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MHD Eyring-Powell nanofluid flow in a channel with oscillatory pressure gradient: 
A note 
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This article describes the MHD Eyring-Powell nanofluid flow with oscillatory pressure gradient in an impermeable 
vertical channel. Here, blood and various shapes of alumina (Al2O3) are taken as non-Newtonian base-fluid and 
nanoparticles, respectively. Maxwell Garnett and Brinkman models are used to calculate the thermophysical properties 
of the nanofluid. Governing flow equations are simplified and the resulting system of non-linear differential equations is 
solved by Shooting technique along with the Runge-Kutta fourth-order method The effects of arising parameters on the 
flow variables have been studied in detail and numerical results are depicted graphically.Numerical results for the Nusselt 
number are presented in tabular form for different shapes of nanoparticles. 

Keywords: Eyring-Powell nanofluid, Pulsating flow, Hartmann number, Grashof number. 

INTRODUCTION 

Nanoparticles are used as drug delivery carriers 
which are usually less than 100 nm and contain 
various biodegradable elements such as 
natural/synthetic polymers/metals [1]. Choi and 
Eastman [2] noticed that the nanofluids enhance the 
thermal conductivity, as well as the heat transfer in 
base fluids. Since then, studies pertaining to 
nanofluids have attracted the attention of many 
researchers (see [3-8]) due to the rapid development 
of nanotechnology in engineering and sciences. 

Oscillatory flow is a periodic flow oscillating 
around a non-zero mean value. In recent times, the 
studies pertaining to pulsating flows gain a great deal 
of research attention because of their applications in 
biological areas such as human circulatory, 
respiratory and vascular systems and in engineering 
areas such as fuel injection into or exhaust from 
internal combustion engines, thermo-acoustic 
coolers and MEMS microfluidic engineering 
applications [9-12]. Abou-zeid et al. [13] examined 
the heat and mass transfer of a pulsating flow of a 
non-Newtonian fluid through permeable parallel 
plates saturated with porous medium. Recently, 
Jafarzadeh et al. [14] simulated the unsteady 
pulsatile blood flow distribution of nanoparticles 
loaded with the drug in the artery by taking blood as 
non-Newtonian in character. Very recently, Kumar 
and Srinivas [15] numerically studied the combined 
effects of slip-velocity and Joule’s heating on the 
MHD pulsating flow of Eyring–Powell nanofluid 
through a vertical porous channel. 

Several    mathematical    models    have    been 

developed to understand the flow behaviour 
pertaining to the oscillatory flows in different flow 
configurations (see Refs. [16-21] and several 
references therein).  

A study related to MHD oscillatory flow of an 
Eyring-Powell nanofluid through the vertical 
channel considering the shape factor has not yet been 
reported, to the best of authors' knowledge.  So, the 
main aim of the present study is to examine the flow 
of an Eyring-Powell nanofluid with oscillating 
pressure gradient accounting for the magnetic field, 
Joule’s heating and thermal radiation. In this 
investigation, blood is taken as the base fluid and 
Al2O3 is considered as nanoparticle. Effects of 
important parameters on the momentum and heat 
transfer characteristics were analysed with the help 
of computer illustrations. Results for the rate of heat 
transfer are presented for four different shapes of 
nanoparticles. This paper is organised as follows: 
mathematical formulation, results along with 
discussion and conclusions. 

MATHEMATICAL FORMULATION 

As shown in Fig. 1, the flow of the fluid is only 
in the x − direction, and we have taken the 
oscillatory flow of the Eyring-Powell fluid in the 
vertical channel. The fluid is electrically conducting 
due to the applied magnetic field B0. The polarization 
is negligible because of lower magnitude of external 
magnetic field, hence there will be no internal 
electric field.  The temperature on the left wall of the 
channel is T0 while the uniform temperature T1 is 
considered on the right wall. The impact  of  thermal 
radiation  in  the  equation  of  energy, is  taken  into 
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account. The momentum and energy equations 
considering the Boussinesq approximation for the 
flow are [15, 19, 22]: 
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Figure 1. Physical sketch of the flow. 

The velocity and temperature fields are subjected 
to the following conditions: 

0 1
ˆ ˆˆ ˆon left wall: 0 and on right wall: 0 and ; .u T T u T T= = = =   

       (3) 

Flow of the fluid in the channel is influenced by 
an oscillatory pressure gradient [18]: 

   (4) 

where, the subscript f indicates the base fluid; nf 
indicates the nanofluid; ∧  indicates the 
dimensional variable; µnf the dynamic viscosity; 

,fAρ  aпplitude of the oscillating pressure gradient; 

 and Cγ  are the Eyring-Powell fluid parameters; 
ˆ ˆ,  u v  are the components of velocity along ,  x y

axes; ˆ ,p  the dimensional pressure; ,nfρ  the density; 
,g  the gravitational force; βnf  denotes the thermal 

expansion coefficient; T̂  represents the dimensional

temperature of the fluid; σnf  the electrical 
conductivity; 0 ,B  the magnetic field strength; ˆ,t  

the dimensional time; ,nfκ  the thermal 

conductivity; ( ) ,p nf
cρ  the specific heat and 0Q  

indicates the heat source (or sink). 
The radiative heat flux, rq , is simplified 

according to the Rosseland approximation as: 
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where, σ̂  represents the Stefan–Boltzmann 
constant, the coefficient of Rosseland mean 
absorption represented by k̂  and 4 3 4

