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Thermoelasticity describes a wide range of phenomena and generalizes the classical theory of elasticity and the theory 
of heat conductivity. Thermoelastic and electromagnetic waves propagation in anisotropic media is of the most interest 
at present. Within the bounds of this area, based on the use of physical-mechanical properties of anisotropic media bound 
heat and mechanical fields are being studied. 

The article is devoted to the study of thermoelastic wave propagation in anisotropic media of hexagonal systems in 
the case of the second order axis symmetry and heterogeneity along X-axis. In the article, by means of analytical matricant 
method, a set of motion equations of thermoelastic media is reduced to an equivalent set of first-order differential 
equations. 

The structures of the matrices of the coefficients of the constitutive equations and the structure of the matrix for waves 
of an acoustic and electromagnetic coupled field in thermoelastic, piezoelectric, piezomagnetic and magnetoelectric 
anisotropic media are presented. 
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INTRODUCTION 

The dynamical theory of thermoelasticity is the 
study of dynamical interaction between thermal and 
mechanical fields in solid bodies and is of high 
importance in various engineering fields such as 
earthquake engineering, soil dynamics, aeronautics, 
nuclear reactors, etc. It is well known that the 
classical theory of thermoelasticity [1, 2] rests upon 
the hypothesis of the Fourier law of heat conduction, 
in which the temperature propagation is governed by 
a parabolic-type partial differential equation. The 
theory predicts that a thermal signal is felt 
instantaneously everywhere in a body. This is 
unrealistic from the physical point of view, 
especially for short-time responses. To account for 
the effect of thermal relaxation, generalized 
thermoelasticity has been formulated on the basis of 
a modified Fourier law such that the temperature 
propagation is governed by a hyperbolic-type 
equation. Accordingly, heat transport in solids is 
regarded as a wave phenomenon rather than a 
diffusion phenomenon. 

In the paper [3], waves propagating along an 
arbitrary direction in a heat-conducting orthotropic 
thermoelastic plate are presented by utilizing the 
normal mode expansion method in the generalized 
theory of thermoelasticity with one thermal 
relaxation time. In the paper [4], the author studied 
the interaction of free harmonic waves with a 
multilayered medium in generalized thermo-
elasticity by utilizing the combination of the linear 

transformation formation and transfer matrix 
method approach. Solutions obtained are general and 
pertain to several special cases. Of these mention the 
dispersion characteristics for a multilayered 
medium. 

The wave propagation in an anisotropic 
inhomogeneous medium is considered. A new 
method of matricant has been developed. Based on 
the method matricant [5] treated wave processes in 
elastic and thermoelastic anisotropic media in 
anisotropic dielectric media, the waves in 
anisotropic plates, electromagnetic waves in media 
with magnetoelectric effect [6-8], the waves in 
liquid crystals, wave propagation in thermoelastic 
media [9-12]. 

The structure of matricant for the equation 
motion elastic medium equations, equations of 
thermo-mechanical medium has been established. 
Wave propagation in infinite and finite periodical 
inhomogeneous media are studied.  

Research method 

The research method is the matricant method [5] 
which allows to obtain accurate analytical solutions 
of differential equations describing the related 
processes in media with piezoelectric, 
piezomagnetic, thermoelastic and thermo-
piezoelectric properties.  

The method of study is analytical and is based on 
the development of matrix methods for studying the 
dynamics of elastic stratified media.  

The method is about reducing the initial motion 
equations based on the variable separation method  
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(representation of the solution in the form of plane 
waves) to the equivalent system of ordinary 
differential equations of the first order with variable 
coefficients and the construction of the matricant 
structure (normalized matrix of fundamental 
solutions). 

In the case of the consistent approach, the matrix 
method allows considering the propagation of waves 
in a wide class of media. Another advantage of this 
method is that the expressions obtained by the matrix 
method have a very compact form, which proves to 
be convenient both for analytical studies and for 
numerical calculations. 

The matrix method has been tested and the results 
obtained are consistent with previously known ones. 
This is confirmed by the presence of a large number 
of publications based on the above method. 

