this 
manuscript. 

DESCRIPTION OF OPTIMIZATION METHODS 
GWO AND WCA 

GWO is inspired from the hierarchy leadership 
and hunting behavior of the grey wolves. This 
algorithm imitates the form of the wolves hunting 
that is based on the persecution, surrounding and 
attacking of the preys, which has been adapted to 
resolve global optimization problems [8]. GWO is 
classified as an alternative swarm intelligence 
optimization algorithm and, according to literature 
[10], it may offer several advantages such as 
simplicity, flexibility and derivation-free 
mechanism. It has also fewer control parameters to 
be adjusted and has a fast convergence. Some 
authors have concluded that GWO has better 
numerical properties to avoid local optima in 
comparison to other conventional optimization 
techniques and has been suggested as a suitable 

stochastic method for solving highly non-linear, 
multivariable and multimodal optimization 
problems [10]. On the other hand, WCA was derived 
by observing and emulating the water cycle process. 
This metaheuristic algorithm emulates the behavior 
of the raindrops, river and sea during the water cycle. 
WCA also requires few tuning parameters and it is 
capable of handling nonconvex objective functions 
with several decision variables. The advantages of 
WCA include its simplicity in terms of coding and 
implementation. Therefore, it has been applied to 
solve a wide range of optimization problems [11]. 
Results reported in different studies have shown that 
this novel metaheuristic is a reliable optimizer and 
may outperform other classical stochastic 
optimization methods [11]. For illustration, the 
flowcharts of both algorithms are reported in Figures 
1 and 2.  

The numerical performance of GWO and WCA 
was tested for the resolution of phase stability 
analysis using mixtures with different 
thermodynamic properties. Several binary and 
multicomponent systems were used where these 
problems are characterized by their non-convex and 
non-linear objective functions [4,7].  

 
Fig. 1. Flowchart of Grey Wolf Optimization (GWO) method. 
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Fig. 2. Flowchart of Water Cycle Algorithm (WCA) method. 

They include mixtures with vapor-liquid (VLE) 
and liquid-liquid (LLE) equilibria where the NRTL 
and UNIQUAC models was used for LLE and the 
SRK equation of state for VLE. The performance of 
each method in the unconstrained global 
minimization of TPDF has been analyzed using the 
success rate (SR, %), which was calculated for 100 
independent trials performed for each phase stability 
problem with random initial values for the decision 
variables. Global success rate (GSR, %) was also 
calculated and the number of function evaluations 
(NFE) was employed as measure of the 
computational efficiency. Both stochastic methods 
were studied using the same stopping criterion, i.e., 
the maximum number of iterations Itermax = 100. 
Results of this numerical analysis were useful to 
identify the strengths and weaknesses of tested 

stochastics optimization methods in phase stability 
calculations. 

RESULTS  

Global success rate (GSR) of GWO and WCA in 
tested phase stability problems is given in Figure 3. 
GSR ranged from 18 to 78 % for WCA and from 12 
to 76 % for GWO. Results show that WCA has the 
best numerical behavior for solving phase stability 
problems independently of the thermodynamic 
model used in the calculation of TPDF. This method 
showed highest GSR than that obtained for GWO. 
Note that the performance of both GWO and WCA 
was improved after increasing NFE. It was noted that 
both algorithms often improved the objective 
function values at early NFE. In some phase stability 
problems, GWO and WCA provided similar results 
for the mean and standard deviation of the 
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corresponding objective function. The standard 
deviation of both methods was relatively large in the 
early values of NFE. Results also showed that these 
stochastic methods could be trapped in local optimal 
values (e.g., trivial solution). For these challenging 
problems, WCA could improve the values of TPDF 
after significantly increasing NFE. It was observed 
that the diversification stage should be enhanced in 
these methods, especially, in GWO. 
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Fig. 3. Global success rate (GSR) of GWO and WCA 

for solving phase stability problems. 

The performance of the GWO and WCA 
algorithms for locating the global minimum in phase 
stability problems was compared to the results 
reported for other metaheuristics used in the 
literature, see Table 1. This comparison included the 
next methods: Unified Bare-Bones Particle Swarm 
Optimization (UBBPSO), Firefly Algorithm (FA), 
Cuckoo Search (CS), Modified Cuckoo Search 
(MCS), Krill Herd algorithm (KH) and the modified 
Lévy-Flight Krill Herd algorithm (LKH). Results 
showed that the algorithm WCA was better than CS, 
MCS and UBBPSO and it showed a reliable 
performance with low NFE.  
Table 1. Performances of WCA, GWO and other 
stochastic optimization methods used for phase stability 
analysis in nonreactive mixtures. 