1 1
ˆ ˆ4 3T T T T≅ −

[15]. 
Presenting the non-dimensional variables to 

transform the flow equations (1) - (5) into the non-
dimensional form [7, 23]: 
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ˆˆˆ ˆ ˆ ˆ/ ;  / ;  ;  / ;  / ;  /fu u A p p A h t t T T T T x x h y y hω ρ ω θ= = = = − − = =  

         (6) 

where, ω  is the angular frequency, u  is the velocity 
and θ  is the temperature in dimensionless form. 

The nanofluid’s physical characteristics are 
represented as [3, 15, 22, 24]: 
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where, φ  is the nanoparticle volume fraction, m  is 
the shape factor, the subscript n is the nanoparticle. 

Transforming the Eqs. (1) – (2) by using Eqs. (5) 
– (7) we get:

1 itp e
x

ε∂
− = +
∂

(8)
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The transformed conditions are as follows: 

at 0 : 0 and 0; at 1: 0 and 1y u y uθ θ= = = = = =  
        (11) 

where, fH h ω υ=   (frequency parameter), 

( )Pr f p ff
cυ ρ κ=   (Prandtl number), 

0 f fM B h σ µ=   (Hartmann number), 

( )2
0 f p f

Q Q h cυ ρ =   
  (heat source/sink parameter), 

( )2 2
1 0( )p fEc A c T Tω= −     (Eckert number),

( )1 1 fk Cγ µ=   (non-Newtonian parameter), 

( ) ( )2
1 0f fGr g T T h Aβ ω υ= −   (Grashof number), 

f f fυ µ ρ=   (kinematic viscosity) and 

( ) ( )3
1

ˆˆ4Rd T kσ κ=  (radiation parameter). 

A perturbative solution has been assumed to 
derive the solution for the transformed equations in 
the form [22, 25]: 
( ) ( ) ( ) ( ) ( ) ( )0 1 0 1; ., , it itu y t u y u y e y t y y eε θ θ εθ= + = +     

     (12) 

Here, 0u  and 0θ  are the zeroth-order terms; 1u  
and 1θ  are first-order terms of the perturbative 
solution of the velocity and temperature 
distributions, respectively. 

Incorporating Eq. (12) in Eqs. (8) – (11) and on 
equating the coefficients of different powers of ε  
we get: 
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The above coupled equations are subjected to the 
conditions: 
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Here, ( ) ( )( )1 1 2 1 11 ;B A A k A= +   ( )2 6 2 ;B A A Gr=  

( ) 2
3 5 2 ;B A A M= −   2

4 2 ;B H A= 2
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9 5 3;B B B= −  10 3 .B Q A=  
The coupled equations from (13) to (16) are 

solved along with the conditions given in Eq. (17), 
numerically. 

RESULTS AND DISCUSSION 

By assigning the numerical values to various 
parameters, for the physical insight of the problem, 
velocity ( )u , temperature (θ) and Nusselt number 
(Nu) distributions, for blood – Al2O3 were discussed. 
The obtained results of the investigation are depicted 
graphically and in tabular form. While performing 
the simulations against one parameter, the values of 
other parameters are taken as follows: / 4;t π=  

0.01;ε =   1 3;k =   0.05;φ =   1;Q =   21;Pr =
1;Ec =   4;Gr =   2;M =   2;Rd = 3m =  and 
2.H =   Also, the thermophysical properties of 

blood and Al2O3 are 1050,fρ =   3970,nρ =
( ) 3617,p fc =   ( ) 765,p nc = 0.52,fκ =  

40,nκ =   0.8,fσ =   101 10 ,nσ
−= ×  

61.8 10 ,fβ
−= ×  68.5 10nβ

−= ×  [22, 26]. 
In order to validate the present numerical work, the 

results were compared with those reported by Kumar 
and Srinivas [22] by considering 0.Gr R Ec= = =  
This comparison (see Fig. 2) shows that there is an 
excellent agreement between present numerical work 
and previously published results. 

The velocity profiles against various parameters are 
shown in Figure 3. Fig. 3(a) illustrates the effect of H 
on the velocity of the fluid.  It reveals that a rise in the 
frequency parameter enhances the velocity of the fluid. 
As non-Newtonian parameter, k1 and the inertial force 
are related directly; by raising k1 the inertial forces 
reduce the fluid velocity as depicted in Fig. 3(b). The 
influence of Grashof number Gr  on u  is illustrated in 
Fig. 3(c). The relation between Gr and the velocity 
describes that the rise in Gr decreases the viscosity. 
This decrease in viscosity aids in the raise of buoyancy 
forces, and as a consequence, there is a growth in the 
velocity.  