Matrix formulation of the propagation of 
thermoelastic waves 

Propagation of thermoelastic waves in 
anisotropic medium is described by the equations of 
motion to be solved together with the Fourier heat 
equation and the equation of heat flow, which have 
the form [1]: 
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where ijσ  - stress tensor, ρ - density of the medium, 

ijλ  - thermal conductivity tensor, iq - the vector of 

heat, ω  - the angular frequency, ijβ  - 

thermomechanical constants, jiij ββ = , ijε - the 

strain tensor, εс  - specific heat at constant strain, θ
=Т-Т0 - temperature increase compared with the 

temperature of the natural state Т0, 1
0


Т
θ  for small

deformations. 
Physical and mechanical quantities are 

related by the relation of Duhamel-Neumann [2]: 
θβεσ ijklijklij c −=    (4) 

Here ijc  - elastic parameters, cijkl=cjikl=cijlk=cklij; klε
- the tensor Cauchy for small deformations.

For crystals of a hexagonal system as coordinate
three orthogonal axes of symmetry or inversion axes 
of the second order get out. 

For a hexagonal class of crystals, the ratio of 
Duhamel - Neumann looks like: 
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Equations (1), (2), (3), (4) and (4a) determine the 
relationship of mechanical stress and temperature as 
a function of the independent variables - the thermal 
field and deformation. 

Thus, the relations (1) - (4) constitute a closed 
system of thermoelasticity equations, which 
describes the propagation of thermoelastic waves. 

Based on the method of separation of variables in 
the case of a harmonic function of time [5]: 
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(5) 
the system of equations (1) -- (4) reduces to a system 
of differential equations of first order with variable 
coefficients which describes the propagation of 
harmonic waves: 
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where: W


 is a column vector, ux(x), uy(x), uz(x) 
represent the projection of the displacement vector 
on the corresponding coordinates, and m=kx, n=ky, 
l=kz, show the x, y and z components of a wave 
vector k, respectively; [ ]lnmxxc ijijkl ,,,,),(),( ωθβBB = - 
coefficient matrix which elements contain the 
parameters of the medium in which thermoelastic 
waves propagate. 

The vector W


 has the form:
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 (7) 
The symbol t  indicates the transpose of the

vector - a vector of strings - column. 
The system of differential equations (6) for a 

anisotropic medium of a hexagonal system looks 
like: 
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The heterogeneity of the medium is assumed 
along X. In constructing the coefficient matrix B is 
used as a representation of the solution (5), the 
system of equations (1) - (4) are in the derivatives 
along the coordinate X and the excluded components 
of the stress tensor are not included in the boundary 
conditions. The multiplier )exp( ilzinyti −−ω  is 
omitted throughout. 

In the structure of the matrix and vector - column 
boundary conditions in the bulk case for the 
hexagonal crystal system in the case of the symmetry 
axis of the second order and heterogeneity along the 
X axis are given by: 
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From the structure of the coefficient matrix (8) 
that is in the spatial case, the elastic waves of 
different polarization and the heat wave are 
interrelated. 
 

The ijb  elements of the coefficient matrix B for a
hexagonal system in a volume case look like: 
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The nonzero elements of the matrix of 
coefficients B b13, b24 determine the mutual 
transformation of longitudinal and transverse X - 
polarized waves. Elements of b15, b26 describe the 
relationship of transverse X-polarization with the 
longitudinal wave. Nonzero element b45 defines the 
mutual transformation between the waves of 
transverse polarization. 

The fact that the coefficient b17: 

11

11
17 c

b β
=

means that the longitudinal wave is propagated by 
the thermoelastic effect. 

Non-zero elements b47 and b67: 
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indicate the effect on the elastic wave transverse 
polarizations thermoelastic effect. At the same time. 
it describes the b47 thermoelastic effect on the elastic 
shear wave of the Y-polarization, and the b67 
thermoelastic effect on the transverse wave Z-
polarization. 

Similarly, for the thermoelastic waves 
propagating in an anisotropic medium of hexagonal 
symmetry the coefficient matrix is constructed in the 
bulk case and the analysis of matrix coefficients is 
peerformed. We also obtained that the structure of 
the matrix of coefficients in the propagation of 
thermoelastic waves in an anisotropic medium of 
hexagonal crystal systems in the planes XY and XZ, 
defines the types of waves and the mutual 
transformation of waves of different polarizations. 