Method GSR, % Average NFE 
WCA 88 25463 
GWO 73 20512 

UBBPSO 88 439100 
FA 68 8461 
CS 81 27166 

MCS 76 41645 
KH 89 1494 

LKH 80 613 

In summary, these results indicated that WCA 
showed a better numerical performance than GWO 
for solving tested thermodynamic problems. 

Overall, WCA could find the global minimum of 
TPDF with a low NFE in several non-reactive 
mixtures and can outperform other metaheuristics 
reported in other studies. Some improvements were 
made in GWO to strength its search mechanism. For 
this purpose, the operator of pitch adjustment of the 
Harmony Search Algorithm [12] was implemented 
in GWO to enhance its effectiveness in phase 
stability calculations. GSR of this modified GWO 
varied from 17 to 77 % at different numerical efforts. 
The combination of HS with GWO improved the 
diversification of original GWO allowing the 
exploration of more areas to find the global 
minimum of TPDF. Note that the convergence of 
this hybrid optimizer was fast in some phase stability 
calculations. However, this improvement was not 
significantly in comparison with WCA. Therefore, 
these results showed that WCA is the best stochastic 
method for the set of stability problems used in this 
study. 

CONCLUSION 

Grey Wolf Optimization and Water Cycle 
Algorithm were introduced to perform 
thermodynamic calculations related to the phase 
equilibrium modeling. Results showed that WCA 
was capable to solve several phase stability problems 
with an acceptable performance. WCA required the 
smallest number of function evaluations to obtain a 
success rate similar or higher than that obtained for 
GWO. The performance of GWO was improved via 
its hybridization with Harmony Search. This new 
algorithm HS-GWO presented a better convergence 
properties for the global minimization of TPDF. 
However, it was outperformed by WCA, which was 
the best stochastic method for solving phase stability 
problems. This study provides insights on the 
application of alternative stochastic optimization 
methods to solve challenging thermodynamic 
calculations. The performance of WCA and GWO 
should be improved with other numerical strategies 
to enhance their exploration and exploitation 
capabilities for phase stability analysis in 
nonreactive systems. These improvements should be 
focused on their convergence properties especially 
to increase the reliability at a low number of function 
evaluations.   

Acknowledgements: The authors acknowledge 
the funding received from the European Union’s 
Horizon 2020 research and innovation programme 
under the Marie Sklodowska-Curie grant agreement 
No 778168. 



P. Hernández-Pérez et al.: Phase stability analysis of multicomponent systems using alternative stochastic… 

60 

REFERENCES 
1. N. Saber, J.M. Shaw, Fluid Phase Equilibria, 264, 137 

(2008). 
2. W.A. Wakeham, R.P. Stateva, Reviews in Chemical 

Engineering, 20, 1 (2004).  
3. H. Zhang, A. Bonilla-Petriciolet, G.P. Rangaiah, The 

Open Thermodynamics Journal, 5, 71 (2011). 
4. G.P. Rangaiah, Fluid Phase Equilibria, 187-188, 83 

(2001). 
5. M.L. Michelsen, Fluid Phase Equilibria, 9, 1 (1982). 
6. K. Moodley, J. Rarey, D. Ramjugernath, Computers 

and Chemical Engineering, 74, 75 (2015). 

7. J.A. Fernandez-Vargas, A. Bonilla-Petriciolet, G.P. 
Rangaiah, S.E.K. Fateen, Fluid Phase Equilibria, 427, 
104 (2016). 

8. S. Mirjalili, S.M. Mirjalili, A. Lewis, Advances in 
Engineering Software, 69, 46 (2014). 

9. H. Eskandar, A. Sadollah, A. Bahreininejad, M. Hamdi, 
Computers and Structures, 110-111, 151 (2012). 

10. K.S. Kadalia, L. Rajajib, V. Moorthyc, J. 
Viswanathara, Energy Procedia, 117, 509 (2017). 

11. A. Sadollah, H. Eskandar, A. Bahreininejad, J.H. Kim, 
Applied Soft Computing Journal, 30, 58 (2015). 

12. Z.W. Geem, J.H. Kim, G.V. Loganathan, Simulation, 
76, 60 (2001). 

 