From Fig. 3(d), a fall in the velocity profiles can be 
noticed with an increase in M. This decrement is caused 
due to the Lorentz force which is a resistive force that 
results in lowering the velocity.  
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Figures 3(e) and 4(c) demonstrate the effect of 
varying thermal radiation (Rd) on the fluid velocity and 
temperature within the channel. The figures reveal that 
both the velocity and temperature within the channel 
raises with an increment of Rd. This rise in the 
temperature distribution maybe because of the decrease 
in thermal conduction of the fluid, which is causing a 
rise in the heat flux to the fluid. This change in the heat 
flux results in the rise of the fluid temperature, which 
enhances the kinetic energy of the fluid, thereby 
causing a faster flow of the fluid (Fig. 3(e)). 

Figure 2. Comparison of (a) Velocity, u and (b) 
Temperature, θ  with the previous work. 

Fig. 4(a) depicts the variation of Ec   on the 
temperature distribution. Because of the viscous 
dissipation, an increase in the Eckert number 
generates the internal energy, and it reflects in the 
enhancement of the fluid temperature.  The same can 
be observed from Fig. 4(a) that raising Ec  enhances 
the temperature.  From Fig. 4(b), it is clear that as 
increasing heat source cause the higher temperature.  
Fig. 4(d) is plotted for temperature distribution, to 
see the effect of ϕ The addition of nanoparticles into 
base fluids raises the thermal conductivity. 
Additional factors such as the size and shape of the 
particles may also bring changes in the thermal 
conductivity. Consequently, there is an increase in 
the temperature distribution as φ  increases (see Fig. 
4(d)). Figure 3. (a) Influence of H; (b) Influence of 1k  ; (c) 

Influence of Gr ; (d) Influence of M ; (e) Influence of 
Rd  on u . 
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Figure 4. (a) Influence of Ec; (b) Influence of Q ; (c) 
Influence of Rd;  (d) Influence of φ  on .θ  

From Fig. 5 it is evident that unsteady velocity 
and unsteady temperature oscillate with increasing 
time, because the flow of the fluid is driven by an 
oscillatory pressure gradient. Consequently, u1 and 
θ1 significantly vary with time. Fig. 5(b) illustrates 
that maximum temperature is drifted towards the 
boundary layers near channel walls. 

The values of Nusselt number (on left and right 
walls) can be determined as follows [18]: 

( )0,1 4
1 0 0,1

ˆ
.

ˆ
nf

f y

h TNu A
T T y y
κ θ

κ =

   ∂ ∂
= =   − ∂ ∂  

 (18) 

Table 1. The values of shape factor for various shapes 
of nanoparticles [6, 27] 

Name of the 
shape 

Shape of the 
nanoparticle 

Shape factor (m) 

Spherical 3 

Brick 3.7 

Cylinder 4.9 

Platelet 5.7 

Figure 5. Influence of t  on (a) tu  (b) .tθ

Shape factors values for nanoparticles, used in our 
calculations, are depicted in Table 1. Table 2 shows the 
computed values of Nu on channel walls for different 
parameters. Our calculations reveal that heat transfer 
rate raises on the left wall, 0y =  while it drops at the 
right wall of the channel for increasing values of 

, an , d Gr Qφ  whereas the Nusselt number decreases 
with increasing k1, M and Rd. This is because a raise in 
rheological parameter and Hartmann number reduces 
the fluid velocity near y = 0. Furthermore, the heat 
transfer rate increases as the particle shape factor 
increases for any given parameter. One can observe 
that the heat transfer rate is maximum for the case of 
platelets like cylindrical, brick and spherically shaped 
nanoparticles. 
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Table 2.: Variation of Nu  for different values of Gr, 
k1, M, ϕ and Q. 
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CONCLUSIONS 

The hydromagnetic flow of a Powell-Eyring 
nanofluid with the oscillatory pressure gradient 
trough the vertical channel was investigated, 
accounting for the effects of thermal radiation and 
Joule’s heating. This study is helpful in describing 
the thermal characteristics of the blood flow in the 
circulatory system.  The Shooting technique along 
with the 4th order R-K method is employed to solve 
the transformed flow equations. Our analysis 
indicates that the Joule’s heating and thermal 
radiation affect the flow. An increase in Grashof 

number and frequency parameter enhances the 
velocity, whereas the velocity decreases as 
increasing the intensity of the magnetic field and 
non-Newtonian parameter. The fluid temperature 
raises for the higher values of the Eckert number, 
heat source parameter, radiation parameter, and 
nanoparticle volume fraction. The unsteady velocity 
of the fluid and unsteady temperature oscillate with 
time due to the impact of periodic pressure gradient. 
From the calculated results, we observed that by 
increasing the rheological parameter of the base fluid 
and the intensity of the magnetic field, the heat 
transfer rate weakens at the left wall. Further, highest 
rate of heat transfer occurs for the case of platelets 
(m = 5.7). The hydrodynamic case of the nanofluid 
flow with a pulsating pressure gradient can be 
captured by choosing M = 0 and k1 = 0  
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