Piezoelastic waves 

The existence of direct and reverse piezoelectric 
effects in a dielectric medium leads to the mutual 
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generation of elastic and electromagnetic waves. A 
complete description of the processes of propagation 
of elastic and electromagnetic waves is based on the 
analysis of joint solutions of the equations of motion 
of an elastic anisotropic medium (1) and Maxwell's 
equations [13]. Electromagnetic wave processes are 
considered on the basis of Maxwell's equations in the 
absence of free charges and currents in the medium: 
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where: Ei are the components of the electric field 
strength vector, Di are the components of the electric 
displacement vector, Bi are the components of the 
magnetic induction vector, and Hi are the 
components of the magnetic field strength vector. 
The coefficients ij∈ , μij are dielectric and magnetic 
parameters of the medium, which included μ0, ε0 are 
the magnetic and dielectric permeability of free 
space, respectively. 

System of Eqs. (1), (9) coupled with material 
equations: 
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where ikle  is the piezoelectric tensor, which 
determines the interaction of elastic and 
electromagnetic fields and can be represented as a 
(3×6) matrix. Application of the representation of 
solutions for the desired function in the form (5) 
reduces the system of Eqs. (9) and equations of 
motion (1) with (10) to a system of first-order 
equations [14]: 
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As a result, the matrix of coefficients B has 
(10×10) order. For example, when we consider 
waves in orthorhombic media of class 222, when the 
projection of the wave vector ky=0 (the plane xz), the 
matrix is divided into a (6×6) and a (4×4) matrix. 
The (4×4) matrix describes propagation of coupled 
shear elastic waves with Y-polarization and TM 
electromagnetic waves. The structure of the matrix 
of coefficients B has the form [14]: 

















−
−=

00
00

00
00

4323

3414

2321

1412

bbi
bbi

bb
bb

ω
ωB ; 

t
xyуzy EHu ),,,( σ=W



(12) 
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Piezomagnetic media 

Previously, the paper [15] considered physical 
models describing piezomagnetic media coupled by 
elastic and electromagnetic fields, based on the 
system of equations (1), (9) in combination with 
material equations for piezomagnetic media: 
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where ijkQ  are piezomagnetic modules of the
anisotropic media. Application of the representation 
solution (5) allows Eqs. (1), (9), and (12) to give a 
system of first-order ODEs: 
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The matrix of coefficients B in the general case 
has order (10×10) The structure of this matrix 
coefficients is obtained for orthorhombic media [15]. 

Magnetoelectric media 

In the work [16], Maxwell's system of equations 
and constitutive equations describing the 
propagation of electromagnetic waves in an 
anisotropic magnetoelectric medium are equated to 
an equivalent system of differential equations of first 
order. This gives an opportunity to analyze 
magnetoelectric effect on electromagnetic wave 
propagation along axes planes and in bulk case. 

Under absence of volume charge density, current 
density vectors and harmonic dependence of the 
wave fields solutions on time Maxwell's equations 
take following form: 
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The dependence of D
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 and B
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 on E
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 and H
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 in 
presence of magnetoelectric effect has the following 
form: 
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where: 0ε , 0µ - absolute dielectric permeability

of vacuum; ijε , ijµ  - components of relative
dielectric and magnetic permeability of medium. 

ijα  - components of the tensor that describe the
influence of the magnetoelectric effect. 

In general, the matrix of B coefficients has the 
following structure: 
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For the antiferromagnetic Cr2O3 that is being 
considered in this article tensor α̂  has the following 
form: 
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CONCLUSION 

This paper is devoted to the research of 
thermoelastic wave propagation in anisotropic 
media of hexagonal systems in the case of a second-
order axis symmetry and heterogeneity along the Х 
axis. Differential equations system of the first order 
with variable coefficients that are made by means of 
the variable separation method are obtained 
(solution is presented as a plane harmonic wave). 
Coefficients matrices for anisotropic medium of a 
hexagonal system for three-, two-, and one-
dimensional cases were obtained. The structures of 
the matrices of the coefficients of the constitutive 
equations and the structure of the matrix for waves 
of an elastic and electromagnetic coupled field in 
thermoelastic, piezoelectric, piezomagnetic and 
magnetoelectric anisotropic media are presented. 
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